A study of discrete curves based on arithmetic discrete straight lines

Isabelle Debled-Rennesson

Research

Discrete Geometry

Digital camera
Scanners
Medical Magnetic Resonance Imaging (MRI)

Research

Discrete Geometry

Digital camera
Scanners
Medical Magnetic Resonance Imaging (MRI)
$\Rightarrow \quad$ Discrete data

Enclidean theorems are not satisfactory \Downarrow

Discrete Geometry

History

70's : A. Rosenfeld, G. Herman, E. Khalimsky
Objective : to define a theoretical framework to transpose in \mathbb{Z}^{n} the basic notions of Euclidean geometry

Discrete Geometry

- Grid (representation of data)
- Topology
- Basic Objects (points, straight lines, planes, ...)
- Adapted algorithmic process

Regular Grids

2D discrete space

3D discrete space

Connectivity

Neighborhood relations

8 -connectivity
A and B of \mathbb{Z}^{2} are 8-neighbour (or 8-adjacent) if :
$\max \left(\left|x_{A}-x_{B}\right|,\left|y_{A}-y_{B}\right|\right)=1$

Connectivity

Neighborhood relations

4-connectivity
A and B of \mathbb{Z}^{2} are 4-neighbour (or 4-adjacent) if :

8 -connectivity
A and B of \mathbb{Z}^{2} are 8-neighbour (or 8-adjacent) if :
$\max \left(\left|x_{A}-x_{B}\right|,\left|y_{A}-y_{B}\right|\right)=1$

α-connectivity or α-adjacency

Curves

k-Arc

Let $\mathcal{E}=\left\{p_{i}\right\}_{i=0 . . n}$ be a set of discrete points and a relation of k-adjacency, \mathcal{E} is called a k-arc if for each element p_{i} of \mathcal{E}, p_{i} has exactly
 two k-neighbour points in \mathcal{E}, excepted p_{0} and p_{n} called extremities of the arc.

k-Curve

Let $\mathcal{E}=\left\{p_{i}\right\}_{i=0 . . n}$ be a set of discrete points and a relation of k-adjacency, \mathcal{E} is called a k-curve if \mathcal{E} is a k-arc and $p_{0}=p_{n}$.

Discrete Primitives

Outline of talk

1 Discrete Line

- Arithmetic definition
- Recognition
- Applications
- Segmentation
- 3D discrete lines

2 Blurred segments

- Definitions
- Recognition
- Applications
- Estimators

3 Conclusion

Outline of talk

Discrete Line

Arithmeti

 definition Recognition Applications
Blurred

segments
Definitions Recognition Applications

1 Discrete Line

- Arithmetic definition
- Recognition
- Applications
- Segmentation
- 3D discrete lines

2 Blurred segments

- Definitions
- Recognition
- Applications
- Estimators

3 Conclusion

Arithmetic definition - Réveilles (91)

Arithmetic discrete line

A discrete line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$
\mu \leq a x-b y<\mu+\omega
$$

- a, b, μ, ω in \mathbb{Z}
- $\operatorname{gcd}(a, b)=1,(b, a)$ main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$

Arithmetic definition - Réveilles (91)

Arithmetic discrete line

A discrete line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$
\mu \leq a x-b y<\mu+\omega
$$

- a, b, μ, ω in \mathbb{Z}
- $\operatorname{gcd}(a, b)=1,(b, a)$ main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$
$\omega=\max (|a|,|b|): \mathcal{D}$ is 8 -arc and is called a naïve line

$$
\mathcal{D}(5,8,-1,8):-1 \leq 5 x-8 y<7
$$

Arithmetic definition - Réveilles (91)

Arithmetic discrete line

A discrete line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$
\mu \leq a x-b y<\mu+\omega
$$

- a, b, μ, ω in \mathbb{Z}
- $\operatorname{gcd}(a, b)=1,(b, a)$ main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$
$\omega<\max (|a|,|b|): \mathcal{D}$ is not connected

$$
\mathcal{D}(5,8,-1,7):-1 \leq 5 x-8 y<6
$$

Arithmetic definition - Réveilles (91)

Arithmetic discrete line

A discrete line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$
\mu \leq a x-b y<\mu+\omega
$$

- a, b, μ, ω in \mathbb{Z}
- $\operatorname{gcd}(a, b)=1,(b, a)$ main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$
$\omega=|a|+|b|: \mathcal{D}$ is a 4 -arc and is called a standard line

$$
\mathcal{D}(5,8,-1,13):-1 \leq 5 x-8 y<12
$$

Arithmetic definition - Réveilles (91)

Arithmetic discrete line

A discrete line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$
\mu \leq a x-b y<\mu+\omega
$$

- a, b, μ, ω in \mathbb{Z}
- $\operatorname{gcd}(a, b)=1,(b, a)$ main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$
$\omega>|a|+|b|: \mathcal{D}$ is called a thick line

$$
\mathcal{D}(5,8,-1,22):-1 \leq 5 x-8 y<21
$$

Leaning lines and points

Definition

■ Leaning lines of $\mathcal{D}(a, b, \mu, \omega)$:
Real lines $a x-b y=\mu$ and $a x-b y=\mu+\omega-1$

- Leaning points of $\mathcal{D}(a, b, \mu, \omega)$
- Recognized segment of \mathcal{D} : a segment of \mathcal{D} that contains at least 3 leaning points

