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Abstract. Two styles of definitions are usually considered to express that a secu-
rity protocol preserves the confidentiality of a datas. Reachability-based secrecy
means thats should never be disclosed while equivalence-based secrecy states
that two executions of a protocol with distinct instances fors should be indistin-
guishable to an attacker. Although the second formulation ensures a higher level
of security and is closer to cryptographic notions of secrecy, decidability results
and automatic tools have mainly focused on the first definition so far.
This paper initiates a systematic investigation of situations where syntactic se-
crecy entails strong secrecy. We show that in the passive case, reachability-based
secrecy actually implies equivalence-based secrecy for signatures, symmetric and
asymmetric encryption provided that the primitives are probabilistic. For active
adversaries in the case of symmetric encryption, we provide sufficient (and rather
tight) conditions on the protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure communica-
tions. Since they are widely distributed in critical systems, their security is primor-
dial. In particular, verification using formal methods attracted a lot of attention during
this last decade. A first difficulty is to formally express the security properties that are
expected. Even a basic property such as confidentiality admits two different accept-
able definitions namely reachability-based (syntactic) secrecy and equivalence-based
(strong) secrecy. Syntactic secrecy is quite appealing: it says that the secret is never ac-
cessible to the adversary. For example, consider the following protocol where the agent
A simply sends a secrets to an agentB, encrypted withB’s public key.

A→ B : {s}pub(B)

An intruder cannot deduces, thuss is syntactically secret. Although this notion of
secrecy may be sufficient in many scenarios, in others, stronger security requirements
are desirable. For instance consider a setting wheres is a vote andB behaves differently
depending on its value. If the actions ofB are observable,s remains syntactically secret
but an attacker can learn the values of the vote by watchingB’s actions. The design
of equivalence-based secrecy is targeted at such scenarios and intuitively says that an
adversary cannot observe the difference when the value of the secret changes. This
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definition is essential to express properties like confidentiality of a vote, of a password,
or the anonymity of participants to a protocol.

Although the second formulation ensures a higher level of security and is closer
to cryptographic notions of secrecy, so far decidability results and automatic tools have
mainly focused on the first definition. The syntactic secrecy preservation problem is un-
decidable in general [13], it is co-NP-complete for a bounded number of sessions [17],
and several decidable classes have been identified in the case of an unbounded number
of sessions [13, 10, 7, 16]. These results often come with automated tools, we mention
for example ProVerif [5], CAPSL [12], and Avispa [4]. To the best of our knowledge,
the only tool capable of verifying strong secrecy is the resolution-based algorithm of
ProVerif [6] and only one decidability result is available: Hüttel [14] proves decidabil-
ity for a fragment of the spi-calculus without recursion for framed bisimilarity, a related
equivalence relation introduced by Abadi and Gordon [2]. Also in [8], Borgström et al
propose an incomplete decision procedure based on a symbolic bisimulation.

In light of the above discussion, it may seem that the two notions of secrecy are
separated by a sizable gap from both a conceptual point of view and a practical point of
view. These two notions have counterparts in the cryptographic setting (where messages
are bitstrings and the adversary is any polynomial probabilistic Turing machine). Intu-
itively, the syntactic secrecy notion can be translated into a similar reachability-based
secrecy notion and the equivalence-based notion is close to indistinguishability. A quite
surprising result [11] states that cryptographic syntactic secrecy actually implies indis-
tinguishability in the cryptographic setting. This result relies in particular on the fact
that the encryption schemes are probabilistic thus two encryptions of the same plaintext
lead to different ciphertexts.

Motivated by the result of [11] and the large number of available systems for syntac-
tic secrecy verification, we initiate in this paper a systematic investigation of situations
where syntactic secrecy entails strong secrecy. Surprisingly, this happens in many inter-
esting cases.

We offer results in both passive and active cases in the setting of theapplied pi
calculus[1]. We first treat in Section 2 the case of passive adversaries. We prove that
syntactic secrecy is equivalent to strong secrecy. This holds for signatures, symmetric
and asymmetric encryption. It can be easily seen that the two notions of secrecy are
not equivalent in the case of deterministic encryption. Indeed, the secrets cannot be
deduced from the encrypted message{s}pub(B) but if the encryption is deterministic,
an intruder may try different values fors and check whether the ciphertext he obtained
usingB’s public key is equal to the one he receives. Thus for our result to hold, we
require that encryption is probabilistic. This is not a restriction since this isde facto
the standard in almost all cryptographic applications. Next, we consider the more chal-
lenging case of active adversaries. We give sufficient conditions on the protocols for
syntactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that the
conditional tests are not performed directly on the secret since we have seen above
that such tests provide information on the value of this secret. We again exhibit several
counter-examples to motivate the introduction of our conditions. An important aspect
of our result is that we do not make any assumption on the number of sessions: we put
no restriction on the use of replication.
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The interest of our contribution is twofold. First, conceptually, it helps to under-
stand when the two definitions of secrecy are actually equivalent. Second, we can trans-
fer many existing results (and the armada of automatic tools) developed for syntactic
secrecy. For instance, since the syntactic secrecy problem is decidable for tagged proto-
cols for an unbounded number of sessions [16], by translating the tagging assumption to
the applied-pi calculus, we can derive a first decidability result for strong secrecy for an
unbounded number of sessions. Other decidable fragments might be derived from [13]
for bounded messages (and nonces) and [3] for a bounded number of sessions.

