
Synthesizing secure protocols⋆

Véronique Cortier1, Bogdan Warinschi2, and Eugen Zălinescu1

1 Loria UMR 7503 & CNRS & INRIA Lorraine, Project Cassis.
{Veronique.Cortier,Eugen.Zalinescu}@loria.fr

2 Computer Science Department, University of Bristol. bogdan@cs.bris.ac.uk

Abstract. We propose a general transformation that maps a crypto-
graphic protocol that is secure in an extremely weak sense (essentially
in a model where no adversary is present) into a protocol that is secure
against a fully active adversary which interacts with an unbounded num-
ber of protocol sessions, and has absolute control over the network. The
transformation works for arbitrary protocols with any number of partic-
ipants, written with usual cryptographic primitives. Our transformation
provably preserves a large class of security properties that contains se-
crecy and authenticity.
An important byproduct contribution of this paper is a modular protocol
development paradigm where designers focus their effort on an extremely
simple execution setting – security in more complex settings being en-
sured by our generic transformation. Conceptually, the transformation
is very simple, and has a clean, well motivated design. Each message
is tied to the session for which it is intended via digital signatures and
on-the-fly generated session identifiers, and prevents replay attacks by
encrypting the messages under the recipient’s public key.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications over an untrusted network. Their security is of crucial importance due
to their widespread use in critical systems and in day-to-day life. Unfortunately,
designing and analyzing such protocols is a notoriously difficult and error-prone
task, largely due to the potentially unbounded behavior of malicious agents.

In this paper we contribute to a popular technique that has been developed
to cope with this problem. Under the paradigm that we study, one can start with
the design of a simple version of a system intended to work in restricted envi-
ronments (i.e. with restricted adversaries) and then obtain, via a generic trans-
formation, a more robust system intended to work in arbitrary environments.

⋆ The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT,
and by the French ACI Satin and the French ACI Jeunes Chercheurs JC9005. The
information in this document reflects only the author’s views, is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

More specifically, we introduce one such transformation that takes as input a
protocol that is secure (in a sense that we discuss below) in a single execution of
the protocol, with no adversary present (not even a passive eavesdropper). The
output of the transformation is a protocol that withstands a realistic adversary
with absolute control of the communication between an unbounded number of
protocol sessions. The details of our transformation are useful to understand how
security is transfered from the simple to the more complex setting.

Our transformation. At a high level, the transformation works by first dynam-
ically generating a unique session identifier for the session, bounding messages
to sessions by signing their concatenation with the identifier of the session for
which they are intended, and finally, hiding the message from the adversary
using encryption under the public key of the recipient. More specifically, the
transformation is as follows. Consider a protocol with k participants A1, . . . , Ak

and n exchanges of messages.

Ai1 → Aj1 : m1

...
Ain

→ Ajn
: mn

The transformed protocol starts with a preliminary phase, where each partici-
pant Ai broadcasts a fresh nonce Ni to all others participants. The concatena-
tion of the nonces with the identities of the participants forms a session identifier
sessionID = 〈A1, A2, . . . , Ak, N1, N2, . . . , Nk〉. Note that the adversary may in-
terfere with this preliminary phase and may, for instance, intercept and replace
some of the nonces. Such a behavior would however be detected in the next
phase. The remainder of the protocol works roughly as the original one except
that each message is sent together with a signature on the message concate-
nated with the session identifier, and the whole construct is encrypted under the
recipient’s public key:

Ai1 → Aj1 : {[m1, [[m1, p1, sessionID]]sk(Ai1)]}pk(Aj1)

...
Ain

→ Ajn
: {[mn, [[mn, pn, sessionID]]sk(Ain)]}pk(Ajn)

where the pi’s are the current control points in the participant’s programs. We
write [[m]]sk(A) for the message m tied with its signature with the signing key of
A and {[m]}pk(A) for the encryption of m under the public encryption key of A.

Security preservation. Intuitively, our transformation ensures that an active ad-
versary cannot tamper with the messages sent during an execution of the (trans-
formed) protocol between honest participants. The transformation also ensures
that the adversary cannot learn these messages. In turn, these properties imply
that many security statements that hold about a single execution of the protocol,
in the absence of an adversary, are inherited by the transformed protocol, even
if executed in the presence of an active adversary. Clearly, the transformation
does not preserve all imaginable security properties (for example, any anonymity

that the original protocol might enjoy is lost due to the use of public key encryp-
tion). We identify a class of logic formulas which if satisfied in single executions
of the original protocol are also satisfied by the transformed protocol in the
presence of active adversaries. The class that we consider is interesting in that
it includes standard formulations for secrecy and authentication (for example
injective agreement and several other weaker variants [14]).

Simple protocol design. Our transformation enables more modular and man-
ageable protocol development. One can start by building a protocol with the
desirable properties built-in, and bearing in mind that no adversary is actually
present. Then, the final protocol is obtained using the transformation that we
propose. We remark that designers can easily deal with the case of single ses-
sion and it is usually the more involved setting (multi-party, many-session) that
causes the real problems. Our transformation can be applied to any kind of pro-
tocols, with any number of participants (although, the number of participants
in each session should not be too large for efficiency).

Simple protocol verification. In standard protocol design, the potentially un-
bounded behavior of malicious agents makes verification of protocols an ex-
tremely difficult task. Even apparently simple security properties like secrecy are
undecidable in general [9]. One obvious approach to enable verifiability is to con-
sider restrictions to smaller protocol classes. For example, it can be shown that
for finite number of parallel sessions secrecy preservation is co-NP-complete [17].
Most automatic tools are based on this assumption, which is often sufficient to
discover new attacks but does not allow in general to prove security properties. It
is also possible to ensure verifiability of protocols even for unbounded number of
sessions by restricting the form of messages, and/or the ability to generate new
nonces, e.g. [9, 3, 4], but only a few such results do not make this unreasonably
strong assumption [15, 16].