Recognized segment of $\mathcal{D}(7,-10,0,34): 0 \leq 7 x+10 y<34$

Construction of a naïve line

Remainder

Definition

Remainder at the point M as a function of $\mathcal{D}(a, b, \mu, \omega)$:

$$
r_{\mathcal{D}}(M)=a x_{M}-b y_{M}
$$

Discrete Line

Arithmetic definition
Recognition Applications

Blurred segments Definitions Recognition Applications

Construction of a naïve line

Remainder

Definition

Remainder at the point M as a function of $\mathcal{D}(a, b, \mu, \omega)$:

$$
r_{\mathcal{D}}(M)=a x_{M}-b y_{M}
$$

$$
\mathcal{D}(3,8,-4,8), x \in[0,14],-4 \leq 3 x-8 y<4
$$

Discrete Line

Arithmetic definition
Recognition Applications

Blurred segments Definitions Recognition Applications

Construction of a naïve line

Remainder

Definition

Remainder at the point M as a function of $\mathcal{D}(a, b, \mu, \omega)$:

$$
r_{\mathcal{D}}(M)=a x_{M}-b y_{M}
$$

$$
\mathcal{D}(3,8,-4,8), x \in[0,14],-4 \leq 3 x-8 y<4
$$

iscrete Line

Arithmetic definition

Recognition

 ApplicationsBlurred segments Definitions Recognition Applications

Construction of a naïve line

Remainder

Definition

Remainder at the point M as a function of $\mathcal{D}(a, b, \mu, \omega)$:

$$
r_{\mathcal{D}}(M)=a x_{M}-b y_{M}
$$

$$
\mathcal{D}(3,8,-4,8), x \in[0,14],-4 \leq 3 x-8 y<4
$$

Periodicity

$$
\mathcal{D}(3,8,-4,8), x \in[0,14],-4 \leq 3 x-8 y<4
$$

Periodicity

$\mathcal{D}(a, b, \mu, \omega)$ is invariant by the translation $k .(b, a)^{T}$ with $k \in \mathbb{Z}$

Recognition : the problem

Is that a segment of naïve line?

Recognition : the problem

Is that a segment of naïve line?

Approach :

- Arithmetical
- Incremental
I. DEBLED-RENNESSON, J.-P. REVEILLES,

A linear algorithm for segmentation of digital curves.
IJPRAI, 9(6), 1995.

Growth of a recognized segment of a naïve line

Let be $\mathcal{S}=M_{0} M_{1}$ a recognized segment of $\mathcal{D}(a, b, \mu, \max (|a|,|b|)), M$ an added point to \mathcal{S}, $r_{\mathcal{D}}(M)=a x_{M}-b y_{M}:$
(i) $\mu \leq r_{\mathcal{D}}(M)<\mu+\max (|a|,|b|): M \in \mathcal{D}$,
$\mathcal{S} \cup\{M\}$ is a segment of \mathcal{D},
(ii) $r_{\mathcal{D}}(M)=\mu+\max (|a|,|b|): M$ is weakly exterior to \mathcal{D},
$\mathcal{S} \cup\{M\}$ is a recognized segment of the naïve line whose slope is given by the vector $L_{F} M$,
(iii) $r_{\mathcal{D}}(M)=\mu-1: M$ is weakly exterior to \mathcal{D},
$\mathcal{S} \cup\{M\}$ is a recognized segment of the naïve line whose slope is given by the vector $U_{F} M$,
(iv) $r_{\mathcal{D}}(M)<\mu-1$ or $r_{\mathcal{D}}(M)>\mu+\max (|a|,|b|): M$ is strongly exterior to \mathcal{D}, $\mathcal{S} \cup\{M\}$ is not a segment of a naïve line.

Linear and incremental recognition algorithm

$$
\begin{gathered}
\mathcal{S}=M_{0} M_{1} \text { recognized segment of } \mathcal{D}(2,5,-1,5),-1 \leq 2 x-5 y<4 \\
\mathcal{S} \cup\{M\} \text { recognized segment of } \mathcal{D}^{\prime}(3,8,-3,8) .
\end{gathered}
$$

Growth of a recognized segment of a naïve line

Let be $\mathcal{S}=M_{0} M_{1}$ a recognized segment of $\mathcal{D}(a, b, \mu, \max (|a|,|b|)), M$ an added point to \mathcal{S}, $r_{\mathcal{D}}(M)=a x_{M}-$ by $_{M}:$
(i) $\mu \leq r_{\mathcal{D}}(M)<\mu+\max (|a|,|b|): M \in \mathcal{D}$,
$\mathcal{S} \cup\{M\}$ is a segment of \mathcal{D},
(ii) $r_{\mathcal{D}}(M)=\mu+\max (|a|,|b|): M$ is weakly exterior to \mathcal{D},
$\mathcal{S} \cup\{M\}$ is a recognized segment of the naïve line whose slope is given by the vector $L_{F} M$,
(iii) $r_{\mathcal{D}}(M)=\mu-1: M$ is weakly exterior to \mathcal{D},
$\mathcal{S} \cup\{M\}$ is a recognized segment of the naïve line whose slope is given by the vector $U_{F} M$,
(iv) $r_{\mathcal{D}}(M)<\mu-1$ or $r_{\mathcal{D}}(M)>\mu+\max (|a|,|b|): M$ is strongly exterior to \mathcal{D}, $\mathcal{S} \cup\{M\}$ is not a segment of a naïve line.