2 Passive case

Cryptographic primitives are represented by functional symbols. More specifically, we
consider the signatureΣ = {enc, dec, enca, deca, pub, priv, 〈〉, π1, π2, sign, check,
retrieve}. T (Σ,X ,N ), or simplyT , denotes the set of terms built overΣ extended by
a set of constants, the infinite set ofnamesN and the infinite set of variablesX . A term
is closedor ground if it does not contain any variable. The set of names occurring in a
termT is denoted byfn(T ), the set of variables is denoted byV(T ). Thepositionsin a
termT are defined recursively as usual (i.e. as sequences of positive integers),ε being
the empty sequence. Denote byN∗

+ the set of sequences of positive integers.Pos(T )
denotes the set of positions ofT andPosv(T ) the set of positions of variables inT .
We denote byT |p the subterm ofT at positionp and byU [V ]p the term obtained by
replacing inU the subterm at positionp by V . We may simply say that a termV is in a
termU if V is a subterm ofU . We denote by≤st (resp.<st) the subterm (resp. strict)
order.hU denotes the function symbol, name or variable at positionε in the termU .

We equip the signature with an equational theoryE:π1(〈z1, z2〉) = z1 deca(enca(z1, pub(z2), z3), priv(z2)) = z1
π2(〈z1, z2〉) = z2 check(z1, sign(z1, priv(z2)), pub(z2)) = ok
dec(enc(z1, z2, z3), z2) = z1 retrieve(sign(z1, z2)) = z1

The function symbolsπ1, π2, dec, deca, check andretrieve are calleddestructors. Let
RE be the corresponding rewrite system (obtained by orienting the equations from left
to right).RE is convergent. The normal form of a termT w.r.t.RE is denoted byT↓.
Notice thatE is also stable by substitution of names. As usual, we writeU → V if there
existsθ, a positionp in U andL→ R ∈ RE such thatU |p = Lθ andV = U [Rθ]p.

The symbol〈 , 〉 represents the pairing function andπ1 andπ2 are the associated
projection functions. The termenc(M,K,R) represents the messageM encrypted with
the keyK. The third argumentR reflects that the encryption is probabilistic: two en-
cryptions of the same messages under the same keys are different. The symboldec
stands for decryption. The symbolsenca anddeca are very similar but in an asymmet-
ric setting, wherepub(a) andpriv(a) represent respectively the public and private keys
of an agenta. The termsign(M,K) represents the signature of messageM with keyK.
check enables to verify the signature andretrieve enables to retrieve the signed message
from the signature.1

1 Signature schemes may disclose partial information on the signed message. To enforce the
intruder capabilities, we assume that messages can always be retrieved out of the signature.
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After the execution of a protocol, an attacker knows the messages sent on the net-
work and also in which order they were sent. Such message sequences are organized
as framesϕ = νñ.σ, whereσ = {M1/y1 , . . . ,

Ml/yl
} is a ground acyclic substitution

andñ is a finite set of names. We denote bydom(ϕ) = dom(σ) = {y1, . . . , yl}. The
variablesyi enable us to refer to each message. The names inñ are said to berestricted
in ϕ. Intuitively, these names area priori unknown to the intruder. The names outside
ñ are said to befree in ϕ. A termM is saidpublic w.r.t. a frameνñ.σ (or w.r.t. a set of
names̃n) if fn(M) ∩ ñ = ∅. The set of restricted names̃n might be omitted when it is
clear from the context. We usually writeνn1, . . . , nk instead ofν{n1, . . . , nk}.

2.1 Deducibility

Given a frameϕ that represents the history of messages sent during the execution of a
protocol, we define thedeductionrelation, denoted byϕ `M . Deducible messages are
messages that can be obtained fromϕ by applying functional symbols and the equa-
tional theoryE.

νñ.σ ` xσ x ∈ dom(σ)
νñ.σ ` m m ∈ N\ñ

νñ.σ ` T1 · · · νñ.σ ` Tl

νñ.σ ` f(T1, . . . , Tl)
νñ.σ ` T T =E T ′

νñ.σ ` T ′

Example 1.k and〈k, k′〉 are deducible from the frameνk, k′, r.{enc(k,k′,r)/x,
k′/y}.

A message is usually said secret if it is not deducible. By opposition to our next
notion of secrecy, we say that a termM is syntactically secretin ϕ if ϕ 6`M .

2.2 Static equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Example 2.The set of deducible messages is the same for the framesϕ1 = νk,n1,n2,r1.
{enc(n1,k,r1)/x,

〈n1,n2〉/y,
k/z} andϕ2 = νk,n1,n2,r1.{enc(n2,k,r2)/x,

〈n1,n2〉/y,
k/z}, while

an attacker is able to detect that the first message corresponds to distinct nonces. In par-
ticular, the attacker is able to distinguish the two “worlds” represented byϕ1 andϕ2.

We say that a frameϕ = νñ.σ passes the test(U, V ) whereU, V are two terms,
denoted by(U = V )ϕ, if there exists a renaming of the restricted names inϕ such
that (fn(U) ∪ fn(V )) ∩ ñ = ∅ andUσ =E V σ. Two framesϕ = νñ.σ andϕ′ =
νm̃.σ′ are statically equivalent, written ϕ ≈ ϕ′, if they pass the same tests, that is
dom(ϕ) = dom(ϕ′) and for all termsU, V such that(V(U) ∪ V(V )) ⊆ dom(ϕ) and
(fn(U) ∪ fn(V )) ∩ (ñ ∪ m̃) = ∅, we have(U = V )ϕ iff (U = V )ϕ′.