For the class of protocols obtained via our transformation, security verifica-
tion is significantly trivialised. Indeed, for a single, honest execution, security is
in fact closer to correctness, and should be easily carried out automatically.

Related work. The kind of modular design paradigm that we propose is rather
pervasive in cryptographic design. For example, Goldreich, Micali, and Wigder-
son show how to compile arbitrary protocols secure against participants that
honestly follow the protocol (but may try to learn information they are not
entitled to) into protocols secure against participants that may arbitrarily de-
viate from the protocol [10]. Bellare, Canetti, and Krawczyk have shown how
to transform a protocol that is secure when the communication between par-
ties is authenticated into one that remains secure when this assumption is not
met [2]. All of the above transformations have a different goal, apply to protocols
that need to satisfy stronger requirements than ours, and are also different in
their design.

Our work is inspired by a recent compiler introduced by Katz and Yung [12]
which transforms any group key exchange protocol secure against a passive ad-

versary into one secure against an active adversary. Their transformation is, in
some sense, simpler since they do not require that the messages in the trans-
formed protocol are encrypted. However, their transformation is also weaker
since although it requires that the protocol be secure against passive adversaries,
these adversaries still can corrupt parties adaptively (even after the execution
has finished). Furthermore, while their transformation is sufficient for the case
of group key exchange, it fails to guarantee the transfer of more general security
properties. The reason for the failure is that an adversary can obtain a message
(e.g. a ciphertext) from a session with only honest participants, and get infor-
mation about the message (e.g. the underlying plaintext) by replaying it in some
other sessions for which he can produce the necessary digital signatures.

Our transformation might be viewed as a way of transforming protocols into
fail-stop protocols, introduced by Gong and Syverson [11], where any interference
of an attacker is immediately observed and causes the execution to stop. But
for fail-stop protocols, it is still necessary to consider the security issues related
to the presence of passive adversaries. Here we achieve more since we obtain
directly secure protocols. Moreover, a major difference is that we provide formal
proof of the security of the resulting protocols while the approach of [11] is
rather a methodology for prudent engineering. In particular, there are no proved
guarantees on the security of the resulting protocols.

Datta, Derek, Mitchell, and Pavlovic [8] propose a methodology for modu-
lar development of protocols where security properties are added to a protocol
through generic transformations. In contrast, our transformation starts from
protocols where the security property is built-in. Abadi, Gonthier, and Fournet
give a compiler for programs written in a language with abstractions for secure
channels into an implementation that uses cryptography [1] and is similar to
ours in the sense that it aims to eliminate cryptographic security analysis in
involved settings. However the overall goal is different.

2 Protocols

In this section we give a language for specifying protocols and define their exe-
cution in the presence of passive and active adversaries. For simplicity of presen-
tation, we use a model that does not directly capture probabilistic primitives.
Nevertheless, our theorems and proofs easily extend to a model that models
randomness explicitly (e.g. through the use of labels as in [6]).

2.1 Syntax

We consider protocols specified in a language similar to the one of [6] allow-
ing parties to exchange messages built from identities and randomly generated
nonces using asymmetric and symmetric encryption and digital signatures.

Consider the algebraic signature Σ with the following sorts. A sort ID for
agent identities, sorts SigKey, VerKey, AsymEKey, AsymDKey, SymKey containing
keys for signing, verifying, public-key encryption, public-key decryption, and

symmetric encryption algorithms. The algebraic signature also contains sorts
Nonce, Ciphertext, Signature, and Pair for nonces, ciphertexts, signatures, and
pairs, respectively. The sort Term is a supersort containing, besides all other
sorts enumerated above, a sort Int for integers having Z as the support set. There
are eight operations: the four operations ek, dk, sk, vk are defined on the sort ID

and return the asymmetric encryption key, asymmetric decryption key, signing
key, and verification key associated to the input identity. The other operations
that we consider are pairing, public and symmetric key encryption, and signing.
Their ranges and domains are as follows.

– 〈 , 〉 : Term × Term → Pair
– {[]} : AsymEKey × Term → Ciphertext
– {{ }} : SymKey × Term → Ciphertext
– [[]] : SigKey × Term → Signature

Let X.a, X.n, X.k, X.c, X.s, X.t be sets of variables of sort agent, nonce, (sym-
metric) key, ciphertext, signature and term respectively, and X = X.a ∪ X.n ∪
X.k ∪ X.c ∪ X.s ∪ X.t. Protocols are specified using the terms in TΣ(X) of the
free algebra generated by X over the signature Σ. We suppose that pairing is
left associative and write 〈m1, m2, . . . , ml〉 for 〈〈〈m1, m2〉, m3〉 . . . , ml〉. When
unambiguous, we may omit the brackets.

Throughout the paper we fix a constant k ∈ N that represents the num-
ber of protocol participants and we write [k] for the set {1, 2, . . . , k}. Fur-
thermore, without loss of generality, we fix the set of agent variables to be
X.a = {A1, A2, . . . , Ak }, and partition the set of nonce (and key) variables,
according to the party that generates them. Formally:

X.n = ∪A∈X.aXn(A) where Xn(A) = {N j
A | j ∈ N}

X.k = ∪A∈X.aXk(A) where Xk(A) = {Kj
A | j ∈ N}

This partition avoids to have to specify later which of the nonces (symmetric
keys) are generated by the party executing the protocol, or are expected to be
received from other parties.