Recognition algorithm of naïve line segments, $0 \leq a \leq b$

Input: C, a sequence of $n 8$-connected pixels
For each point M of C
check $r(M)$
If $r_{\mathcal{D}}(M)=\mu+\max (|a|,|b|)$ or $r_{\mathcal{D}}(M)=\mu-1$ then check new characteristics update leaning points
Fsi
If $r_{\mathcal{D}}(M)<\mu-1$ ou $r_{\mathcal{D}}(M)>\mu+\max (|a|,|b|)$ then stop, C is not a naïve line segment
Fsi
Complexity: $O(n)$

Arithmetic definition
Recognition
Applications

Blurred segments Definitions Recognition Applications

A recognition example

Initialisation : $a=0, b=1, \mu=0, D_{0}(0,1,0,1)$

$$
0 \leq-y<1
$$

A recognition example

Arithmetic

 Recognition ApplicationsBlurred segments Definitions Recognition Applications

$$
0 \leq x-2 y<2
$$

A recognition example

Arithmetic

 definitionRecognition
Applications

Blurred

segments

$$
\begin{aligned}
& a_{1}=1, b_{1}=2, \mu_{1}=0, D_{1}(1,2,0,2) \\
& 0 \leq x-2 y<2 \\
& r_{1}\left(M_{1}\right)=2 \Rightarrow a_{2}=1, b_{2}=3, \mu_{2}=-1, D_{2}(1,3,-1,3) \\
& -1 \leq x-3 y<2
\end{aligned}
$$

A recognition example

Arithmetic definition
Recognition Applications

Blurred

 segments Definitions Recognition Applications$$
\begin{aligned}
& a_{2}=1, b_{2}=3, \mu_{2}=-1, D_{2}(1,3,-1,3) \\
& -1 \leq x-3 y<2 \\
& r_{2}\left(M_{2}\right)=2 \Rightarrow a_{3}=1, b_{3}=4, \mu_{3}=-2, D_{3}(1,4,-2,4) \\
& -2 \leq x-4 y<2
\end{aligned}
$$

A recognition example

Arithmetic

 definition

$$
a_{3}=1, b_{3}=4, \mu_{3}=-2, D_{3}(1,4,-2,4)
$$

$$
-2 \leq x-4 y<2
$$

$$
r 3\left(M_{3}\right)=-3 \Rightarrow a_{4}=2, b_{4}=7, \mu_{4}=-3, D_{4}(2,7,-3,7)
$$

$$
-3 \leq 2 x-7 y<4
$$

A recognition example

Arithmetic

 definition

$$
a_{4}=2, b_{4}=7, \mu_{4}=-3, D_{4}(2,7,-3,7)
$$

$$
-3 \leq 2 x-7 y<4
$$

$$
r 4\left(M_{4}\right)=-4 \Rightarrow a_{5}=3, b_{5}=10, \mu_{5}=-4, D_{5}(3,10,-4,10)
$$

$$
-4 \leq 3 x-10 y<6
$$

Applications of the recognition algorithm

1 Segmentation and polygonalization of 2D discrete curves
■ Minimal number of segments, convexity, ...
[2 Extraction of geometrical parameters on 2D discrete curves

- Length, curvature

3 3D discrete curves

- Recognition
- Segmentation
- Length, curvature

Segmentation of discrete curves

First algorithm

Objective : Maximal segmentation of a 2D discrete curve
To decompose a discrete 2D curve into naïve discrete line segments of maximal length by starting at a given point of the curve

Symmetries of the naïve discrete lines Incremental recognition algorithm
\Downarrow
Linear algorithm of curve segmentation

Fundamental segment of a discrete curve

Let \mathcal{C} be a discrete curve, a segment of a naïve discrete line is said fundamental (or maximal) if it cannot be extended at the right and left hand sides on \mathcal{C}.

Fundamental segment of a discrete curve

Let \mathcal{C} be a discrete curve, a segment of a naïve discrete line is said fundamental (or maximal) if it cannot be extended at the right and left hand sides on \mathcal{C}.

Segmentation of discrete curves

Fundamental segments of a discrete curve

Fundamental segment of a discrete curve

Let \mathcal{C} be a discrete curve, a segment of a naïve discrete line is said fundamental (or maximal) if it cannot be extended at the right and left hand sides on \mathcal{C}.

Fundamental segment of a discrete curve

Let \mathcal{C} be a discrete curve, a segment of a naïve discrete line is said fundamental (or maximal) if it cannot be extended at the right and left hand sides on \mathcal{C}.

Segmentation of discrete curves

Fundamental segments of a discrete curve

Fundamental segment of a discrete curve

Let \mathcal{C} be a discrete curve, a segment of a naïve discrete line is said fundamental (or maximal) if it cannot be extended at the right and left hand sides on \mathcal{C}.

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points
(F. Feschet, L. Tougne 99)

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Algorithm to compute the sequence of all fundamental segments of a discrete curve

Algorithm to compute the sequence of all fundamental segments of a discrete curve of n points

Complexity: $O(n)$

F. FESCHET, L. TOUGNE,

Optimal Time Computation of the Tangent of a Discrete Curve : Application to the Curvature.
DGCI'99, LNCS 1568,pp. : 31-40, 1999.

Segmentation of discrete curves

Using fundamental segments of a discrete curve

All maximal segmentations of a given curve can be obtained by using its sequence of fundamental segments.

Segmentation of discrete curves

Using fundamental segments of a discrete curve

All maximal segmentations of a given curve can be obtained by using its sequence of fundamental segments.

Segmentation of discrete curves

Using fundamental segments of a discrete curve

All maximal segmentations of a given curve can be obtained by using its sequence of fundamental segments.

For all pair of maximal segmentations of a given closed curve, the difference between their number of segments is 0 or 1 .
F. FESCHET, L. TOUGNE,

On the min DSS problem of closed discrete curves.
Discrete Applied Mathematics 151(1-3) : 138-153, 2005.

Polygonalization of 2D discrete curves

with Hélène Dörksen-Reiter

Objectives

- Reversible polygonalization
- To keep the convexity properties of the discrete curve
- All vertices of the polygonalization are in \mathbb{Z}^{2}

Polygonalization of 2D discrete curves

Convexity

Discrete convexity

A discrete object O is convex iff its convex (Euclidean) hull does not contain any discrete point of the complementary of O.
C. E. KIM, A. ROSENFELD,

Digital Straightness and Convexity . STOC : 80-89, 1981.
O
C. E. KIM, J. SLANSKY,

Digital and cellular convexity.
Pattern Recognition 15(5) : 359-367, 1982.

