Relating two standard notions of secrecy

Véronique Cortier, Michaél Rusinowitch, and Eugen Zlinescd

Loria, UMR 7503 & INRIA Lorraine projet Cassis & CNRS, France

Abstract. Two styles of definitions are usually considered to express that a secu-
rity protocol preserves the confidentiality of a datd&Reachability-based secrecy
means that should never be disclosed while equivalence-based secrecy states
that two executions of a protocol with distinct instancessfehould be indistin-
guishable to an attacker. Although the second formulation ensures a higher level
of security and is closer to cryptographic notions of secrecy, decidability results
and automatic tools have mainly focused on the first definition so far.

This paper initiates a systematic investigation of situations where syntactic se-
crecy entails strong secrecy. We show that in the passive case, reachability-based
secrecy actually implies equivalence-based secrecy for signatures, symmetric and
asymmetric encryption provided that the primitives are probabilistic. For active
adversaries in the case of symmetric encryption, we provide sufficient (and rather
tight) conditions on the protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure communica-
tions. Since they are widely distributed in critical systems, their security is primor-
dial. In particular, verification using formal methods attracted a lot of attention during
this last decade. A first difficulty is to formally express the security properties that are
expected. Even a basic property such as confidentiality admits two different accept-
able definitions namely reachability-basexyrftactig secrecy and equivalence-based
(strong secrecy. Syntactic secrecy is quite appealing: it says that the secret is never ac-
cessible to the adversary. For example, consider the following protocol where the agent
A simply sends a secretto an agenf3, encrypted withB’s public key.

A — B {s}pun(B)

An intruder cannot deduce, thuss is syntactically secret. Although this notion of
secrecy may be sufficient in many scenarios, in others, stronger security requirements
are desirable. For instance consider a setting wheya vote and3 behaves differently
depending on its value. If the actionsBfare observables remains syntactically secret

but an attacker can learn the values of the vote by watchilsgactions. The design

of equivalence-based secrecy is targeted at such scenarios and intuitively says that an
adversary cannot observe the difference when the value of the secret changes. This

* This work has been partially supported by the ACI-SI Satin and the ACI Jeunes Chercheurs
JC9005.

definition is essential to express properties like confidentiality of a vote, of a password,
or the anonymity of participants to a protocol.

Although the second formulation ensures a higher level of security and is closer
to cryptographic notions of secrecy, so far decidability results and automatic tools have
mainly focused on the first definition. The syntactic secrecy preservation problem is un-
decidable in general [13], it is co-NP-complete for a bounded number of sessions [17],
and several decidable classes have been identified in the case of an unbounded number
of sessions [13, 10, 7, 16]. These results often come with automated tools, we mention
for example ProVerif [5], CAPSL [12], and Avispa [4]. To the best of our knowledge,
the only tool capable of verifying strong secrecy is the resolution-based algorithm of
ProVerif [6] and only one decidability result is availablefittel [14] proves decidabil-
ity for a fragment of the spi-calculus without recursion for framed bisimilarity, a related
equivalence relation introduced by Abadi and Gordon [2]. Also in [8], Boigstt al
propose an incomplete decision procedure based on a symbolic bisimulation.

In light of the above discussion, it may seem that the two notions of secrecy are
separated by a sizable gap from both a conceptual point of view and a practical point of
view. These two notions have counterparts in the cryptographic setting (where messages
are bitstrings and the adversary is any polynomial probabilistic Turing machine). Intu-
itively, the syntactic secrecy notion can be translated into a similar reachability-based
secrecy notion and the equivalence-based notion is close to indistinguishability. A quite
surprising result [11] states that cryptographic syntactic secrecy actually implies indis-
tinguishability in the cryptographic setting. This result relies in particular on the fact
that the encryption schemes are probabilistic thus two encryptions of the same plaintext
lead to different ciphertexts.

Motivated by the result of [11] and the large number of available systems for syntac-
tic secrecy verification, we initiate in this paper a systematic investigation of situations
where syntactic secrecy entails strong secrecy. Surprisingly, this happens in many inter-
esting cases.

We offer results in both passive and active cases in the setting cippled pi
calculus[1]. We first treat in Section 2 the case of passive adversaries. We prove that
syntactic secrecy is equivalent to strong secrecy. This holds for signatures, symmetric
and asymmetric encryption. It can be easily seen that the two notions of secrecy are
not equivalent in the case of deterministic encryption. Indeed, the secatinot be
deduced from the encrypted messdgé¢,.»(5) but if the encryption is deterministic,
an intruder may try different values ferand check whether the ciphertext he obtained
using B’s public key is equal to the one he receives. Thus for our result to hold, we
require that encryption is probabilistic. This is not a restriction since thieifacto
the standard in almost all cryptographic applications. Next, we consider the more chal-
lenging case of active adversaries. We give sufficient conditions on the protocols for
syntactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that the
conditional tests are not performed directly on the secret since we have seen above
that such tests provide information on the value of this secret. We again exhibit several
counter-examples to motivate the introduction of our conditions. An important aspect
of our result is that we do not make any assumption on the number of sessions: we put
no restriction on the use of replication.

