Efficient Reachability of Petri Nets with Read Arcs

César Rodríguez

LSV, ENS Cachan, France

GT-Vérif, ENS Cachan, 17 June 2013

Joint work with Stefan Schwoon, Paolo Baldan, and Victor Khomenko.
Plan

1. Contextual Unfoldings
2. Computing Complete Unfolding Prefixes
3. Reachability with Contextual Unfoldings
4. Contextual Merged Processes
5. Summary
Contextual Petri Nets (c-nets)

- Contextual nets are Petri nets + read arcs
- Natural representation of notion *checking without consuming*

A c-net is a tuple $\langle P, T, F, C, m_0 \rangle$

- $\bullet x$ for preset, $\bullet^* x$ for postset
- $\mathcal{t} = \{ p \in P \mid (t, p) \in C \}$ for context

Example

$p = \{ t, t' \}$
$t = \{ p \}$
Homomorphism $h : \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Homomorphism $h: \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Homomorphism \(h : \mathcal{U}_N \rightarrow N \)

\[h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N) \]
Contextual Unfoldings (i) — Example

Homomorphism $h : \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Homomorphism $h : \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Contextual Unfoldings (i) — Example

Homomorphism $h : \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Homomorphism $h : \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Contextual Unfoldings (i) — Example

Homomorphism $h : \mathcal{U}_N \rightarrow N$

$h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N)$
Contextual Unfoldings (i) — Example

Homomorphism \(h: \mathcal{U}_N \rightarrow N \)

\(h(\text{mark}(\mathcal{U}_N)) = \text{mark}(N) \)
Contextual Unfoldings (ii) — Complete Prefixes

- \mathcal{U}_N is the result of applying the construction ‘as much as possible’
- If you stop: finite unfolding prefix \mathcal{P}_N

Definition

Prefix \mathcal{P}_N is marking-complete if:
for all marking m reachable in N, there is marking \tilde{m} reachable in \mathcal{P}_N with

$$h(\tilde{m}) = m.$$

Given N, we want to:
- Compute a marking-complete \mathcal{P}_N
- Use \mathcal{P}_N to decide deadlock-freeness or coverability of N
Contextual Unfoldings Exploit Concurrent Read-Access
Contextual Unfoldings Exploit Concurrent Read-Access

C. Rodríguez (LSV)
Computing Prefix Extensions

The problem

Given P_N and t, decide if we can extend P_N with e where $h(e) = t$.

(NP-complete)
The problem

Given \mathcal{P}_N and t, decide if we can extend \mathcal{P}_N with e where $h(e) = t$.

(NP-complete)

- Enumerate sets of conditions S s.t. $h(S) = \bullet t \cup t$ (exponential)
- If S is coverable, return YES; otherwise continue (linear)
Computing Prefix Extensions

The problem

Given \mathcal{P}_N and t, decide if we can extend \mathcal{P}_N with e where $h(e) = t$.

(NP-complete)

- Enumerate sets of conditions S s.t. $h(S) = \bullet t \cup t$ (exponential)
- If S is coverable, return YES; otherwise continue (linear)

How this is done for Petri nets?
Computing Prefix Extensions

The problem

Given \(\mathcal{P}_N \) and \(t \), decide if we can extend \(\mathcal{P}_N \) with \(e \) where \(h(e) = t \). (NP-complete)

- Enumerate sets of conditions \(S \) s.t. \(h(S) = \bullet t \cup t \) (exponential)
- If \(S \) is coverable, return YES; otherwise continue (linear)

How this is done for Petri nets?

Definition

Conditions \(c, c' \) are concurrent, \(c \parallel c' \), iff some run marks them both.
Computing Prefix Extensions

The problem

Given P_N and t, decide if we can extend P_N with e where $h(e) = t$.

(NP-complete)

- Enumerate sets of conditions S s.t. $h(S) = \bullet t \cup t$ (exponential)
- If S is coverable, return YES; otherwise continue (linear)

How this is done for Petri nets?

Definition

Conditions c, c' are concurrent, $c \parallel c'$, iff some run marks them both.

Proposition

Conditions c_1, \ldots, c_n are coverable iff $c_i \parallel c_j$ holds for all $i, j \in \{1, \ldots, n\}$
However, for Contextual Unfoldings...

