
Denotations for classical proofs

– Preliminary results –

Philippe de Groote
Université Catholique de Louvain, Unité d’Informatique

BE-1348 Louvain-la-Neuve, BELGIUM

Abstract

This paper addresses the problem of extending the formulae-as-types principle to classical
logic. More precisely, we introduce a typed lambda-calculus (λ-LK→) whose inhabited types
are exactly the implicative tautologies of classical logic and whose type assignment system is
a classical sequent calculus. Intuitively, the terms of λ-LK→ correspond to constructs that
are highly non-deterministic. This intuition is made much more precise by providing a simple
model where the terms of λ-LK→ are interpreted as non-empty sets of (interpretations of)
untyped lambda-terms. We also consider the system (λ-LK→ + cut) and investigate the
relation existing between cut elimination and reduction. Finally, we show how to extend our
system in order to take conjunction, disjunction and negation into account.

1 Introduction

In: Logical Foundations of Computer Science – Tver’92,
A. Nerode, M. Taitslin (Eds.),
Lecture Notes in Computer Science, Vol. 620, Springer-Verlag (1992), pp. 105-116.

In this paper, we investigate the possibility of designing a calculus for denoting proofs of clas-
sical logic based on the formulae-as-types principle [15]. In other words, we try to define a
typed λ-calculus whose types are classical propositions and whose terms denote classical proofs.
This may seem hopeless, because it is known that the technical content of the formulae-as-
types principle, namely the Curry-Howard isomorphism [6, 10, 15, 23], is strongly related to
the constructive aspect of intuitionistic logic. Indeed, any straightforward adaptation of the
isomorphism to the case of classical logic yields a degenerate model where all the proofs of a
given proposition are identified [17]. This can be stated by saying that the only denotational
semantics of classical logic is trivial [10].

We do not think that this last technical statement gives a final answer to the problem. To
tell if a classical proposition (i.e. a proposition classically provable) is or is not intuitionistic, one
has to consider its possible proofs. Given a proposition and its proof, it is not the proposition
itself that is intuitionistic or non-intuitionistic, but rather its proof that is constructive or not.
Of course, there are classically valid propositions for which there does not exist any constructive
proof, but one must not forget, on the other hand, that there exist non-constructive proofs of
intuitionistically valid propositions. Therefore, it makes sense, at least from a syntactic point of
view, to consider that the set of proofs of classical logic is a proper extension of the set of proofs
of intuitionistic logic.

At this point, it is worth mentioning that our primary motivation, when starting this work,
was chiefly pragmatic. Typed λ-calculus, as a mere notation for intuitionistic proofs, is useful
in practice. In the case of interactive theorem proving, it allows proofs to be turned into objects
that can be manipulated in different ways. When we implemented one of the earliest versions

of classical predicate calculus in Isabelle [21], we found that some notation to handle classical
proofs would also be useful. Hence it was natural to try to extend the syntax of λ-terms in order
to capture the non-constructive proofs of classical logic.

In fact, such an extension may be achieved very cheaply by considering a λ-calculus with
given constants of type ¬α∨α. In some sense, this is how Gentzen extends NJ (the intuitionistic
system of natural deduction) into NK (the classical one) [8]. This possible solution is not so
fruitful, however, for it does not enlighten us about the very nature of classical proofs. Natural
deduction systems do not really fit classical logic.

The deep difference between classical and intuitionistic logic, that is the non-constructive
aspect of classical proofs, is much more apparent when one considers sequent calculus. In both
Gentzen’s systems LJ and LK [8], the logical rules controlling the left- or right-introduction of
connectives are instances of the same schemes. The only difference between intuitionistic and
classical proofs is structural. The succedent of any intuitionistic sequent must consist of at most
one formula. On the other hand, the succedent of a classical sequent may consist of several
formulas (interpreted disjunctively). This yields, in the latter case, a kind of non-determinism
that corresponds to the non-constructive aspect of classical logic.