Roles and protocols. The messages that are sent by participants are specified
using terms inTΣ(X). The individual behavior of each protocol participant is
defined by a role describing a sequence of message reception/transmission which
we call steps or rules. A k-party protocol consists of k such roles together with
an association that maps each step of a role that expects some message m to the
step of the role where the message m is produced. Notice that this association
essentially defines how the execution of a protocol should proceed in the absence
of an adversary.

Definition 1 (Roles and protocols). The set of roles is defined by Roles =(
({ init }∪TΣ(X))×(TΣ(X)∪{ stop })

)∗
. A k-party protocol is a pair Π = (R,S)

where R is a mapping R : [k] → Roles that maps i ∈ [k] to the role executed
by the i’th protocol participant and S : [k] × Z →֒ [k] × Z is a partial mapping
that returns for each role/control-point pair (r, p), the role/control-point pair
(r′, p′) = S(r, p) which emits the message to be processed by role r at step p.

We assume that a protocol specification is such that the r’th role of the protocol
R(r) = ((rcv1

r, snt1r), (rcv
2
r, snt2r), . . .), is executed by player Ar. Informally, the

above definition says that at step p, Ar expects to receive a message of the form
specified by rcvp

r and returns the message sntpr . It is important to notice that the
terms rcvp

r and sntpr are not actual messages but specify how the message that is
received and the message that is output should look like. The messages init and
stop are used to initiate and signal successful termination of role executions. We
note that for technical reasons we sometimes use negative control points (with
negatively indexed role rules).

Example 1. The Needham-Schroeder-Lowe protocol [13]

A → B : {[Na, A]}ek(B)

B → A : {[Na, Nb, B]}ek(A)

A → B : {[Nb]}ek(B)

is specified as follows: there are two roles R(1) and R(2) corresponding to the
sender’s role and the receiver’s role.

R(1) :
(
init, {[N1

A1
, A1]}ek(A2)

)
S(1, 1) = (0, 0)(

{[N1
A1

, N1
A2

, A2]}ek(A1), {[N1
A2

]}ek(A2)

)
S(1, 2) = (2, 1)

R(2) :
(
{[N1

A1
, A1]}ek(A2), {[N1

A1
, N1

A2
, A2]}ek(A1)

)
S(2, 1) = (1, 1)(

{[N1
A2

]}ek(A2), stop
)

S(2, 2) = (1, 2)

Executable protocols. Clearly, not all protocols written using the syntax
above are meaningful. We only consider the class of executable protocols, i.e.
protocols for which each role can be implemented in an executable program,
using only the local knowledge of the corresponding agent. This requires in par-
ticular that any sent message (corresponding to some sntpr) is always deducible
from the previously received messages (corresponding to rcv1

r, . . . , rcv
p
r). Also we

demand that S is consistent. In particular, this means that for a fixed role r,
S(r, p) is defined on exactly |R(r)| consecutive integers, where |S| denotes the
cardinality of the set S.

2.2 Formal Execution Model

We start with the description of the execution model of the protocol in the
presence of an active attacker. The model that we consider is rather standard.
The parties in the system execute a (potentially unbounded) number of protocol
sessions with each other. The communication is under the complete control of
the adversary who can intercept, drop, or modify the messages on the network.

The messages transmitted between parties are terms of the algebra Tf freely
generated over the signature Σ by an arbitrary fixed set of identities T

f
ID together

with the sets for types SymKey and Nonce defined by:

T
f
SymKey = {ka,j,s | a ∈ T

f
ID, j ∈ N, s ∈ N} ∪ {kj | j ∈ N}

T
f
Nonce = {na,j,s | a ∈ T

f
ID, j ∈ N, s ∈ N} ∪ {nj | j ∈ N}

Informally, one should think of the constant ka,j,s (respectively na,j,s) as the j’th
key (respectively nonce) generated by party a in session s. Constants kj and nj

represent keys and nonces produced by the adversary.

To each protocol we associate the set of its valid execution traces. First we
clarify what execution traces are and then present the association.

A global state of an execution is given by a triple (SId, f, H). Here, SId is the
set of role session ids currently executed by protocol participants, f is a global
assignment function that keeps track of the local state of each existing session
and H is the set of messages that have been sent on the network so far.

More precisely, each role session has an associated unique session identifier
s ∈ N. However, by language abuse (and overloading the notion), we say that
a session id is a tuple of the form (s, r, (a1, a2, . . . , ak)), where s is the unique
identifier for the session, r is the index of the role that is executed in the session
and a1, a2, . . . , ak ∈ T

f
ID are the identities of the parties that are involved in the

session. We write SID for the set (N × N × (Tf
ID)k) of all session ids.

Mathematically, the global assignment f is a function f : SId → ([X →֒
Tf] × N × Z), where SId ⊆ SID represents the session ids initialized in the
execution. For each such session id sid ∈ SId, f(sid) = (σ, r, p) returns its local
state. Here, r is the same role index as in sid, the function σ is a substitution,
that is a partial instantiation of the variables of the role R(r) and p ∈ Z is the
control point of the program. We sometimes write Xσ for σ(X). We denote by
GA the set [SID →֒ ([X →֒ Tf] × N × Z)] of all possible global assignments.

Finally, the messages that may be sent on the network can be essentially any

element of Tf , so we write Msgs for the set 2Tf

(where 2S is the power set of S).