The interest of our contribution is twofold. First, conceptually, it helps to under-
stand when the two definitions of secrecy are actually equivalent. Second, we can trans-
fer many existing results (and the armada of automatic tools) developed for syntactic
secrecy. For instance, since the syntactic secrecy problem is decidable for tagged proto-
cols for an unbounded number of sessions [16], by translating the tagging assumption to
the applied-pi calculus, we can derive a first decidability result for strong secrecy for an
unbounded number of sessions. Other decidable fragments might be derived from [13]
for bounded messages (and nonces) and [3] for a bounded number of sessions.

2 Passive case

Cryptographic primitives are represented by functional symbols. More specifically, we
consider the signatur® = {enc, dec, enca, deca, pub, priv, (), w1, 72, sign, check,
retrieve}. 7 (X, X,), or simply7, denotes the set of terms built ovBrextended by
a set of constants, the infinite setr@fmes\ and the infinite set of variable®. A term
is closedor groundif it does not contain any variable. The set of names occurring in a
termT is denoted byn(T), the set of variables is denoted byT"). Thepositionsin a
termT are defined recursively as usuaé(as sequences of positive integeksheing
the empty sequence. Denote Ky the set of sequences of positive integétss(7")
denotes the set of positions @fand Pos, (T) the set of positions of variables if.
We denote byl'|,, the subterm ofl" at positionp and byU[V], the term obtained by
replacing inU the subterm at positionby V. We may simply say that a teriis ina
termU if V is a subterm of/. We denote by<,; (resp<s:) the subterm (resp. strict)
order.hy denotes the function symbol, name or variable at postiorthe termU.

We equip the signature with an equational thebty

m1({z1,22)) = =1 deca(enca(z1, pub(z2), z3), priv(z2)) = 21
ma((21,22)) = 22 check(zy, sign(z1, priv(zz)), pub(z2)) = ok
dec(enc(z1, 22, 23), 22) = 21 retrieve(sign(z1, 22)) = 21

The function symbolsry, 75, dec, deca, check andretrieve are calleddestructors Let

R g be the corresponding rewrite system (obtained by orienting the equations from left
to right). R g is convergent. The normal form of a teffhw.r.t. R g is denoted byl’|.
Notice thatF is also stable by substitution of names. As usual, we Wiiter V if there
existsé, a positionp in U andL — R € Rg such thaU|, = L8 andV = U[R),.

The symbol(_, _) represents the pairing function ang andn, are the associated
projection functions. The teremc(M, K, R) represents the messaliencrypted with
the key K. The third argumenR reflects that the encryption is probabilistic: two en-
cryptions of the same messages under the same keys are different. The ggmbol
stands for decryption. The symbalsca anddeca are very similar but in an asymmet-
ric setting, whereub(a) andpriv(a) represent respectively the public and private keys
of an agent.. The ternsign(M, K) represents the signature of messagevith key K.
check enables to verify the signature aradrieve enables to retrieve the signed message
from the signaturé.

! Signature schemes may disclose partial information on the signed message. To enforce the
intruder capabilities, we assume that messages can always be retrieved out of the signature.

After the execution of a protocol, an attacker knows the messages sent on the net-
work and also in which order they were sent. Such message sequences are organized
asframesy = vi.o, whereo = {My, ... M/ 1%is a ground acyclic substitution
andn is a finite set of names. We denote &ym(p) = dom(o) = {y1,...,y;}. The
variablesy; enable us to refer to each message. The namesie said to beestricted
in . Intuitively, these names agepriori unknown to the intruder. The names outside
n are said to béreein . A term M is saidpublicw.r.t. a framevn.o (or w.r.t. a set of
namesn) if In(M) N7 = @. The set of restricted nam@smight be omitted when it is
clear from the context. We usually write:y, . . ., ny instead oiv{ny,...,n;}.

2.1 Deducibility

Given a framep that represents the history of messages sent during the execution of a
protocol, we define thdeductiorrelation, denoted by - M. Deducible messages are
messages that can be obtained frorby applying functional symbols and the equa-
tional theoryFE.

Vo g & € dom(@) vioFm MENR
vnobFT, -+ vnoFT vnotFT T=gT
vn.ob f(Ty,...,T;) vn.o =T’

Example 1.k and(k, ') are deducible from the framek, &/, r.{enc(k-K"r)y k) A

A message is usually said secret if it is not deducible. By opposition to our next
notion of secrecy, we say that a tefi is syntactically secrein ¢ if ¢ t# M.

2.2 Static equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Example 2.The set of deducible messages is the same for the framesvk,n,ns,r.
{enc(nl,k,rl)/w’ {nl.,ng)/y7 k/z} and<p2 — l/k,nl,n2,rl'{enc(n2,k,r2)/w’ (nl,n2>/y’ k/z}, while

an attacker is able to detect that the first message corresponds to distinct nonces. In par-
ticular, the attacker is able to distinguish the two “worlds” representeg;nd .

We say that a frame = vn.c passes the testU, V') whereU, V are two terms,
denoted by(U = V)¢, if there exists a renaming of the restricted names isuch
that (n(U) Um(V))Nn =) andUoc =g Vo. Two framesy = vn.oc andy’ =
vm.o' are statically equivalentwritten ¢ ~ ¢/, if they pass the same tests, that is
dom(p) = dom(y’) and for all termdJ, V' such thatV(U) U V(V)) C dom(yp) and
(@) um(V))Nn(rmum) =0, we have(U = V)giff (U =V)y'.