The above discussion leads us to the conclusions that follow. The real challenge in design-
ing a classical λ-calculus is to design a typed language whose type assignment system consists
of a classical sequent calculus, i.e. a system whose sequents may be manifold concluded. More-
over, such a language should come together with a decent interpretation that would help us to
understand the non-determinism related to classical logic. This is exactly the problem we want
to tackle.

The remainder of this paper is organized as follows.
In Section 2, we study the implicative fragment of Gentzen’s LK. In particular, we try to

give a computational meaning to its rules. This results in the concrete proposal of a λ-calculus
(λ-LK→) whose inhabited types are exactly the implicative tautologies of classical logic.

Intuitively, the terms of λ-LK→ correspond to constructs that are highly non-deterministic.
In Section 3, this intuition is made much more precise by interpreting the terms of λ-LK→ as
non-empty sets of (interpretations of) untyped λ-terms. The type assignment system of Section 2
is showed to be sound for this simple semantics. However, it is far from being complete. This
yields a discussion about completeness.

The system defined in Section 2 is cut-free and its typable terms are all in normal form.
In Section 4, we consider the system (λ-LK→ + cut) and we investigate the relation existing
between cut elimination and reduction.

So far, only the implicative fragment of classical logic has been considered. In Section 5,
we show how to extend our system in order to take conjunction, disjunction, and negation into
account.

We have subtitled this paper preliminary results. We do not consider λ-LK as a definitive
system but as an experimental one. This paper proposes some solutions but it also raises many
problems. We summarize these problems in Section 6 and conclude by presenting our plans for
future work.

2 The positive implicative fragment

The problem that we want to tackle is to give a computational interpretation to the sequents
of Gentzen’s LK. This problem is already non-trivial in the case of the implicative fragment of

2

LK. Indeed, as it is well-known, the positive implicative fragment of classical logic is a proper
extension of the corresponding fragment of intuitionistic logic. This can be demonstrated by
giving a classical implicative tautology that is not intuitionistically provable. The paradigmatic
example of such a tautology is Peirce’s law:

((α → β) → α) → α (Peirce’s law)

Let us, for the time being, restrict ourself to the implicative fragment of LK.
Classical sequents have the form Γ − Θ where the succedent Θ may consist of more than

one formula. This is where the difficulty is. We must, therefore, focus on the rules acting directly
on the succedent: the right weakening rule, the right contraction rule and the right introduction
rule for implication (→). Let us consider small examples of derivations involving these rules.

A first typical example is the following:

α − α

α − α, β

− α, α → β

How can we decorate the formulas involved in this derivation with terms standing for proofs?
The first sequent, which is an axiom, corresponds simply to the declaration (and the use) of a
variable (x : α − x : α). Now, what can we say of the second sequent? What proof can we
assign to the formula β? The second sequent is clearly valid because if we are given a proof
of α we certainly have a proof of α or a proof of β. However, we do not know anything about
β in terms of a possible proof. This can be stressed out by assigning some dummy term to β
(x : α − x : α, ⊥ : β). The third sequent is obtained by (→)-introduction. This rule, in the
intuitionistic case, corresponds to the formation of a λ-abstraction. Therefore we assign the
term λx : α.⊥ to the formula α → β. Then the problem becomes what term can we assign to
α after having discarded the declaration x : α? If α (seen as a type) is empty, λx : α.⊥ may
be interpreted as the empty function, which in this case is a proof of α → β. Hence, when α
is empty, the sequent is valid and we may assign a dummy proof to α. If α is not empty, then
any of its elements may be used as a proof. Therefore we introduce a choice operator ε(−) that,
given some non-empty type, picks out one of its elements. Thus the all derivation becomes the
following:

x : α − x : α

x : α − x : α, ⊥ : β

− ε(α) : α, λx :α.⊥ : α → β

Now consider the derivation which follows (it starts as the previous one where α and β
have been identified):

x : α − x : α

x : α − x : α, ⊥ : α

− ε(α) : α, λx :α.⊥ : α → α

y : α − ε(α) : α, λx :α.⊥ : α → α

− λy :α. ε(α) : α → α, λx :α.⊥ : α → α

The informal interpretation that we can give to the last sequent is typical of classical reasoning.
We have to show that the functional type α → α is not empty. We proceed as follows: if

