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1 Introduction

Security protocols are short programs aiming at securing communications over
a network. They are widely used in our everyday life. They may achieve var-
ious goals depending on the application: confidentiality, authenticity, privacy,
anonymity, fairness, etc. Their verification using symbolic models has shown its
interest for detecting attacks and proving security properties. A famous exam-
ple is the Needham-Schroeder protocol [23] on which G. Lowe discovered a flaw
17 years after its publication [20]. Secrecy preservation has been proved to be
co-NP-complete for a bounded number of sessions [24], and decidable for an un-
bounded number of sessions under some additional restrictions (e.g. [3, 12, 13,
25]). Many tools have also been developed to automatically verify cryptographic
protocols like [21, 8].

In this tutorial, we first overview several techniques used for symbolically
verifying security protocols that have led to the design of many efficient and
useful tools. However, the guarantees that symbolic approaches offer have been
quite unclear compared to the computational approach that considers issues
of complexity and probability. This later approach captures a strong notion
of security, guaranteed against all probabilistic polynomial-time attacks. In a
second part of the tutorial, we present recent results that aim at obtaining the
best of both worlds: fully automated proofs and strong, clear security guarantees.
The approach consists in proving that symbolic models are sound with respect
to computational ones, that is, that any potential attack is indeed captured at
the symbolic level.

2 Symbolic Approach

In symbolic models, the implementation details of the primitives are abstracted
away, and the execution is modeled only symbolically. The central characteristics
of the symbolic approach is that messages are modeled using a term algebra T f .
Typically, the messages exchanged by parties are symbolic terms constructed
from symbols for nonces n, identities a, by applying abstract operations repre-
senting encryption enc(m, k), pairing 〈m1, m2〉, signature sign(m, k), etc. Specif-
ically, we consider the signature F = {enc, enca, sign, 〈 〉, pub, priv} together with
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arities of the form ar(f) = 2 for the four first symbols and ar(f) = 1 for the two
last ones. The symbol 〈 〉 represents the pairing function. The terms enc(m, k)
and enca(m, k) represent respectively the message m encrypted with the sym-
metric (resp. asymmetric) key k. The term sign(m, k) represents the message
m signed by the key k. The terms pub(a) and priv(a) represent respectively
the public and private keys of an agent a. We fix an infinite set of variables
X = {x, y . . .}. Terms with variables are used to specify the intended behavior
of the protocol. The set T f of terms is defined inductively by

t ::= term
| x variable x

| a name a

| f(a) application of symbol f ∈ {pub, priv} on a name
| f(t1, t2) application of symbol f ∈ {enc, enca, sign, 〈 〉}

The set of variables occurring in a term t is denoted by V(t). The set of subterms
of a term t is denoted by st(t).

2.1 Intruder Deduction

Public network are insecure. We assume that a potential attacker, also called in-
truder, can not only listen to the network but also intercept, block and send new
messages. The way an intruder can learn and build new messages is typically
modeled through a deduction system. We give an example of such a deduc-
tion system in Figure 1. It corresponds to the usual Dolev-Yao rules. The first
line describes the composition rules, the two last lines the decomposition rules.
Intuitively, these deduction rules say that an intruder can compose messages
by pairing, encrypting and signing messages provided he has the corresponding
keys and conversely, he can decompose messages by projecting or decrypting
provided he has the decryption keys. For signatures, the intruder is also able to
verify whether a signature sign(m, k) and a message m match (provided he has
the verification key), but this does not give him any new message. That is why
this capability is not represented in the deduction system. We also consider a
rule

S ⊢ sign(x, priv(y))

S ⊢ x

that expresses that an intruder can retrieve the whole message from his signature.
This property may or may not hold depending on the signature scheme.

A term u is deducible from a set of terms S, denoted by S ⊢ u if there exists
a proof i.e. a tree such that the root is S ⊢ u, the leaves are of the form S ⊢ v

with v ∈ S (axiom rule) and every intermediate node is an instance of one of
the rules of the deduction system.



S ⊢ x S ⊢ y

S ⊢ 〈x, y〉

S ⊢ x S ⊢ y

S ⊢ enc(x, y)

S ⊢ x S ⊢ y

S ⊢ enca(x, y)

S ⊢ x S ⊢ y

S ⊢ sign(x, y)

S ⊢ 〈x, y〉

S ⊢ x

S ⊢ 〈x, y〉

S ⊢ y

S ⊢ enc(x, y) S ⊢ y

S ⊢ x

S ⊢ enca(x,priv(y)) S ⊢ pub(y)

S ⊢ x

S ⊢ sign(x,priv(y))

S ⊢ x

Fig. 1. Intruder Deduction System.