An execution trace is a sequence

(S0, f0, H0)
α1−→ (S1, f1, H1)

α2−→ . . .
αn−−→ (Sn, fn, Hn)

such that for each 0 ≤ i ≤ n, (Si, fi, Hi) ∈ (2SID×GA×Msgs) and αi is one of the
actions corrupt,new, and send with appropriate parameters that we clarify
below. This corresponds to the intuition that transitions between two global
states are caused by actions of the adversary who can corrupt users, initiate new
sessions of the protocol between users that he chooses, and send messages to
existing sessions.

For a k-party protocol Π , the transitions between global states are as follows:

– The adversary corrupts agents: (SId, f, H)
corrupt(a1,...,al)
−−−−−−−−−−−→ (SId, f, H ′) where

a1, . . . , al ∈ T
f
ID and H ′ = ∪1≤j≤lkn(aj) ∪ H . Here, kn(aj) denotes the

knowledge of aj : if A is a variable, or a constant of sort agent, we define its
knowledge by kn(A) = {dk(A), sk(A)} i.e. an agent knows its secret decryp-
tion and signing key. The adversary corrupts parties by outputting a set of
identities. In return, the adversary receives the secret keys corresponding to
the identities. In this paper we are only concerned with the case of static
corruption so this transition only occurs at the beginning of an execution
trace.

– The adversary initiates new sessions: (SId,f,H)
new(r,a1,...,ak)
−−−−−−−−−−→ (SId′,f ′,H)

where 1 ≤ r ≤ k, a1, . . . , ak ∈ T
f
ID, and f ′ and SId′ are defined as follows.

Let s = |SId| + 1, be the session identifier of the new session. Then SId′ =
SId ∪ {(s, r, (a1, . . . , ak))} and the function f ′ is defined by:

• f ′(sid) = f(sid) for every sid ∈ SId.

• f ′(s, r, (a1, . . . , ak)) = (σ, r, p0) where p0 is the initial control point of
role r and σ is a partial function σ : X →֒ Tf defined by σ(Aj) = aj for

1 ≤ j ≤ k, σ(N j
Ar

) = nar,j,s for j ∈ N and σ(Kj
Ar

) = kar,j,s for j ∈ N.
We recall that the principal that executes role R(r) is represented by
variable Ar thus, in that role, every variable of the form X

j
Ar

represents
a nonce or a symmetric key generated by Ar.

– The adversary sends messages to sessions: (SId,f,H)
send(sid,m)
−−−−−−−→ (SId, f ′, H ′)

where sid ∈ SId and m ∈ Tf . H ′ and f ′ are defined as follows. We define
f ′(sid′) = f(sid′) for every sid′ ∈ SId \ {sid}. Let f(sid) = (σ, r, p) for some σ,
r and p, and let R(r)=

(
(rcv1

r, snt1r), . . . , (rcv
kr
r , sntkr

r)
)

be the role executed
in this session. There are two cases:

• Either there exists a substitution σ′ such that m = rcvp
rσ

′ and σ′ extends
σ, that is, Xσ′ = Xσ whenever σ is defined on X . Then f ′(sid) =
(σ′, r, p + 1) and H ′ = H ∪ {sntprσ

′}. We say that m is accepted.

• Or we let f ′(sid)=f(sid) and H ′=H (the state remains unchanged).

As usual, we are only interested in valid execution traces – those traces where
the adversary only sends messages that he can compute out of his knowledge
and the messages it had seen on the network. The adversary can derive new
information using the relation ⊢. Intuitively, S ⊢ m means that the adversary
is able to compute the message m from the set of messages S; the adversarial
abilities are captured by the definition in Figure 1. The only rule that is per-
haps less standard is the last one. It essentially states that out of a signature
an adversary could compute the message that is signed, which is theoretically
possible for any secure digital signature scheme.

The set of valid execution traces is described by the following definition.

Definition 2 (Valid execution traces). An execution trace (SId0, f0, H0) −→
. . . −→ (SIdn, fn, Hn) is valid if

– H0 = SId0 = ∅, (SId0, f0, H0) → (SId1, f1, H1) for one of the three transitions
described above and for every 1 ≤ i ≤ n, (SIdi, fi, Hi) → (SIdi+1, fi+1, Hi+1)
for one of the last two transitions described above;

– moreover, the messages sent by the adversary can be computed using ⊢,

i.e. whenever (SIdi, fi, Hi)
send(sid,m)
−−−−−−−→ (SIdi+1, fi+1, Hi+1) then Hi ⊢ m.

Given a protocol Π, we write Exec(Π) for the set of valid execution traces of Π.

Example 2. Playing with the Needham-Schroeder-Lowe protocol described in
Example 1, an adversary can corrupt an agent a3, start a new session for the

m ∈ S
S ⊢ m

j ∈ N

S ⊢ a, ek(a), vk(a), kj , nj Initial knowledge

S ⊢ m1 S ⊢ m2

S ⊢ 〈m1 , m2〉

S ⊢ 〈m1 , m2〉
i ∈ {1, 2}

S ⊢ mi

Pairing and unpairing

S ⊢ k S ⊢ m

S ⊢ {{m}}
k

S ⊢ {{m}}
k

S ⊢ k

S ⊢ m
Sym. encryption/decryption

S ⊢ m

S ⊢ {[m]}ek(a)

S ⊢ {[m]}ek(a) S ⊢ dk(a)

S ⊢ m
Asym. encryption/decryption

S ⊢ sk(a) S ⊢ m

S ⊢ [[m]]sk(a)

S ⊢ [[m]]sk(a)