Curve of the boundary and convexity

Curve of the boundary and convexity

Convexity

Polygonalization of 2D discrete curves

In the first octant, a 8-curve C of the boundary of O is said convex (resp.concave) if the fundamental segments of C have strictly increasing (resp. decreasing) slopes.
C is convex \Leftrightarrow there is no discrete point between C and its lower convex hull.

$$
\begin{gathered}
p_{1}=0.14<p_{2}=0.4, \text { maximal } \\
\text { convex part } \\
p_{2}=0.4>p_{3}=0.25, \text { maximal } \\
\text { concave part } \\
p_{3}=0.25<p_{4}=0.72, \text { maximal } \\
\text { convex part } \\
p_{4}=0.72>p_{5}=0.6>p_{6}= \\
0.33, \text { maximal concave part }
\end{gathered}
$$

Polygonalization of 2D discrete curves

Convexity

Curve of the boundary and convexity

In the first octant, a 8-curve C of the boundary of O is said convex (resp.concave) if the fundamental segments of C have strictly increasing (resp. decreasing) slopes.
C is convex \Leftrightarrow there is no discrete point between C and its lower convex hull.

$$
\begin{gathered}
p_{1}=0.14<p_{2}=0.4, \text { maximal } \\
\text { convex part } \\
p_{2}=0.4>p_{3}=0.25, \text { maximal } \\
\text { concave part } \\
p_{3}=0.25<p_{4}=0.72, \text { maximal } \\
\text { convex part } \\
p_{4}=0.72>p_{5}=0.6>p_{6}= \\
0.33, \text { maximal concave part }
\end{gathered}
$$

Lower (Upper) fundamental polygonal representation of C

Using of the leaning lines of the fundamental segments

Polygonalization of 2D discrete curves

Keeping the succession of convex and concave parts

Lower (Upper) fundamental polygonal representation of C

Blurred segments Definitions Recognition Applications

Polygonal curve whose vertices are the intersection points of the successive lower (resp. upper) leaning lines of the fundamental segments of C.

Keeping the succession of convex and concave parts

Reversibility : a digitization of the obtained polygonal curve corresponds
to the discrete curve

Polygonalization of 2D discrete curves

Keeping the succession of convex and concave parts

Lower (Upper) fundamental polygonal representation of C

Keeping the succession of convex and concave parts

Reversibility: a digitization of the obtained polygonal curve corresponds to the discrete curve

Polygonalization of 2D discrete curves

Keeping the succession of convex and concave parts

Lower (Upper) fundamental polygonal representation of C

Polygonal curve whose vertices are the intersection points of the successive lower (resp. upper) leaning lines of the fundamental segments of C.

Keeping the succession of convex and concave parts

Reversibility: a digitization of the obtained polygonal curve corresponds to the discrete curve

The vertices of the obtained polygonalization are not always points of z^{2}

Polygonalization of 2D discrete curves

Keeping the succession of convex and concave parts

Results

- Linear algorithm of polygonalisation
\triangleright reversible,
\triangleright keeping the convexity/concavity parts of the discrete curve
- Identification of situations where a polygonal decomposition under the two previous conditions
\triangleright with vertices in \mathbb{Z}^{2},
is not possible.

H. DÖRKSEN-REITER, I. DEBLED-RENNESSON,

Convex and concave parts of digital curves, Computational Imaging and Vision, 2005.
A Linear algorithm for polygonal representations of digital sets, IWCIA, 2006.

3D discrete lines

Definition

3D discrete line

A 3D discrete line, noted $\mathcal{D}\left(a, b, c, \mu, \mu^{\prime}, e, e^{\prime}\right)$, whose main vector is (a, b, c), with $(a, b, c) \in \mathbb{Z}^{3}$, and $a \geq b \geq c$ is the set of points (x, y, z) of \mathbb{Z}^{3} verifying:

$$
\mathcal{D}\left\{\begin{array}{l}
\mu \leq c x-a z<\mu+e \tag{1}\\
\mu^{\prime} \leq b x-a y<\mu^{\prime}+e^{\prime}
\end{array}\right.
$$

with $\mu, \mu^{\prime}, e, e^{\prime} \in \mathbb{Z}$. e and e^{\prime} are the arithmetical thickness of \mathcal{D}.

Naïve line : $e=e^{\prime}=a$

$$
\left\{\begin{array}{l}
0 \leq 3 x-10 z<10 \\
0 \leq 7 x-10 y<10
\end{array}\right.
$$

3D discrete lines

Definition

3D discrete line

A 3D discrete line, noted $\mathcal{D}\left(a, b, c, \mu, \mu^{\prime}, e, e^{\prime}\right)$, whose main vector is (a, b, c), with $(a, b, c) \in \mathbb{Z}^{3}$, and $a \geq b \geq c$ is the set of points (x, y, z) of \mathbb{Z}^{3} verifying :

$$
\mathcal{D}\left\{\begin{array}{l}
\mu \leq c x-a z<\mu+e \tag{1}\\
\mu^{\prime} \leq b x-a y<\mu^{\prime}+e^{\prime}
\end{array}\right.
$$

with $\mu, \mu^{\prime}, e, e^{\prime} \in \mathbb{Z}$. e and e^{\prime} are the arithmetical thickness of \mathcal{D}.