Example 1. The term 〈k1, k2〉 is deducible from the set S1 = {enc(k1, k2), k2}.
Indeed, a proof corresponding to that fact that S1 ⊢ 〈k1, k2〉 is:

S1 ⊢ enc(k1, k2) S1 ⊢ k2

S1 ⊢ k1 S1 ⊢ k2

S1 ⊢ 〈k1, k2〉

2.2 Protocols - Bounded Number of Sessions

Consider the famous Needham-Schroeder asymmetric key authentication proto-
col [23] designed for mutual authentication.

A → B : enca(〈NA, A〉, pub(B))
B → A : enca(〈NA, NB〉, pub(A))
A → B : enca(NB, pub(B))

The agent A sends to B his name and a fresh nonce (a randomly generated
value) encrypted with the public key of B. The agent B answers by copying
A’s nonce and adds a fresh nonce NB, encrypted by A’s public key. The agent
A acknowledges by forwarding B’s nonce encrypted by B’s public key. This
protocol defines two roles that specify the behavior of the initiator agent A and
the behavior of the responder agent B. Formally, the executions of a protocol
are specified using terms with variables. We consider for simplicity a scenario
where A starts a session with a corrupted agent I (whose private key is known
to the intruder) and B is willing to answer to A. The initial knowledge of the
intruder is

T0 = {a, b, i, pub(a), pub(b), pub(i), priv(i)}.

The set T1

def
= T0 ∪ {enca(〈na, a〉, pub(i))} represents the messages known to the

intruder once A has contacted the corrupted agent I. Then if a message of the
form enca(〈x, a〉, pub(b)) can be sent on the network, then B would answer to
this message by enca(〈x, nb〉, pub(a)), in which case the knowledge of the intruder
will turn to be

T2

def
= T1 ∪ {enca(〈x, nb〉, pub(a))}.



Subsequently, if a message of the form enca(〈na, y〉, pub(a)) can be sent on the
network, then A would answer by enca(y, pub(i)) since A believes she is talking
to I and the knowledge of the intruder would be represented by

T3

def
= T2 ∪ {enca(y, pub(i))}.

The run corresponds to an attack if (for example), the intruder is able to learn
the nonce nb.

This execution can be formally modeled by a constraint system.

Definition 1. A constraint system C is a finite set of expressions Ti 
 ui,
where Ti is a non empty set of terms and ui is a term, 1 ≤ i ≤ n, such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n − 1;
- if x ∈ V(Ti) then ∃j < i such that Tj = min{T | (T 
 u) ∈ C, x ∈ V(u)} (for

the inclusion relation) and Tj ( Ti.

The first condition says that the intruder knowledge only increases. The second
condition ensures that variables are always first introduced on the right-hand
side of a constraint. This corresponds to the fact that the output of a protocol
depends deterministically on its entry.

A solution of a constraint system C is a substitution θ such that ∀(T 
 u) ∈
C, Tθ ⊢ uθ holds.

Continuing our example, the set constraint corresponding to our scenario is:

T1

def
= T0 ∪ {enca(〈na, a〉, pub(i))} 
 enca(〈x, a〉, pub(b)) (1)

T2

def
= T1 ∪ {enca(〈x, nb〉, pub(a))} 
 enca(〈na, y〉, pub(a)) (2)

T3

def
= T2 ∪ {enca(y, pub(i))} 
 nb (3)

Checking properties like confidentiality is thus reduced to finding a solution to
set constraints. In our running example, a solution to the above set constraints
corresponds to an attack on the confidentiality of the nonce nb.

A way to solve set constraints is to transform them step by step into simpler
ones [22]. A variant of the transformation rules, proposed by Hubert Comon-
Lundh, are displayed in Figure 2. Using transformation rules, it can be shown
that solving set constraints is an NP-complete problem [24, 16]. It should be
noticed that solving set constraints corresponding to checking security for one
particular scenario. Once the number of sessions is fixed, there is finitely many
(polynomially guessable) number of scenarios. This yields NP-completeness of
secrecy for protocols for a bounded number of sessions.