Example 3.The framesp; andy, defined in Example 2 are not statically equivalent
since(dec(z, z) = m1(y))p1 but(dec(z, 2) # 71 (y))p2.

Let s be a free name of a frame = vn.o. We say that is strongly secrein ¢
if for every closed public termd/, M’ w.rt. p, we havep(M/,) ~ (M/,) that is,
the intruder cannot distinguish the frames obtained by instantiating the sdnyeato
terms of its choice. For simplicity we may onsitand writep (M) instead ofp ().

Of course an intended syntactical secret nammust be restricted, but when talking
about instances af we must consider it (at least) a free name (if not a variable). Hence
we compare syntactic secrecy and strong secrecy regarding the same frame modulo the
restriction on the secret We use the notations.¢ for v(nU{s}).o, wherep = vin.o.

Thuss is syntactically secret ifs.p ¥ s.

2.3 Syntactic secrecy implies strong secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some exam-
ples of frames that preserves syntactic secrecy but not strong secrecy. They all rely on
different properties.

Probabilistic encryption. The framey; = vk, r.{enc(s:kr) enc(nkry 1 does not
preserve the strong secrecy efIndeed,;(n) % 1(n') since(z = y)y1(n) but
(x # y)v1(n'). This would not happen if each encryption used a distinct randomness,
that is, if the encryption was probabilistic.

Key position. The frameyy, = vn.{en((":n")..) 1 does not preserve the strong se-
crecy of s. Indeed, y5(k) % (k') since (ma(dec(z,k)) = n')o(k) but
(mo(dec(z, k)) # n')o(K'). If s occurs in key position in some ciphertext, the in-
truder may try to decrypt the ciphertext sineés replaced by public terms and check
for some redundancy. It may occur that the encrypted message does not contain any
verifiable part. In that case, the frame may preserve strong secrecy. It is for example the
case for the framen.{="<("7) 1. Such cases are however quite rare in practice.

No destructors. The frameys = {™(5),} does not preserve the strong secrecy of
s simply becauséx = k) is true forys((k, k')) while not for«s (k).

Retrieve rule. The retrieve(sign(z1, 22)) = z; may seem arbitrary since not all
signature schemes enable to get the signed message out of a signature. It is actually
crucial for our result. For example, the franpg = {sien(s:priv(a))/ publay 1 does not
preserve the strong secrecysabecausécheck(n, =, y) = ok) is true fory,(n) but not
for ¢, (n').

In these four cases, the frames preserve the syntactic secredhaf isvs.y; t/ s,
for 1 <1 < 4. This leads us to the following definition.

Definition 1. A framey = vn.o is well-formedw.r.t. some name if

1. Encryption is probabilistic, i.e. for any subternc(M, K, R) of ¢, for any term
T € ¢ and positionp such thatT’|, = R we havep = ¢.3 for someg andT|, =
enc(M, K, R). In addition, ifs occurs inM at a positionp’ such that no encryption
appears along the path from the rootjibthen R must be restricted, that iR € 7.
The same conditions hold for asymmetric encryption. and

2. s is not part of a key, i.e. for alenc(M, K, R), enca(M’, K’', R"), sign(U, V),
pub(W), priv(W’) subterms of, s ¢ in(K, K’ V,W,W' R, R').

3. does not contain destructor symbols.

Condition 1 requires that each innermost encryption alkosentains a restricted ran-

domness. This is not a restriction sincés meant to be a secret value and such encryp-

tions have to be produced by honest agents and thus contain a restricted randomness.
For well-formed frames, syntactic secrecy is actually equivalent to strong secrecy.

Theorem 1. Lety be a well-formed frame w.r.&, wheres is a free name inp.
vs.p ¥ s ifandonly if p(M/) ~ o(M/,)
for all M, M’ closed public terms w.r.to.

Proof. We present the skeleton of the proof; all details can be found in a technical
report [18]. Lety = vn.o be a well-formed frame w.r.t. If vs.p F s, this trivially
implies thats is not strongly secret. Indeed, there exists a public t€rmr.t. ¢ such
thatTo =g s (this can be easily shown by induction on the deduction system). Let
n1,no be fresh names such that, no ¢ n andny, ne ¢ fn(y). SinceTo("Y/s) =g n1
the framesp("Y5) andp (") are distinguishable with the te&§f = n4).

We assume now thats.p ¥ s. We first show that any syntactic equality satisfied
by the framep(?/,) is already satisfied by.

Lemma 1. Lety = vn.o be a well-formed frame w.r.t. a free namgl/, V terms such
that V(U),V(V) C dom(yp) and M a closed term[J, V and M public w.rt.n. If
vs.p ¥ sthenUo (M) = Vo(M,) impliesUo = Vo. LetT be a subterm of a term
in o that does not contaia. If vs.p ¥ s thenT = Vo (M) impliesT = Vo.

The key lemma is that any reduction that applies to a deducible tewheres is
replaced by somé/, directly applies tdJ.