Example 3.The framesϕ1 andϕ2 defined in Example 2 are not statically equivalent
since(dec(x, z) = π1(y))ϕ1 but (dec(x, z) 6= π1(y))ϕ2.
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Let s be a free name of a frameϕ = νñ.σ. We say thats is strongly secretin ϕ
if for every closed public termsM,M ′ w.r.t. ϕ, we haveϕ(M/s) ≈ ϕ(M ′

/s) that is,
the intruder cannot distinguish the frames obtained by instantiating the secrets by two
terms of its choice. For simplicity we may omits and writeϕ(M) instead ofϕ(M/s).

Of course an intended syntactical secret names must be restricted, but when talking
about instances ofs we must consider it (at least) a free name (if not a variable). Hence
we compare syntactic secrecy and strong secrecy regarding the same frame modulo the
restriction on the secrets. We use the notationνs.ϕ for ν(ñ∪{s}).σ, whereϕ = νñ.σ.
Thuss is syntactically secret ifνs.ϕ 0 s.

2.3 Syntactic secrecy implies strong secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some exam-
ples of frames that preserves syntactic secrecy but not strong secrecy. They all rely on
different properties.

Probabilistic encryption. The frameψ1 = νk, r.{enc(s,k,r)/x,
enc(n,k,r)/y} does not

preserve the strong secrecy ofs. Indeed,ψ1(n) 6≈ ψ1(n′) since(x = y)ψ1(n) but
(x 6= y)ψ1(n′). This would not happen if each encryption used a distinct randomness,
that is, if the encryption was probabilistic.

Key position.The frameψ2 = νn.{enc(〈n,n′〉,s,r)/x} does not preserve the strong se-
crecy of s. Indeed, ψ2(k) 6≈ ψ2(k′) since (π2(dec(x, k)) = n′)ψ2(k) but
(π2(dec(x, k)) 6= n′)ψ2(k′). If s occurs in key position in some ciphertext, the in-
truder may try to decrypt the ciphertext sinces is replaced by public terms and check
for some redundancy. It may occur that the encrypted message does not contain any
verifiable part. In that case, the frame may preserve strong secrecy. It is for example the
case for the frameνn.{enc(n,s,r)/x}. Such cases are however quite rare in practice.

No destructors.The frameψ3 = {π1(s)/x} does not preserve the strong secrecy of
s simply because(x = k) is true forψ3(〈k, k′〉) while not forψ3(k).

Retrieve rule. The retrieve(sign(z1, z2)) = z1 may seem arbitrary since not all
signature schemes enable to get the signed message out of a signature. It is actually
crucial for our result. For example, the frameψ4 = {sign(s,priv(a))/x,

pub(a)/y} does not
preserve the strong secrecy ofs because(check(n, x, y) = ok) is true forψ4(n) but not
for ψ4(n′).

In these four cases, the frames preserve the syntactic secrecy ofs, that isνs.ψi 6` s,
for 1 ≤ i ≤ 4. This leads us to the following definition.

Definition 1. A frameϕ = νñ.σ is well-formedw.r.t. some names if

1. Encryption is probabilistic, i.e. for any subtermenc(M,K,R) of ϕ, for any term
T ∈ ϕ and positionp such thatT |p = R we havep = q.3 for someq andT |q =
enc(M,K,R). In addition, ifs occurs inM at a positionp′ such that no encryption
appears along the path from the root top′ thenR must be restricted, that isR ∈ ñ.
The same conditions hold for asymmetric encryption. and

2. s is not part of a key, i.e. for allenc(M,K,R), enca(M ′,K ′, R′), sign(U, V ),
pub(W ), priv(W ′) subterms ofϕ, s /∈ fn(K,K ′, V,W,W ′, R,R′).

3. ϕ does not contain destructor symbols.
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Condition 1 requires that each innermost encryption aboves contains a restricted ran-
domness. This is not a restriction sinces is meant to be a secret value and such encryp-
tions have to be produced by honest agents and thus contain a restricted randomness.

For well-formed frames, syntactic secrecy is actually equivalent to strong secrecy.

Theorem 1. Letϕ be a well-formed frame w.r.t.s, wheres is a free name inϕ.

νs.ϕ 0 s if and only if ϕ(M/s) ≈ ϕ(M ′
/s)

for all M,M ′ closed public terms w.r.t.ϕ.

Proof. We present the skeleton of the proof; all details can be found in a technical
report [18]. Letϕ = νñ.σ be a well-formed frame w.r.t.s. If νs.ϕ ` s, this trivially
implies thats is not strongly secret. Indeed, there exists a public termT w.r.t. ϕ such
thatTσ =E s (this can be easily shown by induction on the deduction system). Let
n1, n2 be fresh names such thatn1, n2 /∈ ñ andn1, n2 /∈ fn(ϕ). SinceTσ(n1/s) =E n1

the framesϕ(n1/s) andϕ(n2/s) are distinguishable with the test(T = n1).
We assume now thatνs.ϕ 0 s. We first show that any syntactic equality satisfied

by the frameϕ(M/s) is already satisfied byϕ.

Lemma 1. Letϕ = νñ.σ be a well-formed frame w.r.t. a free names, U, V terms such
that V(U),V(V ) ⊆ dom(ϕ) andM a closed term,U , V andM public w.r.t. ñ. If
νs.ϕ 0 s thenUσ(M/s) = V σ(M/s) impliesUσ = V σ. LetT be a subterm of a term
in σ that does not contains. If νs.ϕ 0 s thenT = V σ(M/s) impliesT = V σ.