2.3 Unbounded Number of Sessions

In the general case - when the number of sessions is not fixed - even a simple
property such as secrecy is undecidable [18]. A classical restriction is to consider
a bounded number of nonces, meaning that the same nonce may be reused in



R1 C ∧ T 
 u  C if T ∪ {x | (T ′

 x) ∈ C, T ′ ( T} ⊢ u

R2 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t, u), t ∈ st(T ),
t 6= u, t, u not variables

R3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t1, t2), t1, t2 ∈ st(T ),
t1 6= t2, t1, t2 not variables

R4 C ∧ T 
 u  ⊥ if V(T, u) = ∅ and T 6⊢ u

Rf C ∧ T 
 f(u, v)  C ∧ T 
 u ∧ T 
 v for f ∈ { 〈 〉, enc, enca, sign}

Fig. 2. Simplification Rules.

different sessions, while this does not hold in reality. Such an abstraction may
lead to false attack but allows to prove security properties [8, 9] for an unbounded
number of sessions. Checking properties like secrecy remains undecidable [18] but
it enables to represent protocol execution using Horn clauses.

Typically, we consider a predicate I that represents the intruder knowledge.
For example, the initial knowledge of the intruder for the Needham-Schroeder
protocol can be modeled by the set

CI0 = {I(a), I(b), I(i), I(pub(a)), I(pub(b)), I(pub(i)), I(priv(i))}.

Abstracting nonces by constants, an unbounded execution of the Needham-
Schroeder protocol can be represented by the following set CNS of clauses:

⇒ I(enca(〈na, a〉, pub(i)))

I(enca(〈x, a〉, pub(b))) ⇒ I(enca(〈x, nb〉, pub(a)))

I(enca(〈na, y〉, pub(a))) ⇒ I(enca(y, pub(i)))

For simplicity, we have only described the clauses corresponding to the case
where A starts sessions with a corrupted agent I and B is willing to answer to
A. To have a complete description of the protocol, one should also consider the
case where A is willing to talk to B, B is willing to talk to I and symmetrically,
all cases where A plays the role of B and B plays the role of A.

The ability of the intruder to analyze and forge new messages can be rep-
resented by the following set of clauses CI . It is the simple translation of the
deduction system of Figure 1.

I(x), I(y) ⇒ I(〈x, y〉) I(x), I(y) ⇒ I(sign(x, y))
I(x), I(y) ⇒ I(enc(x, y)) I(x), I(y) ⇒ I(enca(x, y))
I(〈x, y〉) ⇒ I(x) I(〈x, y〉) ⇒ I(y)

I(enc(x, y)), I(y) ⇒ I(x) I(enc(x, pub(y))), I(priv(y)) ⇒ I(x)
I(enc(x, priv(y))) ⇒ I(x)

Then security of a protocol is reduced to checking satisfiability of a set of
clauses. For example, the confidentiality of the nonce Nb can be expressed by
the satisfiability of the set of clauses CNS ∪ CI ∪ {¬I(nb)}.



This modeling of protocols is the approach used for by the ProVerif tool [8,
10], which has been successfully used for analyzing many security protocols (see
e.g. [1, 11]). Some decidable fragments of Horn clauses, well suited for protocols
have been proposed in [13, 25].

3 Computational Approach

The abstraction of messages by terms and the limited adversary raise some
questions regarding the security guarantees offered by such proofs, especially
from the perspective of the computational model.

3.1 Brief Presentation of Computational Models

In computational models, messages that are exchanged are bit-strings and de-
pend on a security parameter η which is used, for example to determine the
length of random nonces. In contrast to symbolic models, the attacker does not
perform predetermined actions for analyzing messages, but is modeled by any
probabilistic Turing machine running in polynomial-time w.r.t. the security pa-
rameter.

Security properties are also stated in a stronger way than in symbolic models.
For example, the confidentiality of a nonce does not only say that an attacker
should not be able to output the nonce but also require that the attacker should
not be able to get any partial information about the nonce. Formally, confiden-
tiality is expressed through a game. The game is parametrized by a bit b and
involves an adversary A. The input to the game is the security parameter η. It
starts by generating two random nonces n0 and n1. Then the adversary A starts
interacting with the protocol Π . It generates new sessions, sends messages and
receives messages to and from these sessions (as prescribed by the protocol). At
some point in the execution the adversary initiates a session and declares this
session under attack. Then, in this session, the confidential nonce is instantiated
with nb (i.e. one of the two nonces chosen in the beginning of the experiment,
the selection being made according to the bit b) and the adversary continues its
interaction with the protocol. In the end, the adversary is given n0 and n1 and
outputs a guess d. The nonce is computationally secret in Π if the probability
that d = b is the same than the probability that d 6= b up to some negligible
function1 in the security parameter.