Lemma 2. Lety = vn.o be a well-formed frame w.r.t. a free namesuch thatvs.p ¥
s. LetU be a term withV(U) C dom(p) and M be a closed term in normal form,
U and M public w.rt.n. If Uo(*/,) — V, for some terni/, then there exists a well-
formed framey’ = vn.o’ w.rt. s

— extendingp, that iszo’ = xo for all z € dom(o),
— preserving deducible termss.o F W iff vs.p' - W,
— and such that’ = V¢’ (™) andUo — V'o’ for someV’ public w.r.t.7.

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two public
closed termsa\/, M’. We can assume w.l.0.g. th&f and M’ are in normal form. Let
U # V be two public terms such that(U),V(V) C dom(yp) andUa (M) =g
Vo(™,). Then there aréy, ..., U, andVy, ..., V; such that7o(M/) - U; — ... —
U VoM)= Vi—... =V, Uy = Uc(M), Vi = Vo(M,)| andUy, = V.

Applying repeatedly Lemma 2 we obtain that there exist public tdvifis. ., U;,
andVy,...,V/ and well-formed frameg": = vn.c%, fori € {1,...,k} andy? =
vn.ovi, for j € {1,...,1} (as in the lemma) such that, = U/o% (), Ulo® —
Ul 0+, Vy = V/ev (M) andV/o — VI o,

We considery’ = vn.o’ wheres’ = 0%+ Ug¥. Since only subterms @f have been
added tay’, it is easy to verify that’ is still a well-formed frame and for every term
W,vs.po - Wiff vs.¢' E W. In particularvs.¢’ ¥ s.

By construction we have thadf] o (M/)=V/o" (/). Then, by Lemma 1, we
deduce that/;c"* = V/o" thatisUc =g Vo. By stability of substitution of names,
we havello (M) =g Vo (M/,). We deduce thap(/) ~ ¢(M/,).

3 Active case

To simplify the analysis of the active case, we restrict our attention to pairing and sym-
metric encryption: the alphabét is now reduced t& = {enc, dec, (), 71,72} andE
is limited to the first three equations.

3.1 Modeling protocols within the applied pi calculus

The applied pi calculus [1] is a process algebra well-suited for modeling cryptographic
protocols, generalizing the spi-calculus [2]. We briefly describe its syntax and seman-
tics. This part is mostly borrowed from [1].

Processesalso called plain processes, are defined by the grammar:

P,Q := processes
0

null process vn.P name restriction
PlQ parallel composition u(z). P message input
P replication u(M).P message output

if M = N then P else Q conditional

wheren isanamel/, V are terms, and is a name or a variable. The null proc@stoes
nothing. Parallel composition executes the two processes concurrently. Repli¢ation
creates unboundedly new instances?ofName restrictiornvn. P builds a new, private
namen, binds it in P and then executeB. The conditionalf M = N then P else @
behaves likeP or Q depending on the result of the tedf = N. If Q is the null
process then we use the notatipf = N].P instead. Finally, the processz).P
inputs a message and execukebinding the variable to the received message, while
the proces& (M). P outputs the messagd and then behaves likB. We may omitP

if itis 0. In what follows, we restrict our attention to the case wherg a name since

it is usually sufficient to model cryptographic protocols.

Extended processese defined by the grammar:

A, B := extended processes
P plain process vn.A name restriction
A| B parallel composition vx.A variable restriction
{M/ .} active substitution

Active substitutiongeneralizéet, in the sense thatr.({*/,}| P) corresponds téet = =

M in P, while unrestricted{"/,} behaves like a permanent knowledge, permitting to
refer globally toM by means of:. We identify variable substitutiong’v, ..., v, },

I > 0 with extended processd$’/,. }|...|{*V,,}. In particular the empty substitu-
tion is identified with the null process.

We denote byv(A), bv(A), fn(A), andbn(A) the sets of free and bound variables
and free and bound names df respectively, defined inductively as usual for the pi
calculus’ constructs and usifg({*/,}) = fv(M) U {z} andfn({*/,}) = fa(M)
for active substitutions. An extended processl@sedif it has no free variables except
those in the domain of active substitutions.

Extended processes built up from the null process (using the given constructions,
that is, parallel composition, restriction and active substitutions) are chiletes.

To every extended procestwe associate the framg(A) obtained by replacing all
embedded plain processes with

An evaluation contexis an extended process with a hole not under a replication, a
conditional, an input or an output.

Structural equivalencé=) is the smallest equivalence relation on extended pro-
cesses that is closed layconversion of names and variables, by application of evalu-
ation contexts and such that the standard structural rules for the null process, parallel
composition and restriction (such as associativity and commutativityooimmutativ-
ity and binding-operator-like behavior oj together with the following ones hold.

ve{M, =0 ALIAS
(Mo} A= {"a} T A{Y o} SUBST
My={Y.} fM=gN REWRITE

If 7 represents the (possibly empty) $et, . .., nx}, we abbreviate byn the se-

quencevn;.vns ... vn. Every closed extended procedscan be brought to the form

v MY, 3L {MY ., }| P by using structural equivalence, whefeis a plain closed
process] > 0 and{n} C U; fn(M;). Hence the two definitions of frames are equiv-
alent up to structural equivalence on closed extended processes. To see this we apply
rule SUBST until all terms are ground (this is assured by the fact that the considered
extended processes are closed and the active substitutions are cycle-free). Also, another
consequence is thatif = B thenp(A) = p(B).