The key lemma is that any reduction that applies to a deducible termU wheres is
replaced by someM , directly applies toU .

Lemma 2. Letϕ = νñ.σ be a well-formed frame w.r.t. a free names such thatνs.ϕ 0
s. LetU be a term withV(U) ⊆ dom(ϕ) andM be a closed term in normal form,
U andM public w.r.t.ñ. If Uσ(M/s) → V , for some termV , then there exists a well-
formed frameϕ′ = νñ.σ′ w.r.t. s

– extendingϕ, that isxσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms:νs.ϕ `W iff νs.ϕ′ `W ,
– and such thatV = V ′σ′(M/s) andUσ → V ′σ′ for someV ′ public w.r.t.ñ.

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two public
closed termsM,M ′. We can assume w.l.o.g. thatM andM ′ are in normal form. Let
U 6= V be two public terms such thatV(U),V(V ) ⊆ dom(ϕ) andUσ(M/s) =E

V σ(M/s). Then there areU1, . . . , Uk andV1, . . . , Vl such thatUσ(M/s)→U1→ . . .→
Uk, V σ(M/s)→V1→ . . .→Vl, Uk = Uσ(M/s)↓, Vl = V σ(M/s)↓ andUk = Vl.

Applying repeatedly Lemma 2 we obtain that there exist public termsU ′
1, . . . , U

′
k

andV ′
1 , . . . , V

′
l and well-formed framesϕui = νñ.σui , for i ∈ {1, . . . , k} andϕvj =

νñ.σvj , for j ∈ {1, . . . , l} (as in the lemma) such thatUi = U ′
iσ

ui(M/s), U ′
iσ

ui →
U ′

i+1σ
ui+1 , Vj = V ′

j σ
vj (M/s) andV ′

j σ
vj → V ′

j+1σ
vj+1 .

We considerϕ′ = νñ.σ′ whereσ′ = σuk ∪σvl . Since only subterms ofϕ have been
added toϕ′, it is easy to verify thatϕ′ is still a well-formed frame and for every term
W , νs.ϕ `W iff νs.ϕ′ `W . In particularνs.ϕ′ 0 s.

By construction we have thatU ′
kσ

uk(M/s)=V ′
l σ

vl(M/s). Then, by Lemma 1, we
deduce thatU ′

kσ
uk = V ′

l σ
vl that isUσ =E V σ. By stability of substitution of names,

we haveUσ(M ′
/s) =E V σ(M ′

/s). We deduce thatϕ(M/s) ≈ ϕ(M ′
/s).
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3 Active case

To simplify the analysis of the active case, we restrict our attention to pairing and sym-
metric encryption: the alphabetΣ is now reduced toΣ = {enc, dec, 〈〉, π1, π2} andE
is limited to the first three equations.

3.1 Modeling protocols within the applied pi calculus

The applied pi calculus [1] is a process algebra well-suited for modeling cryptographic
protocols, generalizing the spi-calculus [2]. We briefly describe its syntax and seman-
tics. This part is mostly borrowed from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q := processes
0 null process νn.P name restriction
P | Q parallel composition u(z).P message input
!P replication u〈M〉.P message output
if M = N then P else Q conditional

wheren is a name,U ,V are terms, andu is a name or a variable. The null process0 does
nothing. Parallel composition executes the two processes concurrently. Replication!P
creates unboundedly new instances ofP . Name restrictionνn.P builds a new, private
namen, binds it inP and then executesP . The conditionalif M = N then P else Q
behaves likeP or Q depending on the result of the testM = N . If Q is the null
process then we use the notation[M = N ].P instead. Finally, the processu(z).P
inputs a message and executesP binding the variablez to the received message, while
the processu〈M〉.P outputs the messageM and then behaves likeP . We may omitP
if it is 0. In what follows, we restrict our attention to the case whereu is a name since
it is usually sufficient to model cryptographic protocols.

Extended processesare defined by the grammar:

A,B := extended processes
P plain process νn.A name restriction
A | B parallel composition νx.A variable restriction
{M/x} active substitution

Active substitutionsgeneralizelet , in the sense thatνx.({M/x}|P ) corresponds tolet x =
M in P , while unrestricted,{M/x} behaves like a permanent knowledge, permitting to
refer globally toM by means ofx. We identify variable substitutions{M1/x1 , . . . ,

Ml/xl
},

l ≥ 0 with extended processes{M1/x1}| . . . |{Ml/xl
}. In particular the empty substitu-

tion is identified with the null process.
We denote byfv(A), bv(A), fn(A), andbn(A) the sets of free and bound variables

and free and bound names ofA, respectively, defined inductively as usual for the pi
calculus’ constructs and usingfv({M/x}) = fv(M) ∪ {x} and fn({M/x}) = fn(M)
for active substitutions. An extended process isclosedif it has no free variables except
those in the domain of active substitutions.
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Extended processes built up from the null process (using the given constructions,
that is, parallel composition, restriction and active substitutions) are calledframes2.
To every extended processA we associate the frameϕ(A) obtained by replacing all
embedded plain processes with0.

An evaluation contextis an extended process with a hole not under a replication, a
conditional, an input or an output.

Structural equivalence(≡) is the smallest equivalence relation on extended pro-
cesses that is closed byα-conversion of names and variables, by application of evalu-
ation contexts and such that the standard structural rules for the null process, parallel
composition and restriction (such as associativity and commutativity of|, commutativ-
ity and binding-operator-like behavior ofν) together with the following ones hold.