Naïve line : $e=e^{\prime}=a$

$$
\left\{\begin{array}{l}
-5 \leq 3 x-10 z<5 \\
0 \leq 7 x-10 y<10
\end{array}\right.
$$

3D discrete lines

Definition

3D discrete line

A 3D discrete line, noted $\mathcal{D}\left(a, b, c, \mu, \mu^{\prime}, e, e^{\prime}\right)$, whose main vector is (a, b, c), with $(a, b, c) \in \mathbb{Z}^{3}$, and $a \geq b \geq c$ is the set of points (x, y, z) of \mathbb{Z}^{3} verifying :

$$
\mathcal{D}\left\{\begin{array}{l}
\mu \leq c x-a z<\mu+e \tag{1}\\
\mu^{\prime} \leq b x-a y<\mu^{\prime}+e^{\prime}
\end{array}\right.
$$

with $\mu, \mu^{\prime}, e, e^{\prime} \in \mathbb{Z} . e$ and e^{\prime} are the arithmetical thickness of \mathcal{D}.

6-connected line :
$e \geq a+c$ et $e^{\prime} \geq a+b$

$$
\left\{\begin{array}{l}
0 \leq 3 x-10 z<13 \\
-9 \leq 7 x-10 y<8
\end{array}\right.
$$

3D discrete lines

Algorithm for 3D naïve line segment recognition

Property : A 3D naïve line is bijectively projected into two coordinates planes as two 2D naïve lines

Input: S, a 26 -connected sequence of n voxels to be analysed

- If the voxels of S may not be bijectively projected on at least two orthogonal planes in order to create two curves of pixels C_{1} and C_{2}, S is not a 3D naïve line segment,

■ Else, apply the algorithm of 2D naïve line segment recognition on C_{1} and C_{2},

If C_{1} and C_{2} are 2 naïve line segments, then S is a 3D naïve line segment

Else S is not a 3D naïve line segment

Complexity: $O(n)$
\Rightarrow Linear segmentation algorithm

Segment 1 of main vector $(2,-5,4)$

$$
\left\{\begin{array}{l}
-4 \leq-4 x-5 z<1 \\
-2 \leq-2 x-5 y<3
\end{array}\right.
$$

Segment 2 of main vector $(1,-2,1)$

$$
\left\{\begin{array}{l}
0 \leq x-2 z<2 \\
0 \leq x-2 y<2
\end{array}\right.
$$

Arithmetic

 definitionRecognition Applications

Blurred

 segmentsSegmentation of 3D discrete curves
Examples

Length estimation algorithm

Input: S, a 26-connected sequence of voxels to be analysed
Output: The estimated length of S

- Compute a segmentation of S

■ $P=\left\{S_{i}\right\}_{i=0 \ldots n}$, the polyline returned by the segmentation

- Return $\sum_{i=0}^{n} I\left(S_{i}\right)$,
where $I\left(S_{i}\right)$ denotes the Euclidean length of S_{i}

Outline of talk

Arithmetic definition Recognition Applications

Blurred segments Definitions Recognition Applications

1 Discrete Line

- Arithmetic definition
- Recognition
- Applications
- Segmentation
- 3D discrete lines

2 Blurred segments
■ Definitions

- Recognition
- Applications
. Estimators

3 Conclusion

Blurred segments

Limitation of the existing tools of discrete geometry

Limitation of the segmentation algorithm (naïve lines).

Objectives

What we want to obtain ...

Objectives

What we want to obtain ...
\triangleright Also for very noisy curves

Objectives

What we want to obtain ...
\triangleright Also for very noisy curves

General idea

\triangleright Frame the curve with thick discrete lines for a given maximal thickness

Arithmetic blurred segments

Bounding lines

$\mathcal{D}(1,2,-4,6)$, bounding line of the sequence of grey points

Bounding line

Let be $\mathcal{S f}$ a sequence of 8-connected points.
A discrete line $\mathcal{D}(a, b, \mu, \omega)$ is said bounding for $\mathcal{S} f$ if all the points of $\mathcal{S} f$ belong to \mathcal{D}.

Arithmetic blurred segments

Geometrical approach

With Jocelyne Rouyer-Dégli and Fabien Feschet

$\mathcal{D}(5,8,-8,11)$, optimal bounding line (width $\frac{10}{8}=1.25$) of the sequence of grey points

Optimal bounding line

A bounding line $\mathcal{D}(a, b, \mu, \omega)$ of $\mathcal{S} f$ is said optimal if its vertical width is equal to the vertical width of the convex hull of $\mathcal{S} f$.
\triangleright Vertical width of $\mathcal{D}(a, b, \mu, \omega): \frac{\omega-1}{\max (|a|,|b|)}$

Arithmetic blurred segments

Geometrical approach

With Jocelyne Rouyer-Dégli and Fabien Feschet

The sequence of grey points is a blurred segment of width 2

Optimal bounding line

A bounding line $\mathcal{D}(a, b, \mu, \omega)$ of $\mathcal{S f}$ is said optimal if its vertical width is equal to the vertical width of the convex hull of $\mathcal{S} f$.
\triangleright Vertical width of $\mathcal{D}(a, b, \mu, \omega): \frac{\omega-1}{\max (|a|,|b|)}$

Blurred segment of width ν

$\mathcal{S f}$ is a blurred segment of width ν if the vertical width of its optimal bounding line is lower or equal to ν.

Blurred segments recognition

The principle

Computation of the vertical width of the convex hull of $\mathcal{S} f$

- Similar to the Rotating Calipers [HouleToussaint88]
- Extremal positions
- Incremental and linear computation of the convex hull
- Melkman's algorithm

M.E. Houle, G.T. Toussaint,

Computing the width of a set.
PAMI, 10(5) :761-765, 1988.

A. Melkman,

On-line Construction of the Convex Hull of a Simple Polygon.
Information Processing Letters, 25 :11-12, 1987.