S ⊢ m
Signature

Fig. 1. Deduction rules for the formal adversary. In the above, a ∈ T
f

ID.

second role with players a1, a2 and send the message {[n(a3, 1, 1), a1]}ek(a2) to the
player of the second role. The corresponding valid trace execution is:

(∅, f1, ∅)
corrupt(a3)
−−−−−−−−→ (∅, f1,kn(a3))

new(2,a1,a2)
−−−−−−−−→ ({sid1}, f2,kn(a3))

send(sid1,{[n3,a1]}ek(a2))
−−−−−−−−−−−−−−−→

(
{sid1}, f3,kn(a3) ∪ {{[n3, n2, a2]}ek(a1)}

)
,

where sid1 = (1, 2, (a1, a2)), n2 = n(a2, 1, 1), n3 = n(a3, 1, 1), and f2, f3 are
defined as follows: f2(sid1) = (σ1, 2, 1), f3(sid1) = (σ2, 2, 2) where σ1(A1) = a1,
σ1(A2) = a2, σ1(N

1
A2

) = n2, and σ2 extends σ1 by σ2(N
1
A1

) = n3.

Given an arbitrary trace tr = (SId0, f0, H0)
α1−→ . . .

αn−−→ (SIdn, fn, Hn) with
n ∈ N, we define the set of corrupted agents of a trace tr by CA(tr) = {a1, . . . , al}
if α1 = corrupt(a1, . . . , al) and CA(tr) = ∅ otherwise. The set SIdh(tr) of honest
session identifiers is the set of session identifiers that correspond to sessions
between non-corrupt agents:

SIdh(tr) = {sid ∈ SIdn | sid = (s, r, (a1, . . . , ak)), CA(tr) ∩ {a1, . . . , ak} = ∅}.

Also, for a trace tr we denote by I(tr) the set of indexes i of the transitions
and global states of tr. For example the above trace has I(tr) = {0, 1, . . . , n}. If
sid is a session id then we denote by Ag(sid) the set of agents involved in this
session, that is Ag(sid) = {a1, . . . , ak} when sid = (·, ·, (a1, . . . , ak)).

3 Security properties

We use a simple logic introduced in [5] to express security properties for protocols
specified in the language given in the previous section. We recall this logic, define

its semantics and provide several examples of security properties that can be
expressed within.

3.1 A logic for security properties

The formulas of logic capture trace properties and, in particular, they allow
quantification over the local states of agents. We define the set of local states
of a trace tr = (SIdi, fi, Hi)1≤i≤n for role r at step p by LSr,p(tr) , {(σ, r, p) |
∃i ∈ [n], ∃sid ∈ SIdi, s.t. fi(sid) = (σ, r, p)}. Note that the cardinality of this
set equals the number of agents that are playing role r and that have reached
control point p.

We assume an infinite set XSub of meta-variables for substitutions. The logic
contains tests between terms where variables are substituted by variable substi-
tutions. More formally, let TSub be the algebra defined by:

TSub ::= ς(X) | g(TSub) | h(TSub, TSub)

where ς ∈ XSub, X ∈ X, and g, h ∈ Σ of arity 1 and 2 respectively.

Besides standard propositional connectors, the logic has a predicate to specify
honest agents, equality and inequality tests between terms, and existential and
universal quantifiers over the local states of agents.

Definition 3. The formulas of the logic L are defined by induction as follows:

φ(tr) ::= NC(tr, ς(A)) | t1 = t2 | ¬φ(tr) | φ(tr) ∧ φ(tr) | φ(tr) ∨ φ(tr)
| ∀LSr,p(tr).ς φ(tr) | ∃LSr,p(tr).ς φ(tr) | ∃!LSr,p(tr).ς φ(tr)

where tr is a parameter of the formula, A ∈ X.a, ς ∈ XSub, t1, t2 ∈ TSub and
r, p ∈ N. As usual, we may use φ1 ⇒ φ2 as a shortcut for ¬φ1 ∨ φ2.

Here the predicate NC(tr, ς(A)) is used to specify non corrupted agents. The
quantifications ∀LSr,p(tr).ς and ∃LSr,p(tr).ς are over local states of agent r at
step p in trace tr, and they bound the variable substitution ς. The semantics of
our logic is defined for closed formula as follows: standard propositional connec-
tors and negation are interpreted as usual. Equality is syntactic equality. The
interpretation of quantifiers and the predicate NC is shown in Figure 2.

A security property φ should be seen in this paper as an abstraction of the
form φ , λtr.φ(tr), where the tr parameter is used only to define the semantics
of such formulas. By abuse of notation we therefore ignore this parameter and
write φ ∈ L for a security property. Informally, a protocol Π satisfies φ if φ(tr)
is true for all traces of Π . Formally:

Definition 4 (Satisfiability). Let Π be a protocol and φ ∈ L be a security
property. We say that Π satisfies the security property φ, and write Π |= φ if
for any trace tr ∈ Exec(Π), [[φ(tr)]] = 1.

[[NC(tr, a)]] =

8

>

>

>

<

>

>

>

:

1 if a does not appear in a corrupt action,

i.e. if e1
corrupt(a1,...,al)−−−−−−−−−−−→ e2, intr = (e1, e2, . . . , en),

we have a 6= ai,∀1 ≤ i ≤ l,

0 otherwise

[[∀LSr,p(tr).ς φ(tr)]] =



1 if ∀(σ, r, p) ∈ LSr,p(tr), we have [[φ(tr)[σ/ς]]] = 1,

0 otherwise.