Two semantics can be considered for this calculus, defined by structural equivalence
and byinternal reductionandlabeled reductionrespectively. These semantics lead to
observational equivalend&vhich is standard and not recalled here) &ixkled bisimi-
larity relations. The two bisimilarity relations are equal [1]. We use here the latter since
it relies on static equivalence and it allows to take implicitly into account the adversary,
hence having the advantage of not using quantification over contexts.

Internal reductionis the largest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

¢(z).Plc(x).Q — P|Q COMM
if M = M then P else) — P THEN
if M = N then P else Q — Q ELSE

for any ground termd/ and N such thatM #g N
On the other handabeled reductions defined by the rules of Figure 1.

Definition 2. Labeled bisimilarity(~;) is the largest symmetric relatioR on closed
extended processes such thER B implies:

1. ¢(A) = o(B);
2. ifA— A'"thenB —* B’ and A’ R B’, for someB’;

2 We see later in this section why we use the same name as for the notion defined in section 2.

c(z).P M peM N Z(u).P

{u)
—_

P OUT-ATOM

c(u) o
A=A 4. OPEN-ATOM __A-% A" udoesnot gcope

v A LS g oA - pu Al oceur ina

ol / — @ ’ Y
A=Ay PAR A=B BB B'=A grpycr
A|B — A'|B AL A

wherec is a name and is a metavariable that ranges over names and variables, and the condition
(*) of the rule PAR isbv(a) N fv(B) = bn(a) N fn(B) = 0.

Fig. 1. Labeled reduction.

3. ifA S A andfv(a) C dom(p(A)) andbn(a) Nfn(B) = () thenB —*%—* B’
and A’ R B’, for someB’.

We denoted = Bif A — BorA > B.

Definition 3. A framey is valid w.r.t. a process if there isA such thatP? =* A and
¢ = p(A).

Definition 4. Let P be a closed plain process without variables as channelssaad
free name ofP, but not a channel name. We say thats syntactically secrein P
if, for every valid framep w.r.t. P, s is not deducible fromvs.p. We say that is
strongly secreif for any closed termd/, M’ such thabn(P)N (fn(M)Un(M')) = 0,
P(M) = P(MYs).

Let M, (P) be the set obutputsof P, that is the set of terms: such that(m) is
a message output construct for some channel nameP, and letM,(P) be the set
of operands of testef P, where atestis a coupleM = N occurring in a conditional
and itsoperandsare M andN. Let M(P) = M,(P) UM, (P) be the set omessages
of P. Examples are provided at the end of this section.
The following lemma intuitively states that any message contained in a valid frame
is an output instantiated by messages deduced from previous sent messages.

Lemma 3. Let P be a closed plain process, antibe a closed extended process such
that P =* A. There ard > 0, an extended proced3 = vn.o;| Pg, wherePg is some
plain process, and a substitution public w.r.tz such that:A = B, {n} C bun(P), for
every operand of a test or an outplitof Pg there is a messadg, in P (a operand of

a test or an output respectively), such tiat Tyfo;, and,o; = o;_1 U {Mibioi-y, 1
forall 1 <i <, whereM; is an output inP, 6, is a substitution public w.r.tz and o

is the empty substitution.

The proof is done by induction on the number of reductionB ia-* A. Intuitively,
B is obtained by applying theuBSTrule (from left to right) as much as possible until
there are no variables left in the plain process. Note thistunique up to the structural

rules different fromALIAS, SUBSTandREWRITE We say thatp(B) is the standard
framew.r.t. A.
As a running example we consider the Yahalom protocol:

A= B: AN,

B=S5: B7{A7N(L7Nb}KbS

S=A: {B,Kau,Na, No } k.., {A, Kav } 3,
A= B: {AyKab}Khs

In this protocol, two participantd and B wish to establish a shared kéy,,;. The
key is created by a trusted servewhich shares the secret kel and K, with A
and B respectively. The protocol is modeled by the following process:

Py(kjub)zyk‘as,k‘bs.(!PA)|(!PB)|(!I/]€.P5(]€))|Ps(k‘ab) with
Pa =vng.c{a,ng).c(z4).[b = Upl.[ng = Uy,].¢(m2(24))
Pp = c(zp).vnp, mp.¢{b, enc((m1(zp), (m2(2p), b)) s kbs, 70))-c(2}).[a = m1(dec(z}, kps))]
Ps(x) = c(zs).vrs, ri.élenc({(m1(zs), (€, Vo)), kas, 7s), enc((Va,), kps, 75))

and U, = m(dec(m1(2a), kas)) Un, = m1(ma(m2(dec(m1(2a); Kas))))
Vo = mi(dec(ma(2s), kbs)) Vi = ma(dec(ma(zs), kbs))-

For this protocol the set of outputs and operands of tests are respectively:

MO(PY) = {(a,na>,za,7r2(za), <b7enc(<ﬂ-1(2b) < (b) >> kbsarb)) Zé?
enc((m1(zs), (x, Vo)), kas, 7s),enc((Vg, z), kps, %) } @and
M (Py) = {b,Uy,nq,U,,,a,m(dec(z, kps)) }

3.2 Our hypotheses

In what follows, we assumeto be the secret. As in the passive case, destructors above
the secret must be forbidden. We also restrict ourself to processes with ground terms
in key position. ConsideP, = vk, r,r’.(¢c(enc(s, k, 7)) | ¢(z).¢{(enc(a, dec(z, k), r’))).