...the same approach doesn’t work:

- $c_4 \parallel c_5$ and $c_4 \parallel c_6$ and $c_5 \parallel c_6$ but $\{c_4, c_5, c_6\}$ is not coverable
- Cycle $e_1 \uparrow e_2 \uparrow e_3 \uparrow e_1$ of asymmetric conflict
Definition

A **history** of event \(e \) is any configuration \(H \) s.t.:
1. \(e \in H \)
2. Any run of the events of \(H \) fires \(e \) last

- **Enriched prefix**: label every condition \(c \) with the histories of \(\cdot c \) and \(\overline{c} \).
- **Enriched conditions**: pairs \(\langle c, H \rangle \)
Definition

Two enriched conditions $\rho = \langle c, H \rangle$ and $\rho' = \langle c', H' \rangle$ are concurrent, written $\rho \parallel \rho'$, iff:

$$\neg (H \neq H') \quad \text{and} \quad c, c' \in (H \cup H')^*$$
A Concurrency Relation for c-nets

Definition

Two enriched conditions $\rho = \langle c, H \rangle$ and $\rho' = \langle c', H' \rangle$ are concurrent, written $\rho \parallel \rho'$, iff:

$$\neg (H \neq H') \quad \text{and} \quad c, c' \in (H \cup H')^\bullet$$

Proposition

Conditions c_1, \ldots, c_n coverable iff there is histories H_1, \ldots, H_n verifying

$$\langle c_i, H_i \rangle \parallel \langle c_j, H_j \rangle \text{ for all } i, j \in \{1, \ldots, n\}.$$
A Concurrency Relation for c-nets

Definition

Two enriched conditions \(\rho = \langle c, H \rangle \) and \(\rho' = \langle c', H' \rangle \) are concurrent, written \(\rho \parallel \rho' \), iff:

\[
\neg (H \not\equiv H') \quad \text{and} \quad c, c' \in (H \cup H')^\bullet
\]

Proposition

Conditions \(c_1, \ldots, c_n \) coverable iff there is histories \(H_1, \ldots, H_n \) verifying

\[
\langle c_i, H_i \rangle \parallel \langle c_j, H_j \rangle \quad \text{for all} \quad i, j \in \{1, \ldots, n\}.
\]

Proposition

Let \(\rho = \langle c, H \rangle \) and \(e \) be the last enriched condition and event appended to the prefix, let \(\rho' = \langle c', H' \rangle \) be an arbitrary enriched condition. Then,

\[
\rho \parallel \rho' \iff (c' \in e^\bullet \land H = H') \lor \left(c' \notin e^\bullet \land c' \in H' \subseteq H \right)
\]
Experiments with CUNF

<table>
<thead>
<tr>
<th>Net</th>
<th>Contextual Events</th>
<th>Contextual t_C</th>
<th>Ordinary Events</th>
<th>Ordinary t_P</th>
<th>t_C/t_P</th>
<th>t_C/t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>bds_1.sync</td>
<td>1866</td>
<td>0.14</td>
<td>12900</td>
<td>0.51</td>
<td>0.27</td>
<td>0.54</td>
</tr>
<tr>
<td>byzagr4_1b</td>
<td>8044</td>
<td>2.90</td>
<td>14724</td>
<td>3.40</td>
<td>0.85</td>
<td>0.55</td>
</tr>
<tr>
<td>ftp_1.sync</td>
<td>50928</td>
<td>34.21</td>
<td>83889</td>
<td>76.74</td>
<td>0.45</td>
<td>0.30</td>
</tr>
<tr>
<td>furnace_4</td>
<td>95335</td>
<td>18.34</td>
<td>146606</td>
<td>40.39</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>key_4.fsa</td>
<td>4754</td>
<td>6.33</td>
<td>67954</td>
<td>2.21</td>
<td>2.86</td>
<td>1.47</td>
</tr>
<tr>
<td>rw_1w3r</td>
<td>14490</td>
<td>0.45</td>
<td>15401</td>
<td>0.38</td>
<td>1.18</td>
<td>0.65</td>
</tr>
<tr>
<td>q_1.sync</td>
<td>10722</td>
<td>1.13</td>
<td>10722</td>
<td>1.21</td>
<td>0.93</td>
<td>0.52</td>
</tr>
<tr>
<td>dpd_7.sync</td>
<td>10457</td>
<td>0.91</td>
<td>10457</td>
<td>0.88</td>
<td>1.03</td>
<td>0.92</td>
</tr>
<tr>
<td>elevator_4</td>
<td>16856</td>
<td>1.26</td>
<td>16856</td>
<td>2.01</td>
<td>0.63</td>
<td>>0.01</td>
</tr>
<tr>
<td>rw_12.sync</td>
<td>98361</td>
<td>3.10</td>
<td>98361</td>
<td>3.95</td>
<td>0.78</td>
<td>0.41</td>
</tr>
<tr>
<td>rw_2w1r</td>
<td>9241</td>
<td>0.40</td>
<td>9241</td>
<td>0.30</td>
<td>1.33</td>
<td>0.04</td>
</tr>
</tbody>
</table>