3

α is non-empty, there exists some constant function (λy : α. ε(α)) assigning to each element
of α one distinct element of α; if α is empty, then the empty function (λx : α.⊥) belongs to
α → α. This interpretation illustrates the non determinism of classical disjunction: we have
two possible proofs of α → α; we know that one of these is an actual proof; but we do not
(cannot) know which one is the actual proof. Therefore, when applying a contraction rule, we
must internalize, at the level of terms, the non-determinism existing at the level of sequents. We
introduce a binary choice operator (− []−) to this end. Then, by contraction, we may end the
above derivation as follows:

...
− λy :α. ε(α) [] λx :α.⊥ : α → α

Before defining formally the system λ-LK→, let us summarize. We have introduced three
new constructs: a special constant (⊥) and two non-deterministic choice operators (− []− and
ε(−)). The intuitive meaning of these constructs is the following:

• ⊥ is a fictitious proof; in some sense, it stands for something that does not exist;
• − []− is a binary choice operator whose non-determinism is angelic; the value of M []N is

the value of M or the value of N but cannot be fictitious unless the values of both M and
N are fictitious;

• ε(−) is a choice operator akin to Hilbert’s ε [18]; if α is a non-empty type, ε(α) stands for
some element of α; if α is empty, ε(α) is a fictitious term.

Formally, we define the system λ-LK→ as follows.
Let A be a countably infinite set of type-variables. The set T of types of λ-LK→ is

inductively defined as follows:

(i) if a ∈ A then a ∈ T ;
(ii) if α, β ∈ T then (α → β) ∈ T .

Let X be a countably infinite set of term-variables. The set ΛLK of terms of λ-LK→ is
inductively defined as follows:

(i) if x ∈ X then x ∈ ΛLK;
(ii) ⊥ ∈ ΛLK;
(iii) if α ∈ T then ε(α) ∈ ΛLK;
(iv) if M,N ∈ ΛLK then (M []N) ∈ ΛLK;
(v) if M,N ∈ ΛLK then (M N) ∈ ΛLK;
(vi) if x ∈ X , α ∈ T and M ∈ ΛLK then (λx :α. M) ∈ ΛLK.

We omit parentheses according to the usual conventions. We use α, β, γ, . . . to denote types
and M,N,O, . . . to denote terms. The expression M [x:=N] denotes the result of substituting N
for the free occurrences of x in M . Expressions of the form M : α are called statements and we
use Γ,∆,Θ, . . . to denote sequences of statements. If Θ is the sequence (M1 : α1, . . . ,Mn : αn)
then Θ[x:=N] is the sequence (M1[x:=N] : α1, . . . ,Mn[x:=N] : αn).

4

The type assignment system of λ-LK→ consists of the following rules:

axiom:

x : α − x : α (identity)

structural rules:

Γ, x : α, y : β, ∆ − Θ
Γ, y : β, x : α, ∆ − Θ

(exchange – left)

Γ − Θ, M : α, N : β, Ξ
Γ − Θ, N : β, M : α, Ξ

(exchange – right)

Γ − Θ
x : α, Γ − Θ

(weakening – left)

Γ − Θ
Γ − Θ, ⊥ : α

(weakening – right)

x : α, y : α, Γ − Θ
x : α, Γ − Θ[y:=x]

(contraction – left)

Γ − Θ, M : α, N : α

Γ − Θ, M []N : α
(contraction – right)

logical rules:

Γ − Θ, M : α y : β, ∆ − Ξ
x : α → β, Γ, ∆ − Θ, Ξ[y:=(xM)]

(implication – left)

x : α, Γ − Θ, M : β

Γ − Θ[x:=ε(α)], λx :α. M : α → β
(implication – right)

In Rule weakening-left and Rule implication-left, the variable x must be fresh.
If one forgets the terms and considers only the types, the above system corresponds exactly

to the implicative fragment of Gentzen’s LK such as defined in [8]. As an example, let us give
a derivation of Peirce’s law:

x : α − x : α

x : α − x : α, ⊥ : β

− ε(α) : α, λx :α.⊥ : α → β y : α − y : α

z : (α → β) → α − ε(α) : α, z (λx :α.⊥) : α

z : (α → β) → α − (ε(α) [] z (λx :α.⊥)) : α

− λz : (α → β) → α. (ε(α) [] z (λx :α.⊥)) : ((α → β) → α) → α

The term λz : (α → β) → α. (ε(α) [] z (λx :α.⊥)), which corresponds to the proof of Peirce’s law,
may be interpreted as follows. Let z be a function from (α → β) to α. If α is non-empty, one
of its elements (ε(α)) is produced. Otherwise, when α is empty, there exists a function from
α to any β, namely the empty function (λx : α.⊥). Then an element of α can be obtained by
applying z to the empty function.

5

3 Simple semantics

The constructs that we have introduced in the previous section have been given an intuitive
meaning. Is it possible to turn this intuition into a technical interpretation? To answer this
question, we provide a model of λ-LK→.

To built this model, we adapt the simple semantics of type assignment [2, 5, 4, 13] to
our non-deterministic constructs. Let 〈D,Φ,Ψ〉 be an environment model of the untyped λ-
calculus [19], where Φ ∈ D −→ [D → D] is the projection and Ψ ∈ [D → D] −→ D is the
embedding.

A type-environment is a map assigning to each type-variable a subset of D. We write
T -env for the set of of type-environments (i.e. the set A −→ P(D)) and we let ρ range over
T -env.

The interpretation of types T [[−]]− ∈ (T × T -env) −→ P(D) is defined as usual:

(i) T [[a]]ρ = ρ(a)
(ii) T [[α → β]]ρ = {d ∈ D | ∀e ∈ T [[α]]ρ.Φ(d)(e) ∈ T [[β]]ρ}

To model the non-determinism of λ-LK→, we follow the usual idea that consists to interpret
non-deterministic expressions as sets of values. More precisely, we interprets the terms of λ-LK→

as sets of functions mapping term-environments to elements of D. A term-environment is a map
assigning to each type-variable an element of D. The set of term-environments (i.e. X −→ D)
is written E-env and we use η as a metavariable to denote term-environments.

The interpretation of terms E [[−]]− ∈ (ΛLK × T -env) −→ P(E-env −→ D) is defined
according to the following rules:

(i) E [[x]]ρ = {η 7→ η(x)}
(ii) E [[⊥]]ρ = ∅
(iii) E [[ε(α)]]ρ = {η 7→ d | d ∈ T [[α]]ρ}
(iv) E [[M []N]]ρ = E [[M]]ρ ∪ E [[N]]ρ
(v) E [[M N]]ρ = {η 7→ Φ(d(η))(e(η)) | d ∈ E [[M]]ρ ∧ e ∈ E [[N]]ρ}
(vi) E [[λx :α. M]]ρ = {η 7→ Ψ(d 7→ e(η[d/x])) | T [[α]]ρ 6= ∅ ⊃ e ∈ E [[M]]ρ}

Given ρ ∈ T -env, η ∈ E-env, and M ∈ ΛLK, we also define:

• E [[M]]ρ,η = {d(η) | d ∈ E [[M]]ρ}

The above simple semantics corresponds fairly to the intuitive interpretation given in Sec-
tion 2. The fact that this intuitive interpretation makes sense is expressed by a soundness
property.