The names in P; is syntactically secret but not strongly secret. Indeed,

Py = vk,rr (vz.({"ER)) | E(2) | e(2).¢lenc(a, dec(z, k), "))
— vk, ({"ERT) V Eenc(a, s, 1)) (COMM rule)

= vk,r, r/'(yzl.({enc(sﬂk,r)/z’enc(a,s,r’)/z/} | E(/>))

—Z’ I/k T, r. {e”C(S,k,T)/menc(a,s}r’)/z/} djf Pl

and P does not preserve the strong secrecy (dee the frame), of Section 2.3).

Without loss of generality with respect to cryptographic protocols, we assume that
terms occurring in processes are in normal form and that no destructor appears above
constructors. Indeed, terms like (enc(m, k, r)) are usually not used to specify proto-
cols. We also assume that tests do not contain constructors. Indeed(atgst/s) =
N] can be rewritten a§M; = Ni|.[My = No] if N = (Ny,No), and[M; =
m1(N)].[My = mo(NN)] if N does not contain constructors, and will never hold other-
wise. Similar rewriting applies for encryption, except for the fest(M;, Ma, Ms3) =

10

N]if N does not contain constructors. It can be rewrittefdie (N, My) = M;] but
this is not equivalent. However since the randomness of encryption is not known to the
agent, explicit tests on the randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say that an
occurrencee,. of an encryption in a terrii’ is anagent encryptionsg..r.t. a set of names
nif t|q.,. = enc(M, K, R) for somelM, K, R andR € 7.

Definition 5. A processP is well-formedw.r.t. a names if it is closed and if:

1. any occurrence adnc(M, K, R) in some terni’ € M(P) is an agent encryption
w.r.t. bn(P), and for any tern¥” € M(P) and positiorp such thatl’|, = T there
is a positiong such thatg.3 = p andT’|, = enc(M, K, R);

2. for every termenc(M, K, R) or dec(M, K') occurring in P, K is ground,;

3. any operand of a test/ € M, is a name, a constant or has the forrh(dec(. . .
7" (dec(n"*1(2), K))) ..., K1)), withl > 0, where ther? are words on{ry, 7}
andz is a variable;

4. there are no destructors above constructors, nor akove

Conditional tests should not test enFor example, consider the following process:
Py = vk, r.(¢{enc(s, k,7)) | e(2).[dec(z, k) = a].¢{ok))

whereq is a non restricted name.in P; is syntactically secret but not strongly secret.
Indeed,P3 — vk, r.({"F7)_} | [s = a].¢(ok)). The proces®s (%) reduces further
while P3(Y) does not.

That is why we have to prevent hidden testssorBuch tests may occur nested in
equality tests. For example, let

Py = vk,r,r,ro.(c{enc(s, k, 7)) | ¢(enc(enc(a, k', 12), k,71))
| e(2).[dec(dec(z, k), k') = a].¢{ok))
— P} = vk,rry,ro.({&<G#7) _Y|E(enc(enc(a, k', r2), k, 1)) |[dec(s, k') = a].E(ok))

Then P,(e"<(=+"7")) is not equivalent taP,("/,), since the process) (e"<(@:+" 7))
emits the messagsk while P;("/) does not. This relies on the fact that the decryption
dec(z, k) allows access te in the test.

For the rest of the section we assume that a new fixed variable.

To prevent hidden tests on the secret, we compute an over-approximation of the
ciphertexts that may contain the secret, by marking with a symbdlpositions under
which the secret may appear in clear.

We first introduce a functiofi.,, that extracts the least encryption ogeand “clean”
the pairing function above. Formally, we define the partial function

fep: T x NI — T x N7j

fep(U,p) = (V,q) whereV andq are defined as follows; < p is the position (if it
exists) of the lowest encryption on the pathin U. If ¢ does not exist or ip is not
a maximal position i/, then f.,,(U,p) =L. Otherwise,V is obtained fromU|, by
replacing all arguments of pairs that are not on the pattith new variables. More

11

precisely, letV’ = U|,. The subtern/’ must be of the fornenc(M;, M, Ms) and
p = q.i.¢". ThenV is defined byV" = enc(Mj, M3, M3) with M} = M for j # i and
M = prune(M;, ¢') whereprune is recursively defined byprune((N1, No),1.r) =
(prune(Ny,7), x,.), prune({Ny, No),2.r) = (x,, prune(Nz,r)) andprune(N,e) = N.
For examplef.,(enc(enc({{a,b), c), k2,72), k1,71),1.1.2) = (enc({z., ¢}, k2, 72),1).

The functionf. is the composition of the first projection wiff,,. With the function
fe» we can extract from the outputs of a protoddlthe set of ciphertexts where
appears in clear below the encryption.

Eo(P) = {fe(M[x]p,p) | M € Mo(P) N M|, = s}.