Under the computational approach, the security of protocols is based on the
security of the underlying primitives, which in turn is proved assuming the hard-
ness of solving various computational tasks such as factoring or taking discrete
logarithms. The main tools used for proofs are reductions : to prove a protocol se-
cure one shows that a successful adversary against the protocol can be efficiently

1 A function f is said to be negligible if it grows slower than the inverse of any
polynomial, that is, for any polynomial P , there exists n0 such that for any n ≥ n0,
|f(n)| ≤ 1

P (n)
.



transformed into an adversary against some primitive used in its construction.
Here, quantification is universal over all possible probabilistic polynomial-time
(probabilistic polynomial time) adversaries and the execution model that is ana-
lyzed is specified down to the bit-string level. Two important implications stem
from these features: proofs in the computational model imply strong guaran-
tees (security holds in the presence of an arbitrary probabilistic polynomial-time
adversary). At the same time however, security reductions for even moderately-
sized protocols become extremely long, difficult, and tedious.

3.2 Bridging the Gap Between Symbolic and Computational

Models

Recently, a significant research effort aims at linking the two approaches via
computational soundness theorems for symbolic analysis [2, 6, 5, 4, 17]. Justifying
symbolic proofs with respect to standard computational models has significant
benefits: protocols can be analyzed and proved secure using the simpler, auto-
mated methods specific to the symbolic approach, yet the security guarantees
are with respect to the more comprehensive computational model.

For example, it has been shown in [15] that for protocols with asymmetric
encryption and signatures, any trace execution obtained by the interaction of a
concrete (computational) adversary is (with overwhelming probability) the im-
age of a symbolic execution trace obtained by executing a symbolic adversary. It
is also proved that symbolic secrecy implies the computational (indistinguisha-
bility based) secrecy. This statement holds under standard assumptions on the
security of the cryptographic primitives used in the concrete implementation,
namely provided that encryption is IND-CCA2 secure and that signature is ex-
istentially unforgeable. Intuitively, IND-CCA2 security is defined through a game
where the adversary should not be able to link cypher-texts to corresponding
plain-texts even if he is given access to encryption and decryption oracles. A sig-
nature is existentially unforgeable whenever an adversary cannot produce valid
signatures even being given access to a signature oracle.

One consequence of this result is that in the concrete model, the actions of
an adversary are limited to the actions of the symbolic adversary. This allows
to transfer trace-based security properties such as authentication and secrecy
properties from symbolic to computational models. In other words, as soon as a
protocol is proved secure for an authentication and secrecy property in symbolic
models (using e.g. an automatic tool) then it is deemed secure in the less abstract
computational model. This kind of results have then been extended e.g. to hash
functions (in the random oracle model) [14], non-malleable commitment [19] and
zero-knowledge proofs [7].

4 Conclusion

Symbolic approaches have proved their usefulness for analyzing security proto-
cols. Automatic tools have been often used for discovering previously unknown



flaws. Abstracting messages by terms seems to be a good level of abstraction
since it is possible to show that security proof in symbolic models actually im-
plies stronger guarantees in computational models under classical assumptions
under the implementation of the primitives.

There are still several open directions of research. Symbolic approaches cur-
rently allow to check classical security properties such as confidentiality and au-
thentication. For more recent protocols such as e-voting protocols and contract-
signing protocols, the properties that should be achieved are more involved and
cannot be encoded in existing tools. In addition, these recent protocols make use
of less classical primitives such as re-randomizable encryption scheme or blind
signatures. New decision techniques have to be developed for these particular
primitives and security properties.

Bridging the gap between symbolic and computation models is a promising
line a research since it enables to prove strong security guarantees, benefiting
from the simplicity of symbolic models. However, current results require strong
assumptions on the security of the cryptographic primitives (e.g. IND-CCA2 en-
cryption schemes). Weaker security assumptions like IND-CPA secure encryption
schemes may not suffice to ensure security of protocols [26]. Using weaker en-
cryption schemes may thus require to adapt both symbolic models and protocols
accordingly.
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