- C-net unfolding smaller or equal ordinary unfoldings
- In general faster than plain encoding
- Consistently faster than place-replication (t_R)
Recall

Marking \(m \) reachable in \(N \) iff there is a configuration \(C \) s.t. \(\text{mark}(C) = m \).

\[\phi_{\text{reach}, M} := \phi_{\text{conf}} \land \phi_{\text{mark}, M} \]

Satisfying assignments of \(\phi_{\text{reach}, M} \) encode configurations reaching \(M \).

Example

Is \(p_3 \) reachable in \(N \)?

\[c_3 \lor c'_3 (\text{\(p_3 \) marked}) \]

\[c_3 \rightarrow e_1 \land \neg e_3 \] (token conservation for \(c_3 \))
Encoding Coverability into SAT

Recall

Marking m reachable in N iff there is a configuration C s.t. $\text{mark}(C) = m$.

Example

Is p_3 reachable in N?

$c_3 \lor c'_3$
$c_3 \rightarrow e_1 \land \neg e_3$

(p3 marked)

(token conservation for c3)
Recall

Marking m reachable in N iff there is a configuration C s.t. $\text{mark}(C) = m$.

$\phi_{\text{reach}, M} := \phi_{\text{conf}} \land \phi_{\text{mark}, M}$

- Satisfying assignments of $\phi_{\text{reach}, M}$ encode configurations reaching M.
- Boolean variables: events + conditions of P

Example

Is p_3 reachable in N?

$c_3 \lor c'_3$
p_3 marked

$c_3 \rightarrow e_1 \land \neg e_3$
(token conservation for c_3)

...
Experiments with CNA

<table>
<thead>
<tr>
<th>Net</th>
<th>Res.</th>
<th>Ordinary unfolding</th>
<th>c-net unfolding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unfolding</td>
<td>CLP</td>
</tr>
<tr>
<td>bds_1.sync</td>
<td>L</td>
<td>0.58</td>
<td>0.04</td>
</tr>
<tr>
<td>byzagr4_1b</td>
<td>L</td>
<td>3.71</td>
<td>0.53</td>
</tr>
<tr>
<td>dme11</td>
<td>L</td>
<td>6.56</td>
<td>0.60</td>
</tr>
<tr>
<td>dpd_7.sync</td>
<td>L</td>
<td>1.21</td>
<td>0.10</td>
</tr>
<tr>
<td>ftp_1.sync</td>
<td>L</td>
<td>45.37</td>
<td>1.13</td>
</tr>
<tr>
<td>furnace_4</td>
<td>L</td>
<td>37.44</td>
<td>1.29</td>
</tr>
<tr>
<td>rw_12.sync</td>
<td>L</td>
<td>3.95</td>
<td>0.08</td>
</tr>
<tr>
<td>rw_1w3r</td>
<td>L</td>
<td>0.30</td>
<td>0.11</td>
</tr>
<tr>
<td>rw_2w1r</td>
<td>L</td>
<td>0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>elevator_4</td>
<td>D</td>
<td>2.58</td>
<td>0.24</td>
</tr>
<tr>
<td>key_4</td>
<td>D</td>
<td>1.68</td>
<td>0.07</td>
</tr>
<tr>
<td>mmgt_4.fsa</td>
<td>D</td>
<td>1.16</td>
<td>0.02</td>
</tr>
<tr>
<td>q_1.sync</td>
<td>D</td>
<td>1.76</td>
<td><0.01</td>
</tr>
<tr>
<td>∑</td>
<td></td>
<td>106.52</td>
<td>4.25</td>
</tr>
</tbody>
</table>
Conflicts Blow up (c-net) Unfoldings

\[p_1 \]
\[u_1 \rightarrow t_1 \]
\[q_2 \]
\[u_2 \rightarrow t_2 \]
\[q_3 \]
\[\vdots \]
\[p_n \]
\[u_n \rightarrow t_n \]
\[q_{n+1} \]
\[\vdots \]
\[p_{n+1} \]

\[p_1 \]
\[u_1 \rightarrow t_1 \]
\[q_2 \]
\[p_2 \]
\[u_2 \rightarrow t_2 \]
\[q_3 \]
\[p_3 \]
\[\vdots \]
\[p_{n+1} \]
Combining Two Methods