νx.{M/x} ≡ 0 ALIAS
{M/x} |A ≡ {M/x} |A{M/x} SUBST

{M/x} ≡ {N/x} if M =E N REWRITE

If ñ represents the (possibly empty) set{n1, . . . , nk}, we abbreviate byνñ the se-
quenceνn1.νn2 . . . νnk. Every closed extended processA can be brought to the form
νñ.{M1/x1}| . . . |{Ml/xl

}|P by using structural equivalence, whereP is a plain closed
process,l ≥ 0 and{ñ} ⊆ ∪i fn(Mi). Hence the two definitions of frames are equiv-
alent up to structural equivalence on closed extended processes. To see this we apply
rule SUBST until all terms are ground (this is assured by the fact that the considered
extended processes are closed and the active substitutions are cycle-free). Also, another
consequence is that ifA ≡ B thenϕ(A) ≡ ϕ(B).

Two semantics can be considered for this calculus, defined by structural equivalence
and byinternal reductionandlabeled reduction, respectively. These semantics lead to
observational equivalence(which is standard and not recalled here) andlabeled bisimi-
larity relations. The two bisimilarity relations are equal [1]. We use here the latter since
it relies on static equivalence and it allows to take implicitly into account the adversary,
hence having the advantage of not using quantification over contexts.

Internal reductionis the largest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

c〈x〉.P | c(x).Q → P | Q COMM

if M = M then P else Q → P THEN

if M = N then P else Q → Q ELSE
for any ground termsM andN such thatM 6=E N

On the other hand,labeled reductionis defined by the rules of Figure 1.

Definition 2. Labeled bisimilarity(≈l) is the largest symmetric relationR on closed
extended processes such thatARB implies:

1. ϕ(A) ≈ ϕ(B);
2. ifA→ A′ thenB →∗ B′ andA′RB′, for someB′;

2 We see later in this section why we use the same name as for the notion defined in section 2.
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c(x).P
c(M)−−−→ P{M/x} IN c〈u〉.P c〈u〉−→ P OUT-ATOM

A
c〈u〉−−−→ A′

νu.A
νu.c〈u〉−−−−−→ A′

u 6= c OPEN-ATOM A
α−→ A′

νu.A
α−→ νu.A′

u does not
occur inα

SCOPE

A
α−→ A′

A|B α−→ A′|B
(*) PAR A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

STRUCT

wherec is a name andu is a metavariable that ranges over names and variables, and the condition
(*) of the rule PAR isbv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Fig. 1.Labeled reduction.

3. ifA
α→ A′ andfv(α) ⊆ dom(ϕ(A)) andbn(α)∩ fn(B) = ∅ thenB →∗ α→→∗ B′

andA′RB′, for someB′.

We denoteA⇒ B if A→ B orA
α→ B.

Definition 3. A frameϕ is valid w.r.t. a processP if there isA such thatP ⇒∗ A and
ϕ ≡ ϕ(A).

Definition 4. Let P be a closed plain process without variables as channels ands a
free name ofP , but not a channel name. We say thats is syntactically secretin P
if, for every valid frameϕ w.r.t. P , s is not deducible fromνs.ϕ. We say thats is
strongly secretif for any closed termsM,M ′ such thatbn(P )∩(fn(M)∪fn(M ′)) = ∅,
P (M/s) ≈l P (M ′

/s).

LetMo(P ) be the set ofoutputsof P , that is the set of termsm such thatc〈m〉 is
a message output construct for some channel namec in P , and letMt(P ) be the set
of operands of testsof P , where atest is a coupleM = N occurring in a conditional
and itsoperandsareM andN . LetM(P ) = Mo(P )∪Mt(P ) be the set ofmessages
of P . Examples are provided at the end of this section.

The following lemma intuitively states that any message contained in a valid frame
is an output instantiated by messages deduced from previous sent messages.

Lemma 3. LetP be a closed plain process, andA be a closed extended process such
thatP ⇒∗ A. There arel ≥ 0, an extended processB = νñ.σl|PB , wherePB is some
plain process, andθ a substitution public w.r.t.̃n such that:A ≡ B, {ñ} ⊆ bn(P ), for
every operand of a test or an outputT of PB there is a messageT0 in P (a operand of
a test or an output respectively), such thatT = T0θσl, and,σi = σi−1 ∪{Miθiσi−1/yi

},
for all 1 ≤ i ≤ l, whereMi is an output inP , θi is a substitution public w.r.t.̃n andσ0

is the empty substitution.

The proof is done by induction on the number of reductions inP ⇒∗ A. Intuitively,
B is obtained by applying theSUBSTrule (from left to right) as much as possible until
there are no variables left in the plain process. Note thatB is unique up to the structural
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rules different fromALIAS , SUBSTandREWRITE. We say thatϕ(B) is thestandard
framew.r.t.A.