[[∃LSr,p(tr).ς φ(tr)]] =



1 if ∃(σ, r, p) ∈ LSr,p(tr), s.t. [[φ(tr)[σ/ς]]] = 1,

0 otherwise.

[[∃!LSr,p(tr).ς φ(tr)]] =

8

<

:

1 if ∃! sid ∈ SId(tr),∃i ∈ I(tr) s.t.
fi(sid) = (σ, r, p) and [[φ(tr)[σ/ς]]] = 1,

0 otherwise.

Fig. 2. Interpretation of formulas in L.

3.2 Examples of security properties

In this section we show how to specify secrecy and several variants of authenti-
cation, including those from Lowe’s hierarchy [14], in the given security logic.

A secrecy property. Let Π be a k-party executable protocol. To specify our
secrecy property we use a standard encoding. Namely, we add a role to the
protocol, R(k + 1) = (Y, stop), where Y is a new variable of sort Term. It can be
seen as some sort of witness as it does nothing but waits for receiving a piece of
public data.

Informally, the definition of the secrecy property φs states that, for any local
state of an agent playing role r in which a nonce (or a key) X was created in
an honest session, a witness (i.e. an agent playing role k + 1) cannot gain any
knowledge on X . Formally, the property is specified by the following formula:

φs(tr)=∀LSr,1(tr).ς
(∧

l∈[k]

NC(tr, ς(Al)) ⇒ ∀LSk+1,2(tr).ς
′
(
ς(X) 6= ς ′(Y)

))

Intuitively, the formula states that for all local states of an agent executing role r

(in session ς) and being at his initial control point (i.e. 1), if only honest agents
are playing in ς then for all local states of an agent executing role k + 1 (in
session ς ′) and being at his final control point (i.e. 2), the value of the secret
(i.e. X) in ς is different from the value of the received message (i.e. Y) in ς ′.

As a side remark, notice that it is possible to also model the secrecy of a
data X received during an honest session: we would simply specify the control
point p (instead of 1) at which the date is received by the role r. Moreover, in
both cases (that is, X created or received) the formula is always true for honest,
single session traces. It will follow that our transformation preserves secrecy of
all nonces or keys used in sessions that involve only honest parties.

Authentication properties. We show how to use the logic defined above to
specify the injective agreement [14] between two parties A and B. Informally, this

property states that whenever an A completes a run of the protocol, apparently
with B, then there is unique run of B apparently with A such that two agents
agree on the values of some fixed variables, provided that A and B are honest.
As usual nothing is guaranteed in sessions involving corrupted agents.

Let p1 be the length of A’s role and p2 be the control point at which B should
have received all data items from A. Then, the above intuition is captured by
the following formula:

φa(tr) , ∀LS1,p1(tr).ς
(
NC(tr, Aς) ∧ NC(tr, Bς) ⇒

∃!LS2,p2(tr).ς
′
(
(Aς =Aς ′) ∧ (Bς =Bς ′) ∧

∧
1≤i≤n(Xiς =Xiς

′)
))

Intuitively, the formula states that for all local states of an agent having finished
executing the first role (in session ς), if the two agents (executing the two roles
in ς) are honest in ς then there exists an unique local state of an agent having
finished executing the second role (in session ς ′) and such that the agents agree
on their identitites and on the values of the variables that are common to the
two roles.

It is easy to modify this formula in order to obtain formulas corresponding
to the other variants of authentication from Lowe’s hierarchy.

4 Transformation of protocols

The core idea of the transformation is to have parties agree on some common,
dynamically generated, session identifier s, and then transmit the encryption of
a message m of the original protocol accompanied by a signature on m||s.

The modification of the source protocol is performed in two steps. We first
introduce an initialization phase, where each agent generates a fresh nonce which
is distributed to all other participants. The idea is that the concatenation of all
these nonces and all the identities involved in the session plays the role of a unique
session identifier. To avoid underspecification of the resulting protocol we fix a
particular way in which the nonces are distributed. First, each agent generates a
fresh nonce and then sends the nonces he received so far together with his nonce
to the next agent. That is, in Alice-Bob notation, Ai → Ai+1 : NA1 , ... , NAi

, for
all i in the sequence 1, . . . , k − 1. Then, once the last agent received all nonces,
each agent forwards the concatenation of all nonces to its predecesor. That is,
Ai → Ai−1 : NA1 , . . . , NAk

, for all i in the sequence k, . . . , 2. In this way, at the
end of this first phase all agents know each other’s nonces.

We remark that the precise order in which participants send these nonces does
not really matter, and we do not require that these nonces be authenticated in
some way. In principle an active adversary is allowed to forward, block or modify
the messages sent during the initialization phase, but behaviours that deviate
from the intended execution of the protocol are detected in the next phase.

In the second phase of the transformed protocol, the execution proceeds as
prescribed by Π with the difference that to each message m that needs to be sent,
the sending parties also attaches a signature [[m, p, nonces]]sk′(a) and encrypts the

whole construct with the intended receiver public key. p is the current control
point and nonces is the concatenation of the nonces received during the first
phase with the identities of the participants involved in the protocol.

Intuitively, the adversary cannot impersonate users in honest sessions (since
in this case it would need to produce digital signatures on their behalf), and
cannot learn secrets by replaying messages from one session to another (since
messages are encrypted, and any blindly replayed message would be rejected due
to un-matching session identifiers). The control-point p plays within a session
the same role as nonces between sessions: messages not matching the correct
control point are rejected.

