A Parameterizable Floating-Point Logarithm Operator for FPGAs

Jérémie Detrey Florent de Dinechin

Projet Arénaire – LIP
UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668
http://www.ens-lyon.fr/LIP/Arenaire/
Outline

▶ Context

▶ Evaluation algorithm

▶ Architecture

▶ Error analysis

▶ Results

▶ Conclusion
Context

- Context
- Evaluation algorithm
- Architecture
- Error analysis
- Results
- Conclusion
Context: Floating-point on FPGAs

- floating-point reaches FPGAs

- basic operators libraries (+, −, ×, ÷, √):
 - Belanović and Leeser, 2002
 - Lee and Burgess, 2002
 - Detrey and de Dinechin, 2003 (FPLibrary)
 - deLorimier and DeHon, 2005
 - Dou et al., 2005

- more and more applications: matrix operations, convolutions, filters

- but slow operators: 10 times slower than typical processor operators
Context: Floating-point elementary functions?

- in current processors, **elementary functions** are **micro-coded** or implemented in **software**

- porting those algorithms to FPGAs would result in very slow operators

- need for **ad-hoc hardware algorithms**
Context: Previous works

- only two references:
 - sine (Ortiz et al., 2003)
 - exponential (Doss and Riley, 2004)

- but...
 - not really targeted to FPGAs
 - too close to software implementation
Context: Motivations

- logarithm operator: first attempt at a library of floating-point elementary functions
- parameterized operator
- compatible with FPLibrary
- use of recent fixed-point evaluation methods
Evaluation algorithm
Evaluation algorithm: Number format

- 2 parameters: w_E (range) and w_F (precision)

- inspired from the IEEE-754 standard:

$$X = (-1)^{S_X} \cdot 1.F_X \cdot 2^{E_X-E_0}$$
Evaluation algorithm: Number format

- 2 parameters: w_E (range) and w_F (precision)

- inspired from the IEEE-754 standard:

$$X = (-1)^{S_X} \cdot 1.F_X \cdot 2^{E_X - E_0}$$

- 2 extra bits for exceptional cases:
 - $\text{exn}_X = 00$: zero, $X = \pm 0$
 - $\text{exn}_X = 01$: regular case
 - $\text{exn}_X = 10$: infinity, $X = \pm \infty$
 - $\text{exn}_X = 11$: Not-a-Number (NaN)
we need to compute $R = \log X$, with $X > 0$
we need to compute $R = \log X$, with $X > 0$

with $X = M \cdot 2^E$, we have:

$$R = \log M + E \cdot \log 2$$
Evaluation algorithm: Fixed-point logarithm
Evaluation algorithm: Fixed-point logarithm

- when $M \approx 1$ and $E = 0$, $R \approx 0$
- possibly large renormalization for R
Evaluation algorithm: Fixed-point logarithm

- when $M \approx 1$ and $E = 0$, $R \approx 0$
- possibly large renormalization for R
- very large precision ($2w_F$ bits) to evaluate $\log M$
Evaluation algorithm: Fixed-point logarithm

- Taylor formula: $\log M = (M - 1) - \frac{1}{2}(M - 1)^2 + \ldots$
Evaluation algorithm: Fixed-point logarithm

- Taylor formula: \[\log M = (M - 1) - \frac{1}{2}(M - 1)^2 + \ldots \]

- with \(f(M) = \frac{\log M}{M - 1} \), we have:
 - reconstruction: \(\log M = f(M) \cdot (M - 1) \) where \(M - 1 \) is exact
 - only \(w_F + g_0 \) bits to evaluate \(f(M) \)
Evaluation algorithm: Fixed-point logarithm

- evaluation of $f(M)$ by the Higher-Order Table-Based Method (HOTBM):
 - piecewise polynomial approximation
 - terms computed in parallel
 - ad-hoc powering units
 - optimized look-up tables
 - small multipliers
 - guaranteed faithful rounding
Architecture

► Context

► Evaluation algorithm

► Architecture

► Error analysis

► Results

► Conclusion
Architecture

\[f(x) = \frac{\log x}{x - 1} \]

\[\tilde{R} \approx \log X \]
Architecture

- range reduction:
 - comparison with $\sqrt{2}$ on a few bits only
 - right shift of at most one position
Architecture

- range reduction:
 - comparison with $\sqrt{2}$ on a few bits only
 - right shift of at most one position

- sign detection:
 - sign of E when $E \neq 0$
 - sign of $M - 1$ otherwise

$\tilde{R} \approx \log X$
Architecture

- range reduction:
 - comparison with $\sqrt{2}$ on a few bits only
 - right shift of at most one position
- sign detection:
 - sign of E when $E \neq 0$
 - sign of $M - 1$ otherwise
- fixed-point logarithm:
 - HOTBM operator to compute $f(M)$
 - in parallel, compute $M - 1$ and change sign if needed
 - large mult ($\sim w_F \times w_F + g_0$) for reconstruction
Architecture

- **range reduction:**
 - comparison with $\sqrt{2}$ on a few bits only
 - right shift of at most one position

- **sign detection:**
 - sign of E when $E \neq 0$
 - sign of $M - 1$ otherwise

- **fixed-point logarithm:**
 - HOTBM operator to compute $f(M)$
 - in parallel, compute $M - 1$ and change sign if needed
 - large mult ($\sim w_F \times w_F + g_0$) for reconstruction