Blurred segments recognition

The principle
Adding a point $M(x, y)$ to a blurred segment $\mathcal{S}_{f}=\left\{\left(x_{i}, y_{i}\right), 0 \leq i<n\right\}$ with $\mathcal{D}(a, b, \mu, \omega)$ its optimal bounding line in the first octant $x>x_{n-1}$. 3 cases are possible :

- M belongs to \mathcal{D}, $\mathcal{S}^{\prime} f=\mathcal{S} f \cup M$ is a blurred segment with \mathcal{D} as optimal bounding line,
- M is above \mathcal{D},
- M is below \mathcal{D}.

Blurred segments recognition

The principle
Adding a point M to a blurred segment $\mathcal{S f}$ with $\mathcal{D}(a, b, \mu, \omega)$ its optimal bounding line :
M is above \mathcal{D} and the vertical width of $\mathcal{S f}$ is obtained at the point L_{L}.

- Objective : to find the optimal bounding line \mathcal{D}^{\prime} of $\mathcal{S}^{\prime} f=\mathcal{S} f \cup M$.
- Property : the vertical width in a convex is a concave function and the maximum is located inside the convex.
- To find the location of the maximum in the new convex
\Rightarrow necessarily at the right of L_{L}

Blurred segments recognition

The principle
Adding a point M to a blurred segment $\mathcal{S} f$ with $\mathcal{D}(a, b, \mu, \omega)$ as optimal bounding line :

- Test the vertices of the convex hull located at the right of L_{L}
- Test: slope of $\left[C_{1} C_{2}\right]>$ slope of $[N M]$? TRUE \Rightarrow STOP
\Rightarrow The vertical width of the convex is obtained at C_{1}
\Rightarrow The slope of the optimal bounding line of $\mathcal{S f} \cup M$ is $N M$ and C_{1} is a lower leaning point

Blurred segments recognition

The algorithm in the first octant

Input: S an 8-connected sequence of integer points, ν a real value
Output : isSegment a boolean value, a, b, μ, ω integers
Initialization : isSegment $=$ true, $a=0, b=1, \omega=b, \mu=0, M=\left(x_{0}, y_{0}\right)$
while (S is not entirely scanned and isSegment)
$M=$ next point of S;
add M to the upper and lower convex hulls of the scanned part of S;
$r=a x_{M}-b y_{M}$;
if $(r=\mu)$ then $U_{L}=M$;
if $(r=\mu+\omega-1)$ then $L_{L}=M$;
if $(r \leq \mu-1)$ then $U_{L}=M$;
Let N the point before M in the upper convex hull, $a_{0}=y_{M}-y_{N}, b_{0}=x_{M}-x_{N}$, $a=\frac{a_{0}}{\operatorname{gcd}\left(a_{0}, b_{0}\right)}, b=\frac{b_{0}}{\operatorname{gcd}\left(a_{0}, b_{0}\right)}, \mu=a x_{M}-$ by $_{M}$;
Find the first point C in the lower part of the convex hull starting at L_{L}, such that: slope of $[C$, Cnext $]>\frac{a}{b}$;
$L_{L}=C$; $\omega=a x_{L_{L}}-b y_{L_{L}}-\mu+1$;
else
if $(r \geq \mu+\omega-1)$ then symmetrical case
end if
isSegment $=\frac{\omega-1}{b} \leq \nu$;
end definition Recognition Applications

Blurred egments

Blurred segments recognition

Example

Sequence of pixels to recognize, $\nu=2$ definition Recognition Applications

Blurred segments

Blurred segments recognition

Example

Sequence of pixels to recognize, $\nu=2$

$$
\mathcal{D}_{0}(0,1,0,1): 0 \leq-y<1
$$

Blurred segments recognition

Example

Sequence of pixels to recognize, $\nu=2$

$$
\mathcal{D}_{0}(0,1,0,1): 0 \leq-y<1
$$

Adding of the point $M_{3}, r_{\mathcal{D}_{0}}\left(M_{3}\right)=-1$

Blurred segments recognition

Example

Sequence of pixels to recognize, $\nu=2$

$$
\mathcal{D}_{0}(0,1,0,1): 0 \leq-y<1
$$

Adding of the point $M_{3}, r_{\mathcal{D}_{0}}\left(M_{3}\right)=-1$
$\mathcal{D}_{1}(1,2,0,2): 0 \leq x-2 y<2, d_{v}=0.5$ definition
Recognition Applications

Blurred segments

Blurred segments recognition

An example

$$
\mathcal{D}_{1}(1,2,0,2): 0 \leq x-2 y<2
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{1}(1,2,0,2): 0 \leq x-2 y<2
$$

Adding of the point $M_{4}, r_{\mathcal{D}_{1}}\left(M_{4}\right)=-1$

Blurred segments recognition

An example

$$
\mathcal{D}_{1}(1,2,0,2): 0 \leq x-2 y<2
$$

Adding of the point $M_{4}, r_{\mathcal{D}_{1}}\left(M_{4}\right)=-1$

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3, d_{v} \simeq 0.66
$$ definition

Recognition Applications

Blurred segments

Blurred segments recognition

An example

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3
$$

Adding of the point $M_{5}, r_{\mathcal{D}_{2}}\left(M_{5}\right)=2$

Blurred segments recognition

An example

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3
$$

Adding of the point $M_{5}, r_{\mathcal{D}_{2}}\left(M_{5}\right)=2$ definition
Recognition Applications

Blurred egments

Blurred segments recognition

An example

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3
$$

Adding of the point $M_{6}, r_{\mathcal{D}_{2}}\left(M_{6}\right)=7$

Blurred segments recognition

An example

$$
\mathcal{D}_{2}(2,3,0,3): 0 \leq 2 x-3 y<3
$$

Adding of the point $M_{6}, r_{\mathcal{D}_{2}}\left(M_{6}\right)=7$

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2, d_{v}=1.5
$$ definition

Recognition Applications

Blurred segments

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Adding of the point $M_{7}, r_{\mathcal{D}_{3}}\left(M_{7}\right)=2$ definition
Recognition Applications