As a running example we consider the Yahalom protocol:

A⇒ B : A,Na

B ⇒ S : B, {A,Na, Nb}Kbs

S ⇒ A : {B,Kab, Na, Nb}Kas
, {A,Kab}Kbs

A⇒ B : {A,Kab}Kbs

In this protocol, two participantsA andB wish to establish a shared keyKab. The
key is created by a trusted serverS which shares the secret keysKas andKbs with A
andB respectively. The protocol is modeled by the following process:

PY (kab)=νkas, kbs.(!PA)|(!PB)|(!νk.PS(k))|PS(kab) with

PA = νna.c〈a, na〉.c(za).[b = Ub].[na = Una ].c〈π2(za)〉
PB = c(zb).νnb, rb.c〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉.c(z′b).[a = π1(dec(z′b, kbs))]
PS(x) = c(zs).νrs, r′s.c〈enc(〈π1(zs), 〈x, Vn〉〉, kas, rs), enc(〈Va, x〉, kbs, r

′
s)〉

and Ub = π1(dec(π1(za), kas)) Una
= π1(π2(π2(dec(π1(za), kas))))

Va = π1(dec(π2(zs), kbs)) Vn = π2(dec(π2(zs), kbs)).

For this protocol the set of outputs and operands of tests are respectively:

Mo(PY ) = {〈a, na〉, za, π2(za), 〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉, z′b,
enc(〈π1(zs), 〈x, Vn〉〉, kas, rs), enc(〈Va, x〉, kbs, r

′
s)} and

Mt(PY ) = {b, Ub, na, Una
, a, π1(dec(z′b, kbs))}.

3.2 Our hypotheses

In what follows, we assumes to be the secret. As in the passive case, destructors above
the secret must be forbidden. We also restrict ourself to processes with ground terms
in key position. ConsiderP1 = νk, r, r′.(c〈enc(s, k, r)〉 | c(z).c〈enc(a, dec(z, k), r′)〉).
The names in P1 is syntactically secret but not strongly secret. Indeed,

P1 ≡ νk, r, r′.(νz.({enc(s,k,r)/z} | c〈z〉 | c(z).c〈enc(a, dec(z, k), r′)〉))
→ νk, r, r′.({enc(s,k,r)/z} | c〈enc(a, s, r′)〉) (COMM rule)

≡ νk, r, r′.(νz′.({enc(s,k,r)/z,
enc(a,s,r′)/z′} | c〈z′〉))

νz′.c〈z′〉−−−−−→ νk, r, r′.{enc(s,k,r)/z,
enc(a,s,r′)/z′}

def= P ′
1

andP ′
1 does not preserve the strong secrecy ofs (see the frameψ2 of Section 2.3).

Without loss of generality with respect to cryptographic protocols, we assume that
terms occurring in processes are in normal form and that no destructor appears above
constructors. Indeed, terms likeπ1(enc(m, k, r)) are usually not used to specify proto-
cols. We also assume that tests do not contain constructors. Indeed a test[〈M1,M2〉 =
N ] can be rewritten as[M1 = N1].[M2 = N2] if N = 〈N1, N2〉, and [M1 =
π1(N)].[M2 = π2(N)] if N does not contain constructors, and will never hold other-
wise. Similar rewriting applies for encryption, except for the test[enc(M1,M2,M3) =
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N ] if N does not contain constructors. It can be rewritten in[dec(N,M2) = M1] but
this is not equivalent. However since the randomness of encryption is not known to the
agent, explicit tests on the randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say that an
occurrenceqenc of an encryption in a termT is anagent encryptionsw.r.t. a set of names
ñ if t|qenc = enc(M,K,R) for someM,K,R andR ∈ ñ.

Definition 5. A processP is well-formedw.r.t. a names if it is closed and if:

1. any occurrence ofenc(M,K,R) in some termT ∈ M(P ) is an agent encryption
w.r.t.bn(P ), and for any termT ′ ∈M(P ) and positionp such thatT ′|p = T there
is a positionq such thatq.3 = p andT ′|q = enc(M,K,R);

2. for every termenc(M,K,R) or dec(M,K) occurring inP ,K is ground;
3. any operand of a testM ∈Mt is a name, a constant or has the formπ1(dec(. . .
πn(dec(πn+1(z),Kl)) . . . ,K1)), with l ≥ 0, where theπi are words on{π1, π2}
andz is a variable;

4. there are no destructors above constructors, nor aboves.

Conditional tests should not test ons. For example, consider the following process:

P3 = νk, r.(c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉)

wherea is a non restricted name.s in P3 is syntactically secret but not strongly secret.
Indeed,P3 → νk, r.({enc(s,k,r)/z} | [s = a].c〈ok〉). The processP3(a/s) reduces further
while P3(b/s) does not.

That is why we have to prevent hidden tests ons. Such tests may occur nested in
equality tests. For example, let

P4 = νk, r, r1, r2.(c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉
| c(z).[dec(dec(z, k), k′) = a].c〈ok〉)

→ P ′
4 = νk,r,r1,r2.({enc(s,k,r)/z}|c〈enc(enc(a, k′, r2), k, r1)〉|[dec(s, k′) = a].c〈ok〉)

ThenP4(enc(a,k′,r′)/s) is not equivalent toP4(n/s), since the processP ′
4(

enc(a,k′,r′)/s)
emits the messageok whileP ′

4(
n/s) does not. This relies on the fact that the decryption

dec(z, k) allows access tos in the test.
For the rest of the section we assume thatz0 is a new fixed variable.
To prevent hidden tests on the secret, we compute an over-approximation of the

ciphertexts that may contain the secret, by marking with a symbolx all positions under
which the secret may appear in clear.