For example&y(Py) = {enc({z1, (x,21.2)), kas, 7s), enc((z1, %), kps, 7.) }, wherePy

is the process corresponding to the Yahalom protocol defined in previous section.
Howevers may appear in other ciphertexts later on during the execution of the

protocol after decryptions and encryptions. Thus we also extract from outputs the de-

structor parts (which may open encryptions). Namely, we define the partial function

Jap: T x N — T x N7

fap(U,p) = (V,q) whereV andgq are defined as follows} < p is the occurrence of
the highest destructor aboyd(if it exists). Letr < p be the occurrence of the lowest
decryption above (if it exists). We havd/|,, = dec(Uy, Uz). ThenU; is replaced by
the variable thatisV = (U[dec(zo, U2)];)|q. If g Orr do not exist therfq, (U, p) =L.

For example fg, (enc(my (dec(m2(y), k1)), k2,72),1.1.1.1) = (w1 (dec(zo, k1)), 1).

The functionfy is the composition of the first projection wify,. By applying the
function f; to messages of a well-formed procd3sve always obtain term® of the
form D = D;(...D,,) whereD; = 7'(dec(zo, K;)) with 1 < i < n, K; are ground
terms andr’ is a (possibly empty) sequence of projectians(wj, (. .. (7j,) ...)).

With the functionf;, we can extract from the outputs of a protoétathe meaningful
destructor part:

Do(P) = {fa(M,p) | M € My(P) A p € Pos,(M)}.

For exampleD,(Py) = {ma2(dec(zo, kbs)), 71 (dec(zg, kps)) }-

We are now ready to mark (witk) all the positions where the secret might be
transmitted (thus tested). We also define inductively the&éf2) as follows. For each
elementE of £ we can show that there is an unique term in normal form denoted by
suchthaV(E) = {zo} andE(FE)| =x. For example, leE; =enc((z1, (x, 22)), kas, 7's),
thenE; = 7 (m2(dec(zo, kas))). We define

Ei(P)={U|3E € &(P),U <4 E and3dq € Pos(U), hy, = dec},
Eip1(P) = {M'[x]q | IM € Mo(P),p € Pos, (M) s.t. fe, (M, p) = (M, p’),
fdP(M/ﬂpN) = (qu)>p = p/~p”a anle € gl(P)}
For example,
go(Py) = {7T1 (Wg(dEC(ZO, kas)))a 7T2(C|€C(Z0, kas)); deC(Zo, kas);
7T2(d€C(Z0, kbs)),dec(zo, kbs)}
&1(Py) = {enc({z1, (21.2, %)), kas) }
gl(Py) = {Wg(ﬂg(dGC(Zo, ka,s)))y 7T2(deC(Z0, ka,s)); deC(Zo, kas)}
and&;(Py) = (0 fori > 2.

12

Note that&(P) = U;>0&;(P) is finite up-to renaming of the variables since for
everyi > 1, every termM € &;(P), Pos(M) is included in the (finite) set of positions
occurring in terms of\,.

We can now define an over-approximation of the set of tests that may be applied
over the secret.

MG (P)={M € M(P) | 3p € Posy(M)s.t. D= Di(...Dy,) = fo,(M,p) #L,
and3FE € £(P),3i s.t. D; = w*(dec(z0, K)), E = enc(U, K, R) andx € D;(E)|}

For example M3 (Py) = {1 (m(ma(dec(m1(24), kas)))) }.

Definition 6. We say that a well-formed procegsw.r.t. s does not test oves if the
following conditions are satisfied:

1. forall E € £(P), forall D = Di(...Dy) € D,(P), if D; = n*(dec(z), K) and
e =enc(U, K, R) andx € D;(E)| theni =1andE £ D,
2. ifM =NorN = MisatestofP andM € M;(P)thenN is arestricted name.

Note that€(P) can be computed in polynomial time fromand that whetheP does
not test overs is decidable. We show in the next section that the first condition is
sufficient to ensure that frames obtained frBrare well-formed. It ensures in particular
that there are no destructors right abevéf someD; cancels some encryption in some
E andx € D;(E)| then all its destructors should reduce in the normal form computation
(otherwise some destructors (namely projections fildph remain abovex). Also we
havei = 1 since otherwise &, may have consumed the lowest encryption ahave
thus the other decryption may block, and again there would be destructors left:above
The second condition requires that whenever a operand of afest N is po-
tentially dangerous (that i8/ or N € M3 (P)) then the other operand should be a
restricted name.

3.3 Main result

We are now ready to prove that syntactic secrecy is actually equivalent to strong secrecy
for protocols that are well-formed and do not test over the secret.

Theorem 2. Let P be well-formed process w.r.t. a free namenvhich is not a channel
name, such thaP does not test oves. We haves.p ¥ s for any valid framep w.r.t.
Pifand only if (M) ~; P(M/,), for all ground terms\M, M’ public w.r.t.bn(P).

Proof. Again, we only provide a sketch of the proof. Showing that strong secrecy im-
plies syntactic secrecy is simple so we concentrate here on the converse implication.
Let P be well-formed process w.r.t. a free nagiith no test overs and assume that
P is syntactically secret w.r.k.

Let M, M’ be to public terms w.r.bn(P). To prove thaiP(*/,) andP(M},) are la-
beled bisimilar, we need to show that each mov&6¥/,) can be matched by (/)
such that the corresponding frames are bisimilar (and conversely). By hypotResis,
syntactically secret w.r.& thus for any valid frame> w.r.t. P, we havevs.¢ ¥ s. In
order to apply our previous result in the passive setting (Theorem 1), we need to show

13

that all the valid frames are well-formed. However, frames may now contain destructors
in particular if the adversary sends messages that contain destructors. Thus we first need
to extend our definition of well-formedness for frames.