Let ρ and η be respectively a type- and a term-environment. We say that the pair ρ, η
satisfies the statement M : α, and we write ρ, η |= M : α, if and only if

(a) E [[M]]ρ,η 6= ∅,
(b) E [[M]]ρ,η ⊂ T [[α]]ρ.

6

Let Γ ≡ (x1 : α1, . . . , xn : αn) be a sequence of declarations and Θ ≡ (M1 : β1, . . . ,Mm : βm)
be a sequence of statements. We say that the succedent Θ is a semantic consequence of the
antecedent Γ, and we write Γ |= Θ, if and only if, for all pairs ρ, η such that

• ρ, η |= xi : αi for all i ∈ {1, . . . , n},

there exists j ∈ {1, . . . ,m} such that

• ρ, η |= Mj : βj .

Proposition 3.1 (Soundness) If Γ − Θ then Γ |= Θ.

The proof proceeds by induction on the derivation of Γ − Θ.

It is natural to ask if the converse property holds, i.e. if the type assignment system of
Section 2 is complete for the above semantics. The answer is no.

In the intuitionistic case, to get a complete type assignment system it is sufficient to add
the following conversion rule [2, 5, 13]:

Γ − M : α M = N

Γ − N : α
(conversion)

where = stands for β-conversion when the semantic model is not extensional, and for βη-
conversion when it is.

In our case, β- or βη-conversion is not enough. We also need some conversion theory for
the new constructs. For instance, our simple semantics suggests the following laws:

(M []N) [] O = M [](N []O) M []N = N []M

M []M = M M []⊥ = M M [] ε(α) = ε(α)

To add these laws, however, is not sufficient. In fact, the problem is deeper. Before
designing any appropriate conversion theory for λ-LK→, two questions must be answered: do
we really want completeness? in the affirmative, with respect to what class of models do we
want to be complete?

To answer the first question is not obvious. For any possible model and any provable
proposition α, we may expect to have |= ε(α) : α. Hence, for an undecidable logic, a complete
typing-system would yield an undecidable typing-relation.

For the second question, our present feeling is that the simple semantics defined in this
section is too simple.

4 Reduction and cut elimination

All the terms typable according to the system of Section 2 are in β-normal form. Indeed, the
substitution in Rule implication-left cannot create any β-redex, for the substituted term is of
the form (xM).

To allow non-normal terms to be typable, we must provide λ-LK→ with a cut rule:

Γ − Θ, M : α x : α, ∆ − Ξ
Γ, ∆ − Θ, Ξ[x:=M]

(cut)

7

Then a proof-theoretic question arises: to what corresponds cut elimination in λ-LK→ + cut?
In the context of natural deduction, Prawitz has introduced the notion of normal proof [22].

In the intuitionistic setting, there is a homomorphism between cut elimination in LJ and proof
normalization in NJ, which is isomorphic to β-normalization.

In our case, there is a mismatch between cut elimination, which acts at the global level of
the sequents, and β-reduction, which acts at the local level of the terms. This can be shown by
considering the main step of cut elimination:

...
Π1
...

x : α, Γ − Θ, M : β

Γ − Θ[x:=ε(α)], λx :α. M : α → β

...
Π2
...

∆1 − Ξ1, N : α

...
Π3
...

y : β, ∆2 − Ξ2

z : α → β, ∆1, ∆2 − Ξ1, Ξ2[y:=(z N)]
Γ, ∆1, ∆2 − Θ[x:=ε(α)], Ξ1, Ξ2[y:=(λx :α. M) N]

CUT

reduces to:

...
Π2
...