We first introduce a functionfep that extracts the least encryption overs and “clean”
the pairing function aboves. Formally, we define the partial function

fep : T × N∗
+ ↪→ T × N∗

+

fep(U, p) = (V, q) whereV andq are defined as follows:q ≤ p is the position (if it
exists) of the lowest encryption on the pathp in U . If q does not exist or ifp is not
a maximal position inU , thenfep(U, p) =⊥. Otherwise,V is obtained fromU |q by
replacing all arguments of pairs that are not on the pathp with new variables. More
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precisely, letV ′ = U |q. The subtermV ′ must be of the formenc(M1,M2,M3) and
p = q.i.q′. ThenV is defined byV = enc(M ′

1,M
′
2,M

′
3) with M ′

j = Mj for j 6= i and
M ′

i = prune(Mi, q
′) whereprune is recursively defined by:prune(〈N1, N2〉, 1.r) =

〈prune(N1, r), xr〉, prune(〈N1, N2〉,2.r) = 〈xr, prune(N2, r)〉 andprune(N, ε) = N .
For example,fep(enc(enc(〈〈a, b〉, c〉, k2, r2), k1, r1), 1.1.2) = (enc(〈zε, c〉, k2, r2), 1).

The functionfe is the composition of the first projection withfep. With the function
fe, we can extract from the outputs of a protocolP the set of ciphertexts wheres
appears in clear below the encryption.

E0(P ) = {fe(M [x]p, p) |M ∈Mo(P ) ∧ M |p = s}.

For example,E0(PY ) = {enc(〈z1, 〈x, z1.2〉〉, kas, rs), enc(〈z1, x〉, kbs, r
′
s)}, wherePY

is the process corresponding to the Yahalom protocol defined in previous section.
Howevers may appear in other ciphertexts later on during the execution of the

protocol after decryptions and encryptions. Thus we also extract from outputs the de-
structor parts (which may open encryptions). Namely, we define the partial function

fdp : T × N∗
+ ↪→ T × N∗

+

fdp(U, p) = (V, q) whereV andq are defined as follows:q ≤ p is the occurrence of
the highest destructor abovep (if it exists). Letr ≤ p be the occurrence of the lowest
decryption abovep (if it exists). We haveU |r = dec(U1, U2). ThenU1 is replaced by
the variablez0 that isV = (U [dec(z0, U2)]r)|q. If q or r do not exist thenfdp(U, p) =⊥.

For example,fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1.1.1.1) = (π1(dec(z0, k1)), 1).
The functionfd is the composition of the first projection withfdp. By applying the

functionfd to messages of a well-formed processP we always obtain termsD of the
form D = D1(. . . Dn) whereDi = πi(dec(z0,Ki)) with 1 ≤ i ≤ n, Ki are ground
terms andπi is a (possibly empty) sequence of projectionsπj1(πj2(. . . (πjl

) . . . )).
With the functionfd, we can extract from the outputs of a protocolP the meaningful

destructor part:

Do(P ) = {fd(M,p) |M ∈Mo(P ) ∧ p ∈ Posv(M)}.

For example,Do(PY ) = {π2(dec(z0, kbs)), π1(dec(z0, kbs))}.
We are now ready to mark (withx) all the positions where the secret might be

transmitted (thus tested). We also define inductively the setsEi(P ) as follows. For each
elementE of Ei we can show that there is an unique term in normal form denoted byE
such thatV(E) = {z0} andE(E)↓=x. For example, letE1 =enc(〈z1, 〈x, z2〉〉, kas, rs),
thenE1 = π1(π2(dec(z0, kas))). We define

Ei(P ) = {U | ∃E ∈ Ei(P ), U ≤st E and∃q ∈ Pos(U), hU |q = dec},
Ei+1(P ) = {M ′[x]q | ∃M ∈Mo(P ), p ∈ Posv(M) s.t.fep(M,p) = (M ′, p′),

fdp(M ′, p′′) = (D, q), p = p′.p′′, andD1 ∈ E i(P )}.

For example,
E0(PY ) = {π1(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas),

π2(dec(z0, kbs)), dec(z0, kbs)}
E1(PY ) = {enc(〈z1, 〈z1.2, x〉〉, kas)}
E1(PY ) = {π2(π2(dec(z0, kas))), π2(dec(z0, kas)), dec(z0, kas)}
andEi(PY ) = ∅ for i ≥ 2.
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Note thatE(P ) = ∪i≥0Ei(P ) is finite up-to renaming of the variables since for
everyi ≥ 1, every termM ∈ Ei(P ), Pos(M) is included in the (finite) set of positions
occurring in terms ofM0.

We can now define an over-approximation of the set of tests that may be applied
over the secret.

Ms
t (P )={M ∈Mt(P ) | ∃p ∈ Posv(M) s.t. D = D1(. . . Dn) = fdp(M,p) 6=⊥,
and∃E ∈ E(P ),∃i s.t.Di = πi(dec(z0,K)), E = enc(U,K,R) andx ∈ Di(E)↓}

For example,Ms
t (PY ) = {π1(π2(π2(dec(π1(za), kas))))}.

Definition 6. We say that a well-formed processP w.r.t. s does not test overs if the
following conditions are satisfied:

1. for all E ∈ E(P ), for all D = D1(. . . Dn) ∈ Do(P ), if Di = πi(dec(z0),K) and
e = enc(U,K,R) andx ∈ Di(E)↓ theni = 1 andE 6<st D1,

2. ifM = N or N = M is a test ofP andM ∈Ms
t (P ) thenN is a restricted name.

Note thatE(P ) can be computed in polynomial time fromP and that whetherP does
not test overs is decidable. We show in the next section that the first condition is
sufficient to ensure that frames obtained fromP are well-formed. It ensures in particular
that there are no destructors right aboves. If someDi cancels some encryption in some
E andx∈Di(E)↓ then all its destructors should reduce in the normal form computation
(otherwise some destructors (namely projections fromDi) remain abovex). Also we
havei = 1 since otherwise aDi may have consumed the lowest encryption abovex,
thus the other decryption may block, and again there would be destructors left abovex.