Blurred segments

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Adding of the point $M_{8}, r_{\mathcal{D}_{3}}\left(M_{8}\right)=-5$ definition
Recognition Applications

Blurred egments

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Adding of the point $M_{9}, r_{\mathcal{D}_{3}}\left(M_{9}\right)=-4$ definition
Recognition Applications

Blurred egments

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Adding of the point $M_{10}, r_{\mathcal{D}_{3}}\left(M_{10}\right)=-7$

Blurred segments recognition

An example

$$
\mathcal{D}_{3}(1,4,-5,7):-5 \leq x-4 y<2
$$

Adding of the point $M_{10}, r_{\mathcal{D}_{3}}\left(M_{10}\right)=-7$

$$
\mathcal{D}_{4}(1,3,-3,6):-3 \leq x-3 y<3, d_{v} \simeq 1.66
$$

Blurred segments recognition

An example

Blurred segment of width 2 with $\mathcal{D}_{4}(1,3,-3,6)$ optimal bounding line

Blurred segment recognition

The algorithm

- Incremental and linear algorithm
- Tests in a limited part of the convex hull
- Direct extension to the sequences of non connected points
- Sequence of ordered points
I. DEBLED-RENNESSON, F. FESCHET, J. ROUYER-DEGLI,

Optimal blurred segments decomposition of noisy shapes in linear time.
Computers and Graphics, 30(1), 2006.

Discrete curves segmentation

Maximal segmentation of width 2

Blurred

segments

Discrete curves segmentation

Maximal segmentation of width 2

Discrete curves segmentation

Maximal segmentation of width 2

Discrete Line

Arithmetic definition
Recognition
Applications

Blurred segments Definitions Recognition Applications

Discrete curves segmentation

Maximal segmentation of width 2

Applications

1 Segmentation of noisy discrete curves
■ Use in Image Analysis: Polygonal approximation without parameter
[. Estimation of geometrical parameters on noisy discrete curves

B Study of 3D noisy curves

- 3D Blurred Segments

Estimation of geometrical parameters on noisy discrete curves

Use of blurred segments

- Length of a noisy discrete curve
\triangleright Use of the polygonal approximation of the curve for a given width
I. DEBLED-RENNESSON,

Estimation of tangents to a noisy discrete curve, Vision Geometry XII, SPIE, 2004.
\square J-P. SALMON, I. DEBLED-RENNESSON, L. WENDLING,
A new method to detect arcs and segments from curvature profiles, ICPR 2006.

Estimation of geometrical parameters on noisy discrete curves

Use of blurred segments

- Length of a noisy discrete curve
\triangleright Use of the polygonal approximation of the curve for a given width
- Discrete tangent of width ν
\triangleright Symmetric growth of a blurred segment
\triangleright For $\nu=1$, definition of Anne Vialard (96)

Estimation of geometrical parameters on noisy discrete curves

Use of blurred segments

- Length of a noisy discrete curve
\triangleright Use of the polygonal approximation of the curve for a given width
- Discrete tangent of width ν
\triangleright Symmetric growth of a blurred segment
\triangleright For $\nu=1$, definition of Anne Vialard (96)
- Curvature at each point of a noisy discrete curve
\triangleright Application to the detection of arcs and segments in technical documents
I. DEBLED-RENNESSON,

Estimation of tangents to a noisy discrete curve, Vision Geometry XII, SPIE, 2004.

J-P. SALMON, I. DEBLED-RENNESSON, L. WENDLING,
A new method to detect arcs and segments from curvature profiles, ICPR 2006.

Curvature of width ν

Use of blurred segments

Principle (D. Coeurjolly, 02)

Curvature of width ν

Use of blurred segments

Example of computation of the curvature of width 1.3 at the point T

Principle (D. Coeurjolly, 02)

- Calculate the width ν discrete half-tangents at the right and at the left of T
\triangleright Bounding lines \mathcal{D}_{R} and $\mathcal{D}_{L} \Rightarrow$ real points p_{R} and p_{L}

Curvature of width ν

Use of blurred segments

Example of computation of the curvature of width 1.3 at the point T

Principle (D. Coeurjolly, 02)

- Calculate the width ν discrete half-tangents at the right and at the left of T
\triangleright Bounding lines \mathcal{D}_{R} and $\mathcal{D}_{L} \Rightarrow$ real points p_{R} and p_{L}
- Calculate the circumcircle of the triangle (p_{l}, T, p_{r})
$\triangleright C_{\nu}(T)=\frac{S}{R_{\nu}(T)}$ with $S=\operatorname{sign}\left(\operatorname{det}\left(\overrightarrow{T p_{r}}, \overrightarrow{T p_{l}}\right)\right)$

Curvature of width ν

Use of blurred segments

Example of computation of the curvature of width 1.3 at the point T

Principle (D. Coeurjolly, 02)

- Calculate the width ν discrete half-tangents at the right and at the left of T \triangleright Bounding lines \mathcal{D}_{R} and $\mathcal{D}_{L} \Rightarrow$ real points p_{R} and p_{L}
- Calculate the circumcircle of the triangle $\left(p_{l}, T, p_{r}\right)$ $\triangleright C_{\nu}(T)=\frac{S}{R_{\nu}(T)}$ with $S=\operatorname{sign}\left(\operatorname{det}\left(\overrightarrow{T p_{r}}, \overrightarrow{T p_{I}}\right)\right)$
- Calculate the curvature at each point of a discrete curve of n points: $O\left(n^{2}\right)$

Curvature of width ν

Improvement of the calculation of the curvature at each point of a discrete curve of n points With Thanh Phuong Nguyen

Principle

■ Extension of the notion of fundamental segment in a discrete curve
\triangleright Width ν fundamental blurred segment
\triangleright Computation of the sequence of the fundamental blurred segments of a discrete curve C for a given width ν

Complexity $0\left(n \log ^{2} n\right)$ (L. Buzer 05) et (M.H. Overmars, J. van Leeuwen 81)
T.P. NGUYEN, I. DEBLED-RENNESSON,

Curvature estimation in noisy curves, CAIP, 2007.