- $E \cdot \log 2$:
 - change sign if needed
 - rectangular mult ($\sim w_E \times w_F + g_1$)
range reduction:
- comparison with $\sqrt{2}$ on a few bits only
- right shift of at most one position

sign detection:
- sign of E when $E \neq 0$
- sign of $M - 1$ otherwise

fixed-point logarithm:
- HOTBM operator to compute $f(M)$
- in parallel, compute $M - 1$ and change sign if needed
- large mult ($\sim w_E \times w_F + g_0$) for reconstruction

$E \cdot \log 2$:
- change sign if needed
- rectangular mult ($\sim w_E \times w_F + g_1$)

final step:
- reconstruction with a single large addition
- normalization using a leading-zero counter
- rounding
Error analysis

- Context
- Evaluation algorithm
- Architecture
- Error analysis
- Results
- Conclusion
Error analysis: Error propagation

\[f(x) = \frac{\log x}{x - 1} \]

\(M \approx \log X \)

\(\tilde{R} \approx \log X \)
Error analysis: Error propagation

ϵ_f:
- evaluation error for $f(M)$
- multiplied by $M - 1$
Error analysis: Error propagation

► ϵ_f:
 - evaluation error for $f(M)$
 - multiplied by $M - 1$

► $\epsilon_{\log 2}$:
 - discretization error for the constant $\log 2$
 - g_1 guard bits: $|\epsilon_{\log 2}| < 2^{-w_F-g_1-1}$
 - multiplied by E
Error analysis: Error propagation

\(\epsilon_f \):
- evaluation error for \(f(M) \)
- multiplied by \(M - 1 \)

\(\epsilon_{\log 2} \):
- discretization error for the constant \(\log 2 \)
- \(g_1 \) guard bits: \(|\epsilon_{\log 2}| < 2^{-w_F-g_1-1} \)
- multiplied by \(E \)

final addition
Error analysis: Faithful rounding

▶ table maker’s dilemma: we cannot guarantee correct rounding
Error analysis: Faithful rounding

- table maker’s dilemma: we cannot guarantee correct rounding
Error analysis: Faithful rounding

- table maker’s dilemma: we cannot guarantee correct rounding
Error analysis: Faithful rounding

- **table maker’s dilemma:** we cannot guarantee correct rounding

- **ensure faithful rounding:** one *unit in the last place* error

- from the **constraints** we compute the **number of guard bits**
Error analysis: Faithful rounding

▶ more than 96% of all cases are correctly rounded

▶ single precision \((X > 0\) only):
Results

- Context
- Evaluation algorithm
- Architecture
- Error analysis
- Results
- Conclusion
Results: Operator area

single precision \((w_E, w_F) = (8, 23)\):
1399 slices (27% of a Virtex-II 1000 FPGA)
Results: Operator latency

- single precision \((w_E, w_F) = (8, 23)\): 64 ns
Results: Using embedded multipliers

- **Single precision** \((w_E, w_F) = (8, 23)\):

<table>
<thead>
<tr>
<th></th>
<th>LUT-based mults</th>
<th>1399 slices (27%)</th>
<th>64 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 \times 18 mults</td>
<td>830 slices (16%) 9 mults</td>
<td>61 ns</td>
<td></td>
</tr>
</tbody>
</table>
Results: Pipelined version

- all operators are pipelined at 100 MHz on a Virtex-II 1000 FPGA
- single precision \((w_E, w_F) = (8, 23)\):

<table>
<thead>
<tr>
<th></th>
<th>Combinatorial</th>
<th>1399 slices (27%)</th>
<th>64 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipelined</td>
<td>1618 slices (31%)</td>
<td>11 cycles</td>
<td></td>
</tr>
</tbody>
</table>
Results: Comparison

single precision comparison with a 2.4 GHz Intel Xeon processor:

<table>
<thead>
<tr>
<th></th>
<th>cycles</th>
<th>latency</th>
<th>throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 GHz Intel Xeon</td>
<td>196</td>
<td>82 ns</td>
<td>12 Mop/s</td>
</tr>
<tr>
<td>100 MHz Virtex-II FPGA</td>
<td>11</td>
<td>64 ns</td>
<td>100 Mop/s</td>
</tr>
</tbody>
</table>
Conclusion

➢ Context

➢ Evaluation algorithm

➢ Architecture

➢ Error analysis

➢ Results

➢ Conclusion
Conclusion

- floating-point logarithm operator
 - fully parameterized (range and precision)
 - up to single precision
 - part of the FPLibrary operator suite

- careful error analysis
 - faithful rounding
 - optimized data width

- fast operators
 - same latency as in current processors
 - 10 times increase in throughput
Future work

- explore other algorithms to target \textit{double precision}

- implement other \textit{elementary functions}:
 - exponential: already developed (FPT'05)
 - sine
 - cosine
 - ...

Thank you for your attention

more information & download page:
http://www.ens-lyon.fr/LIP/Arenaire/
Thank you for your attention

▶ more information & download page:
 http://www.ens-lyon.fr/LIP/Arenaire/

Questions?