To avoid confusion and unintended interactions between the signatures and
the encryptions produced by the compiler and those used in the normal execution
of the protocol, the former use fresh signatures and public keys. Formally, we
extend the signature Σ with four new function symbols sk′, vk′, ek′ and dk′ which
have exactly the same functionality (that is the same sort and similar deduction
rules) with sk, vk, ek and dk respectively.

This formalizes the assumption that in the transformed version of Π each
agent a has associated two pairs of verification/signing keys ((vk(a), sk(a)) and
(vk′(a), sk′(a))) and two pairs of encryption/decryption keys ((ek(a), dk(a)) and
(ek′(a), dk′(a))) and that these new pairs of keys were correctly distributed pre-
viously to any execution of the protocol. We assume that source protocols are
constructed over Σ only.

Definition 5 (Transformed protocol). Let Π = (R,S) be a k-party exe-
cutable protocol such that the nonce variables N0

Ak
do not appear in R (which

can be ensured by renaming the nonce variables of Π) and all the initial control
points are set to 1 (which can be ensured by rewriting the function S).

The transformed protocol Π̃ = (R̃, S̃) is defined as follows: R̃(r)=Rinit(r) ·

R′(r) and S̃ = S init∪S where · denotes the concatenation of sequences and Rinit,
R′ and S init are defined as follows:

Rinit(r) =
(
(noncesr−1, noncesr), (noncesk, noncesk)

)
, ∀1 ≤ r < k,

S init(r,−1) = (r − 1,−1), S init(r, 0) = (r + 1, 0), ∀1 ≤ r < k,

Rinit(k) =
(
(noncesk−1, noncesk)

)
S init(k, 0) = (k − 1,−1)

with nonces0 = init and noncesj = 〈N0
A1

, N0
A2

, . . . , N0
Aj

〉 for 1 ≤ j ≤ k.

Let R(r) =
(
(rcvp

r , sntpr)
)
p∈[kr]

. Then R′(r) =
(
(r̃cv

p
r , s̃nt

p

r)
)
p∈[kr]

such that

if rcvp
r = init then r̃cv

p
r = fake, if sntpr = stop then s̃nt

p

r = stop and otherwise

r̃cv
p
r = {[rcvp

r , [[rcv
p
r , p

′, nonces]]sk′(Ar′)
]}ek′(Ar),

s̃nt
p

r = {[sntpr , [[sntpr , p, nonces]]sk′(Ar)]}ek′(Ar′′)

where (r′, p′)=S(r, p), (r, p)=S(r′′, p′′) and nonces=〈A1, . . . , Ak, noncesk〉.

The initial control point is now set to −1 (or 0 for Ak) since actions have
been added for the initialization stage. The special message fake is used to model
for example the situation where an agent waits for more than one message in
order to reply or when an agent sends more than one reply.

5 Main result

We identify a class of executions, which we call honest, single session executions
which, intuitively, correspond to traces where just one session is executed, session
in which all parties are honest and there is no adversary. Our only hypothesis
will be that the initial protocol has to be secure in this very weak setting.

Definition 6 (Honest, single session trace). Let Π = (R,S) be a k-party

protocol and tr = (SId0, f0, H0)
α1−→ . . .

αn−−→ (SIdn, fn, Hn) be a valid trace of Π.
The trace tr is an honest, single session trace if there are k agent identities
a1, . . . , ak such that

– for 1 ≤ i ≤ k, αi = new(i, a1, . . . , ak),
– for k+1 ≤ i ≤ n, αi = send(sid, m), m = rcvp

rσ where fi(sid) = (σ, r, p+1),
and there exists j < i such that fj(sid

′) = (σ′, r′, p′), S(r, p) = (r′, p′), and

m = snt
p′

r′σ′ for some sid′.

Let Execp,1(Π) be the set of honest, single session traces of Π .
Definition 7 (Passive, single session satisfiability). Let Π be a protocol
and φ ∈ L be a security property. We say that Π satisfies the security property φ

for passive adversaries and a single session, and write Π |=p,1 φ if for any trace
tr ∈ Execp,1(Π), [[φ(tr)]] = 1.

Transferable security properties. We identify a fragment L′ of the logic L
defined in Section 3 whose formulas specify the properties that can be transferred
from the honest, single session case to the full active adversary case.

Definition 8. The set L′ consists of those formulas φ(tr) with

φ(tr)=∀LSr,p(tr).ς
(∧

l∈[k]

NC(tr, ς(Al))⇒
∧

i∈I

(
Qi LSri,pi

(tr).ςi
∧

j∈Ji

τ i
j(u

i
j , v

i
j)

))

where Qi ∈ {∀, ∃, ∃!}, and for all i ∈ I, for all j ∈ Ji, if Qi = ∀ then τ i
j ∈ {6=}

and if Qi ∈ {∃, ∃!} then τ i
j ∈ {=, 6=}; moreover, for each i ∈ I, if Qi = ∀

(respectively Qi = ∃!) then for all (there is) j ∈ Ji we have that (such that
τ i
j ∈ {=} and) there exists at least a subterm ς(X) in ui

j or vi
j with X a nonce

or key variable.

As usual, we require security properties to hold in sessions between honest
agents. This means that no guarantee is provided in a session where a corrupted
agent is involved. But this does not prevent honest agents from contacting cor-
rupted agents in parallel sessions. Properties that can be expressed in our frag-
ment L′ are correspondence relations between (data in) particular local states of
agents in different sessions. It is a non-trivial class since e.g. the logical formulas
given in Section 3 for expressing secrecy and authentication are captured by the
above definition.