J-P. SALMON, I. DEBLED-RENNESSON, L. WENDLING,
A new method to detect arcs and segments from curvature profiles.
ICPR (3) : 387-390, 2006.

Curvature of width ν

Improvement of the calculation of the curvature at each point of a discrete curve of n points With Thanh Phuong Nguyen

Principle

■ Extension of the notion of fundamental segment in a discrete curve
\triangleright Width ν fundamental blurred segment
\triangleright Computation of the sequence of the fundamental blurred segments of a discrete curve C for a given width ν

Complexity $0\left(n \log ^{2} n\right)$ (L. Buzer 05) et (M.H. Overmars, J. van Leeuwen 81)
\Rightarrow Extremity points of the width ν half-tangents
T.P. NGUYEN, I. DEBLED-RENNESSON,

Curvature estimation in noisy curves, CAIP, 2007.
\square J-P. SALMON, I. DEBLED-RENNESSON, L. WENDLING,
A new method to detect arcs and segments from curvature profiles.
ICPR (3) : 387-390, 2006.

Curvature of width ν

Improvement of the calculation of the curvature at each point of a discrete curve of n points With Thanh Phuong Nguyen

Principle

■ Extension of the notion of fundamental segment in a discrete curve
\triangleright Width ν fundamental blurred segment
\triangleright Computation of the sequence of the fundamental blurred segments of a discrete curve C for a given width ν

Complexity $0\left(n \log ^{2} n\right.$) (L. Buzer 05) et (M.H. Overmars, J. van Leeuwen 81)
\Rightarrow Extremity points of the width ν half-tangents

- Complexity of the method: $0\left(n \log ^{2} n\right)$
T.P. NGUYEN, I. DEBLED-RENNESSON,

Curvature estimation in noisy curves, CAIP, 2007.

J-P. SALMON, I. DEBLED-RENNESSON, L. WENDLING,
A new method to detect arcs and segments from curvature profiles.
ICPR (3) : 387-390, 2006.

Extension to 3D noisy curves

With Franck Rapaport and Thanh Phuong Nguyen

- 3D blurred segment of width ν
\triangleright Two projections in the coordinate planes are 2D blurred segments of width ν

$\mathcal{D}_{3 D}(45,27,20,-45,-81,90,90)$ bounding
line of the grey points

Extension to 3D noisy curves

With Franck Rapaport and Thanh Phuong Nguyen

- 3D blurred segment of width ν
\triangleright Two projections in the coordinate planes are 2D blurred segments of width ν
- Linear algorithm of recognition
\triangleright Algorithm of segmentation of a 3D discrete curve into 3D blurred segments for a given width

$\mathcal{D}_{3 D}(45,27,20,-45,-81,90,90)$ bounding
line of the grey points

Extension to 3D noisy curves

With Franck Rapaport and Thanh Phuong Nguyen

- 3D blurred segment of width ν
\triangleright Two projections in the coordinate planes are 2D blurred segments of width ν
- Linear algorithm of recognition
\triangleright Algorithm of segmentation of a 3D discrete curve into 3D blurred segments for a given width
- Geometrical parameters
\triangleright Length
\triangleright Curvature

$$
\begin{gathered}
\mathcal{D}_{3 D}(45,27,20,-45,-81,90,90) \text { bounding } \\
\text { line of the grey points }
\end{gathered}
$$

Extension to 3D noisy curves

With Franck Rapaport and Thanh Phuong Nguyen

- 3D blurred segment of width ν
\triangleright Two projections in the coordinate planes are 2D blurred segments of width ν

■ Linear algorithm of recognition
\triangleright Algorithm of segmentation of a 3D discrete curve into 3D blurred segments for a given width

- Geometrical parameters
\triangleright Length
\triangleright Curvature

Curvature radius of width 1 and 2 at the point M.

Outline of talk

1 Discrete Line

- Arithmetic definition
- Recognition
- Applications
- Segmentation
- 3D discrete lines

2 Blurred segments

- Definitions
- Recognition
- Applications - Estimators

3 Conclusion

Conclusion

Study of regular discrete structures

- Arithmetical, geometrical and combinatorial properties

\Rightarrow Efficient algorithms

Conclusion

Study of regular discrete structures

- Arithmetical, geometrical and combinatorial properties

Blurred

\Rightarrow Efficient algorithms
\Rightarrow Not always useful in Image Analysis

Study of regular discrete structures

- Arithmetical, geometrical and combinatorial properties
\Rightarrow Efficient algorithms
\Rightarrow Not always useful in Image Analysis

Objective : To construct a geometry for the noisy discrete objects

Central idea

To study the regular discrete structure bounding the noisy discrete object to analyse

Conclusion

Study of regular discrete structures

- Arithmetical, geometrical and combinatorial properties
\Rightarrow Efficient algorithms
\Rightarrow Not always useful in Image Analysis

Objective : To construct a geometry for the noisy discrete objects

Central idea

To study the regular discrete structure bounding the noisy discrete object to analyse

- Other works (with L. Provot) : Discrete planes, Blurred pieces of discrete planes, Segmentation of 3D objects, Geometrical parameters on 3D objects, ...