∆1 − Ξ1, N : α

...
Π1
...

x : α, Γ − Θ, M : β

∆1, Γ − Ξ1, Θ[x:=N], M [x:=N] : β
CUT

...
Π3
...

y : β, ∆2 − Ξ2

∆1, Γ, ∆2 − Ξ1, Θ[x:=N], Ξ2[y:=M [x:=N]]
Γ, ∆1, ∆2 − Θ[x:=N], Ξ1, Ξ2[y:=M [x:=N]]

CUT

At the semantic level, we get an interesting interpretation: cut elimination corresponds to
a gain of determinism. At the syntactic level, however, cut elimination does not correspond to
β-reduction. On the one hand, the sequent obtain by cut elimination is the following one:

Γ, ∆1, ∆2 − Θ[x:=N], Ξ1, Ξ2[y:=M [x:=N]]

On the other hand, the process of β-reduction yields the following result:

Γ, ∆1, ∆2 − Θ[x:=ε(α)], Ξ1, Ξ2[y:=M [x:=N]]

This observation raises a new question: which reduction theory must we consider for the
terms of our calculus?

5 Adding other connectives

λ-LK→ can be easily extended in order to deal with negation, conjunction, and disjunction.
This is achieved by considering one given empty type and by introducing products and sums.

For negation, we consider one type constant 0, we define ¬α as α → 0, and we add the
following axiom:

x : 0 − x : α (e falso sequitur quod libet)

8

For conjunction, we extend the formation rules by allowing a term to be a pair 〈M,N〉,
to be a left projection fst(M), or to be a right projection snd(M). Then we introduce the
following rules:

x : α, Γ − Θ
y : α ∧ β, Γ − Θ[x:=fst(y)]

(conjunction – left – 1)

x : β, Γ − Θ
y : α ∧ β, Γ − Θ[x:=snd(y)]

(conjunction – left – 2)

Γ − Θ, M : α ∆ − Ξ, N : β

Γ, ∆ − Θ, Ξ, 〈M,N〉 : α ∧ β
(conjunction – right)

For disjunction, we use sums. Let inl and inr be the two injection operators. The right
introduction rules are then the following:

Γ − Θ, M : α

Γ − Θ, injl(M) : α ∨ β
(disjunction – right – 1)

Γ − Θ, M : β

Γ − Θ, injr(M) : α ∨ β
(disjunction – right – 2)

For the left-introduction rule, we propose two alternative forms. Gentzen’s original rule is the
following one:

α, Γ − Θ β, Γ − Θ
α ∨ β, Γ − Θ

(OEA)

This rule may be decorated with terms as follows:

x : α, Γ − (Mi : θi)i∈n y : β, Γ − (Ni : θi)i∈n

z : α ∨ β, Γ − (Dxy.(z,Mi, Ni) : θi)i∈n

where the binding operator D is such that the free occurrences of x in M and the free occurrences
of y in N are bound in Dxy.(L,M,N). Moreover, this operator obey the following laws:

Dxy.(inl(L),M,N) = M [x:=L] Dxy.(inr(L),M,N) = N [y:=L]

The above left-introduction rule, which is a straightforward adaptation of the intuitionistic rule,
appears to be peculiar when compared to the other rules. The contexts in the antecedents (Γ)
and the types in the succedents (θi) are required to be the same in both the premises. This was
not the case in all the others rules. Therefore, we propose the following alternative:

x : α, Γ − Θ y : β, ∆ − Ξ
z : α ∨ β, Γ, ∆ − Θ[x:=outl(z)], Ξ[y:=outr(z)]

(disjunction – left)

where the operators outl and outr are akin to the sum destructors used in Edimburgh LCF [11]
and obey the following laws:

outl(inl(M)) = M outl(inr(M)) = ⊥ outr(inr(M)) = M outr(inl(M)) = ⊥

9

6 Conclusions and future work

The results that have been reported in this paper show that the design of classical λ-calculi is
feasible and worthy. As we pointed out in the introduction, a system such as λ-LK may be
useful in practice. It can be used for interactive theorem proving and also provides a possible
formalism to study the computational content of classical proofs, which is a problem addressed
in [3]. At a more fundamental level, to design systems such as λ-LK and to provide semantics
for them may give us a better understanding of the nature of classical proofs. Related works on
this topic include [3, 9, 12, 20].