Transference result. The main result of this paper is the following trans-
ference theorem. It informally states that the formulas of L′ that are satisfied
in single, honest executions of a protocol are also satisfied by executions of the
transformed protocol in the presence of a fully active adversary.

Theorem 1. Let Π be a protocol and Π̃ the corresponding transformed protocol.
Let φ ∈ L′ be a security property. Then Π |=p,1 φ ⇒ Π̃ |= φ.

The main intuition behind the proof is that any execution in the presence
of an active adversary is closely mirrored by some honest execution (i.e. an
execution with no adversarial interference plus some additional useless sessions).
We define honest executions next.

Honest executions. Recall that we demand that protocols come with an in-
tended execution order, in which the designer specifies the source of each message
in an execution. Roughly, in an honest execution trace one can partition the set
of session ids in sets of at most k role sessions (each corresponding to a different
role of the protocol) such that messages are exchanged only within partitions,
and the message transmission within each partition follows the intended execu-
tion specification. Since we cannot prevent an intruder to create new messages
and sign them with corrupted signing keys, clearly the property can hold only
for session identifiers corresponding to honest participants. The above ideas are
captured by the following definition.

Definition 9 (Honest execution traces). Let Π be an executable protocol.

An execution trace tr = (SId0, f0, H0)
α1−→ . . .

αn−−→ (SIdn, fn, Hn) is honest if
it is valid and there is a partition PrtSId of the honest role session identifiers
SIdh(tr) such that:

1. for all S ∈ PrtSId, for all sid, sid′ ∈ S with sid 6=sid′ and sid=(s, r, (a1, . . . ,

ak)) and sid′ = (s′, r′, (a′
1, . . . a

′
k)), we have r 6= r′, and aj = a′

j for all
1 ≤ j ≤ k; that is, in any protocol session each of the participants execute
different roles3 and the agents agree on their communication partners;

2. whenever (SIdi−1, fi−1, Hi−1)
send(sid,m)
−−−−−−−→ (SIdi, fi, Hi) with sid ∈ SIdh(tr), m

accepted, m 6= fake and m = rcvp
rσ, p≥1, we have that there are sid′ ∈ [sid]

and i′ < i such that m = snt
p′

r′σ′ and S(r, p) = (r′, p′) where fi(sid) = (σ, r,

p+1), fi′(sid
′) = (σ′, r′, p′), and [sid] is the partition to which sid belongs to.

Notice that the above definition considers partial executions in which not all
roles finish their execution, and where not all roles in a protocol session need to
be initialized. The following lemma states that for any transformed protocol, an
active intruder cannot interfere with the execution of honest sessions.

Lemma 1. Let Π be a protocol and Π̃ the corresponding transformed protocol.
In Π̃, any valid execution trace is an honest execution trace.

Then it remains to show that any property expressed in L′ that holds for
one honest, single session trace also holds for any honest execution trace of the
transformed protocol. It relies in particular on the fact that due to encryption,
fresh values of honest sessions cannot occur in dishonest sessions. Moreover,
honest execution traces actually correspond to the honest, single session trace
of the initial protocol. More details and full proofs are available in [7].

3 Consequently, each partition consists of at most k role sessions.

References

1. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel ab-
stractions. Inf. Comput., 174(1):37–83, 2002.

2. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract).
In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 419–428, New York, NY, USA, 1998. ACM Press.

3. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In A. Gordon, editor, Foundations of Software Science and
Computation Structures (FoSSaCS’03), volume 2620 of LNCS, April 2003.

4. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In Proc. of the 14th
Int. Conf. on Rewriting Techniques and Applications (RTA’2003), volume 2706
of LNCS, pages 148–164. Springer-Verlag, June 2003.

5. V. Cortier, H. Hördegen, and B. Warinschi. Explicit Randomness is not Neces-
sary when Modeling Probabilistic Encryption. In Workshop on Information and
Computer Security (ICS 2006), Timisoara, Romania, September 2006.

6. V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Se-
curity Protocols. In Proc. 14th European Symposium on Programming (ESOP’05),
volume 3444 of LNCS, pages 157–171, Edinburgh, U.K, April 2005. Springer.

7. V. Cortier, B. Warinschi, and E.Zălinescu. Synthesizing secure protocols. In-
ria research report, INRIA, Apr. 2007. Available at http://www.loria.fr/~

cortier/Papiers/compiler.pdf.
8. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and

compositional logic for security protocols. J. Comput. Secur., 13(3):423–482, 2005.
9. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded

security protocols. In Proc. of the Workshop on Formal Methods and Security
Protocols, 1999.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory of
computing, pages 218–229, New York, NY, USA, 1987. ACM Press.

11. L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure pro-
tocols. In Proceedings of the 5th International Working Conference on Dependable
Computing for Critical Applications (DCCA-5), pages 44–55, 1995.

12. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange.
In Proceedings of Crypto’03, pages 110–125. Springer-Verlag, 2003.

13. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Margaria and Steffen, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 1055 of LNCS, pages 147–166, 1996.

14. G. Lowe. A hierarchy of authentication specifications. In CSFW 1997), Rockport,
Massachusetts, USA, 1997. IEEE Computer Society Press.

15. G. Lowe. Towards a completeness result for model checking of security protocols.
In CSFW 1998). IEEE Computer Society Press, 1998.

16. R. Ramanujam and S. P. Suresh. A decidable subclass of unbounded security
protocols. In Proc. IFIP Workshop on Issues in the Theory of Security (WITS’03),
pages 11–20, Warsaw (Poland), 2003.

17. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In CSFW 2001, pages 174–190. IEEE Computer Society Press,
2001.