The second condition requires that whenever a operand of a testM = N is po-
tentially dangerous (that isM or N ∈ Ms

t (P )) then the other operand should be a
restricted name.

3.3 Main result

We are now ready to prove that syntactic secrecy is actually equivalent to strong secrecy
for protocols that are well-formed and do not test over the secret.

Theorem 2. LetP be well-formed process w.r.t. a free names, which is not a channel
name, such thatP does not test overs. We haveνs.ϕ 0 s for any valid frameϕ w.r.t.
P if and only ifP (M/s) ≈l P (M ′

/s), for all ground termsM,M ′ public w.r.t.bn(P ).

Proof. Again, we only provide a sketch of the proof. Showing that strong secrecy im-
plies syntactic secrecy is simple so we concentrate here on the converse implication.
Let P be well-formed process w.r.t. a free names with no test overs and assume that
P is syntactically secret w.r.t.s.

LetM,M ′ be to public terms w.r.t.bn(P ). To prove thatP (M/s) andP (M ′
/s) are la-

beled bisimilar, we need to show that each move ofP (M/s) can be matched byP (M ′
/s)

such that the corresponding frames are bisimilar (and conversely). By hypothesis,P is
syntactically secret w.r.t.s thus for any valid frameϕ w.r.t. P , we haveνs.ϕ 0 s. In
order to apply our previous result in the passive setting (Theorem 1), we need to show
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that all the valid frames are well-formed. However, frames may now contain destructors
in particular if the adversary sends messages that contain destructors. Thus we first need
to extend our definition of well-formedness for frames.

Definition 7. We say that a frameϕ = νñ.σ is extended well-formedw.r.t. s if for
every occurrenceqs of s in T↓, whereT = xσ for somex ∈ dom(σ), there exists an
agent encryption w.r.t.̃n aboves. Letqenc < qs the occurrence of the lowest encryption.
It must verify thathT |q = 〈〉, for all positionsq with qenc < q < qs.

This definition ensures in particular that there is no destructor directly aboves.

Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Letϕ be an extended well-formed frame w.r.t.s, wheres is a free name
in ϕ. Thenνs.ϕ 0 s iff ϕ(M/s) ≈ ϕ(M ′

/s) for all M,M ′ closed public terms w.r.t.ϕ.

The first step of the proof of Theorem 2 is to show that any frame produced by the
protocol is an extended well-formed frame. We actually prove directly a stronger result,
crucial in the proof: the secrets always occurs under an honest encryption and this
subterm is an instance of a term inE(P ).

Lemma 4. Let P be a well-formed process with no test overs andϕ = νñ.σ be a
valid frame w.r.t.P such thatνs.ϕ 0 s. Consider the corresponding standard frame
νñ.σ = νñ.{Mi/yi

| 1 ≤ i ≤ l}. For everyi and every occurrenceqs of s in Mi↓, we
havefe(Mi↓, qs) = E[W/x] for someE ∈ E(P ) and some termW . In additionνñ.σi↓
is an extended well-formed frame w.r.t.s.

The lemma is proved by induction oni and relies deeply on the construction ofE(P ).
The second step of the proof consists in showing that any successful test in the

processP (M/s) is also successful inP and thus inP (M ′
/s).

Lemma 5. LetP be a well-formed process with no test overs,ϕ = νñ.σ a valid frame
for P such thatνs.ϕ 0 s andθ a public substitution. IfT1 = T2 is a test inP , then
T1θσ(M/s) =E T2θσ(M/s) impliesT1θσ =E T2θσ.

This lemma is proved by case analysis, depending on whetherT1, T2 ∈ Ms
t and

whethers occurs or not infn(T1θσ) andfn(T2θσ).
To prove thatP (M/s) and P (M ′

/s) are labeled bisimilar, we introduce the fol-
lowing relationR between extended processes defined as follows:ARB if there is
an extended processA0 and termsM,M ′ such thatP ⇒∗ A0, A = A0(M/s) and
B = A0(M ′

/s). Then we show thatR satisfies the three points of the definition of la-
beled bisimilarity using in particular Lemma 5. Hence we have alsoR ⊆ ≈l. Since we
have clearly thatP (M/s)RP (M ′

/s), it follows thatP (M/s) ≈l P (M ′
/s).

3.4 Examples

We have seen in Section 3.2 thatPY is a well-formed process w.r.t.kab and does not
test overkab. Applying Theorem 2, ifPY preserves the syntactic secrecy ofkab, we can
deduce that the Yahalom protocol preserves the strong secrecy ofkab that is

PY (M/kab
) ≈l PY (M ′

/kab
)
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for any public termsM,M ′ w.r.t.bn(PY ). We did not formally prove that the Yahalom
protocol preserves the syntactic secrecy ofkab but this was done with several tools in
slightly different settings (e.g.[9, 15]).

We have also verified that the Needham-Schroeder symmetric key protocol and the
Wide-Mouthed-Frog protocol are both well-formed process w.r.t.kab and do not test
overkab, wherekab is the exchanged key. Again, the syntactic secrecy ofkab has been
proved by several tools (e.g. [9]) in slightly different settings for both protocols. Using
Theorem 2, we can deduce that they both preserve the strong secrecy ofkab.
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