We integrate two partial-order representations:

- **Contextual unfoldings**: solves concurrent read access
- **Merged Processes**: solves **conflicts** + non-safeness

Resulting method: **Contextual Merged Processes** (CMPs)
- Often orders of magnitudes more compact
Definition

The occurrence depth of any node $x \in \mathcal{U}_N$ is the maximum number of $h(x)$-labelled nodes in any path from \tilde{m}_0 to x in the digraph $(\tilde{m}_0 \cup [x] \cup [x]^\bullet, <_i)$.
Contextual Merged Process (CMPs)

Definition

The **Contextual Merged Process** (CMP) of the unfolding prefix \mathcal{P}_N is the labelled c-net \mathcal{M}_N resulting from

1. Merging all conditions with same occurrence depth and label
2. Merging all events with same label, preset, postset and context.
Reachability of n-bounded c-net is

- PSPACE-complete on N
- NP-complete on marking-complete P_N
- NP-complete on marking-complete M_N

We present reduction into SAT for 1-safe c-nets
Proposition

Let N be 1-safe and M_N marking-complete:
Marking m is reachable in N iff there is a set X of mp-events satisfying:

1. $\forall \hat{e} \in X : \forall \hat{c} \in \cdot \hat{e} \cup \hat{e} : (\hat{c} \in \hat{m}_0 \lor \hat{c} \in X \cdot)$, and
2. \uparrow_X is acyclic, and
3. $m = \text{mark}(X)$.

Remarks

- (1) and (3) can be encoded into SAT in size linear in M_N
- (2) can be encoded in quadratic size, subject to more work
Experiments with CMPs

Benchmark	Name		Unfolding		Merged Process		
			Plain	Contextual	Plain	Contextual	
BDS	59		21.73	5.73	1.14	44	
BRUJIN	165		3.22	1.64	1.44	127	
BYZ	409		46.11	25.57	1.03	303	
FTP	529		85.74	82.51	1.05	455	
KNUTH	137		2.88	1.59	1.31	112	
DME(8)	392		10.64	10.64	1.04	360	
DME(10)	490		15.53	15.53	1.04	450	
ELEV(3)	783		6.48	6.48	1.00	346	
ELEV(4)	1939		11.38	11.38	1.00	841	
KEY(2)	92		3.92	1.82	2.50	105	
KEY(3)	133		19.93	4.33	4.13	186	
KEY(4)	174		113.82	12.54	5.26	290	
MGMT(3)	172		4.01	4.01	1.00	355	
MGMT(4)	232		11.68	11.68	1.00	638	
Summary and Future Work

- Contextual unfolding is feasible and efficient
 - Faster than ordinary unfolding
 - In our benchmark, deadlock-checking outperforms existing methods
 - Tool support: $\text{CUNF} + \text{CNA}$

- Contextual Merged Processes
 - New condensed representation
 - Fights three sources of state-explosion
 - Orders of magnitude smaller
Summary and Future Work

- Contextual unfolding is feasible and efficient
 - Faster than ordinary unfolding
 - In our benchmark, deadlock-checking outperforms existing methods
 - Tool support: CUNF + CNA
- Contextual Merged Processes
 - New condensed representation
 - Fights three sources of state-explosion
 - Orders of magnitude smaller

Future work

- Unfolding construction without concurrency relation
- Implementing model checking and direct construction of CMPs
Summary and Future Work

- Contextual unfolding is feasible and efficient
 - Faster than ordinary unfolding
 - In our benchmark, deadlock-checking outperforms existing methods
 - Tool support: $\text{Cunf} + \text{Cna}$

- Contextual Merged Processes
 - New condensed representation
 - Fights three sources of state-explosion
 - Orders of magnitude smaller

Future work

- Unfolding construction without concurrency relation
- Implementing model checking and direct construction of CMPs

Thank you for your attention