Nevertheless, λ-LK is still an experimental system and problems remain. The two main
ones concern the definition of suitable notions of conversion and reduction.

The problem of defining an appropriate conversion theory is related to the issue of com-
pleteness with respect to some class of models. For this purpose, further semantic investigations
are needed. Models used in relational programming are good candidates for such investigations.
It is not clear, however, that completeness is a desirable property. This illustrates a general
principle. To be classical, we have to pay a price; we must drop some of the properties that hold
in the intuitionistic context.

The notion of reduction is related to the notion of cut elimination and to the computational
content of classical proofs. Here also properties that hold in the intuitionistic case are no more
compatible in the classical one. For instance, conversion cannot be defined as the symmetric,
transitive closure of reduction if the latter corresponds to cut elimination. Indeed, it would
amount to equate all the proofs because of the non-confluence of cut elimination. Therefore, to
define an appropriate reduction theory requires further proof-theoretic investigations. Interesting
results may be obtained when considering interpretations of classical logic into intuitionistic
systems [3, 12, 20]. The intuitive meaning given to the operator ε(−) suggests also possible
connections with the notions of oracle and relative recursiveness.

References

[1] H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised
edition, 1984.

[2] F. Cardone and M. Coppo. Two extensions of Curry’s type inference system. In P. Odifreddi,
editor, Logic and Computer Science, pages 19–75. Academic Press, 1990.

[3] R. Constable and C. Murthy. Finding computational content in classical proofs. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 341–362. Cambridge University Press,
1991.

[4] M. Coppo. On the semantics of polymorphism. Acta Informatica, 20:159–170, 1983.

[5] M. Coppo. Completeness of type assignment in continuous λ models. Theoretical Computer
Science, 29:309–324, 1984.

[6] H.B. Curry and R. Feys. Combinatory Logic, Vol. I. North-Holland, 1958.

[7] J.H. Gallier. Logic for Computer Science. John Wiley & Sons, 1988.

10

[8] G. Gentzen. Recherches sur la déduction logique (Untersuchungen über das logische
schliessen). Presses Universitaires de France, 1955. Traduction et commentaire par R.
Feys et J. Ladrière.

[9] J.-Y. Girard. A new constructive logic: Classical logic. Mathematical Structures in Com-
puter Science, 1:255–296, 1991.

[10] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[11] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A mechanized Logic of Com-
putation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[12] T. G. Griffin. A formulae-as-types notion of control. In Conference record of the seventeenth
annual ACM symposium on Principles of Programming Languages, pages 47–58, 1990.

[13] J.R. Hindley. The completeness theorem for typing λ-terms. Theoretical Computer Science,
22:1–17, 1983.

[14] J.R. Hindley and J.P. Seldin. Introduction to combinators and λ-calculus. London Mathe-
matical Society Student Texts. Cambridge University Press, 1986.

[15] W.A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479–490. Academic Press, 1980.

[16] J.-L. Krivine. Lambda-calcul, types et modèles. Masson, 1990.

[17] J. Lambek and P.J. Scott. An introduction to higher order categorical logic. Cambridge
University Press, 1986.

[18] A.C. Leisenring. Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach Science
Publishers, New-York, 1969.

[19] A. R. Meyer. What is a model of the lambda calculus. Information and Control, 52:87–122,
1982.

[20] C. R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the sixth
annual IEEE symposium on Logic In Computer Science, pages 96–107, 1991.

[21] L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science, pages 361–386. Academic Press, 1990.

[22] D. Prawitz. Natural deduction, A Proof-Theretical Study. Almqvist & Wiksell, Stockholm,
1965.

[23] S. Stenlund. Combinators λ-terms and proof theory. D. Reidel Publishing Company, 1972.

11