Definition 7. We say that a frame = vn.o is extended well-formeav.r.t. s if for
every occurrences of s in T'|, whereT = zo for somez € dom(o), there exists an
agent encryption w.r.tz aboves. Letge,. < ¢s the occurrence of the lowest encryption.
It must verify thatv, = (), for all positionsg with genc < ¢ < ¢s.

This definition ensures in particular that there is no destructor directly above
Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Lety be an extended well-formed frame ws.twheres is a free name
in . Thenus.p ¥ s iff o(M/,) ~ (M /) for all M, M’ closed public terms w.r.to.

The first step of the proof of Theorem 2 is to show that any frame produced by the
protocol is an extended well-formed frame. We actually prove directly a stronger result,
crucial in the proof: the secret always occurs under an honest encryption and this
subterm is an instance of a term8P).

Lemma 4. Let P be a well-formed process with no test oweand ¢ = vn.c be a
valid frame w.r.t.P such thatvs.p ¥ s. Consider the corresponding standard frame
vn.o = vn.{M/,, | 1 <i<I}. For everyi and every occurrence of s in M;|, we
havef.(M;|,qs) = E["/,] for someE € £(P) and some terniV. In additionv.o;|

is an extended well-formed frame w.xt.

The lemma is proved by induction érand relies deeply on the construction&dfP).
The second step of the proof consists in showing that any successful test in the
processP (M,) is also successful if* and thus inP (7).

Lemma 5. Let P be a well-formed process with no test ogep = vn.o a valid frame
for P such thatvs.p ¥ s and @ a public substitution. Iff; = T5 is a test inP, then
T190'(M/S) =g TQQJ(]\/I/S) impIiesTlﬁa =g Tr0o.

This lemma is proved by case analysis, depending on whéthéf, € M$ and
whethers occurs or not irfn(7100) andfn(T>60).

To prove thatP(/,) and P(*/,) are labeled bisimilar, we introduce the fol-
lowing relationR between extended processes defined as folloWR: B if there is
an extended proces$, and terms)M, M’ such thatP =* A, A = Ay("/,) and
B = Ay(M7,). Then we show thaR satisfies the three points of the definition of la-
beled bisimilarity using in particular Lemma 5. Hence we have &0 =;. Since we
have clearly thaP (/) R P(M,), it follows that P(M/,) ~; P(M/,).

3.4 Examples

We have seen in Section 3.2 that is a well-formed process w.r.t,; and does not
test overk,;,. Applying Theorem 2, ifPy- preserves the syntactic secrecy.gf, we can
deduce that the Yahalom protocol preserves the strong secrégy thfat is

Py (My..) = Py (M/k.,)

14

for any public termd\Z, M’ w.r.t. bn(Py). We did not formally prove that the Yahalom
protocol preserves the syntactic secrecy:gf but this was done with several tools in
slightly different settings (e.g.[9, 15]).

We have also verified that the Needham-Schroeder symmetric key protocol and the
Wide-Mouthed-Frog protocol are both well-formed process wkg.and do not test
overk,;,, Wherek,, is the exchanged key. Again, the syntactic secredy,phas been
proved by several tools (e.g. [9]) in slightly different settings for both protocols. Using
Theorem 2, we can deduce that they both preserve the strong seckggy of

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communicati®8thin
Symp. on Principles of Programming Languages (POPL’papes 104—-115. ACM, 2001.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
4th Conf. on Computer and Communications Security (CCSfifjes 36—47. ACM, 1997.

3. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocol2tm

Conf. on Concurrency Theory (CONCUR'00dlume 1877 0. NCS pages 380-394, 2000.

. The AVISPA Project. http://www.avispa-project.org/.

. B. Blanchet. An efficient cryptographic protocol verifier based on prolog ruleSommputer

Security Foundations Workshop (CSFW’0dages 82—96. IEEE Comp. Soc. Press, 2001.

6. B. Blanchet. Automatic Proof of Strong Secrecy for Security ProtocolEHRE Symposium
on Security and Privacy (SP’04pages 86—100, 2004.

7. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces ter-
mination. InFoundations of Software Science and Computation Structures (FOSSaCS’'03)
volume 2620 oLNCS April 2003.

8. J. Borgstdm, S. Briais, and U. Nestmann. Symbolic bisimulations in the spi calculust.In
Conf. on Concurrency Theory (CONCUR'04plume 3170 oLNCS Springer, 2004.

9. L. Bozga, Y. Lakhnech, and M.&fin. HERMES: An automatic tool for verification of
secrecy in security protocols. I'bth Conference on Computer Aided Verification (CAV,03)
volume 2725 oLLNCS pages 219-222. Springer, 2003.

10. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order
logic and application to cryptographic protocols.Rewriting Techniques and Applications
(RTA'2003) LNCS 2706, pages 148-164. Springer-Verlag, 2003.

11. V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Security Proto-
cols. InEuropean Symposium on Programming (ESOP'®@8)Jume 3444 olLNCS pages
157-171. Springer, April 2005.

12. G. Denker, J. Millen, and H. Ruel3. The CAPSL Integrated Protocol Environment. Technical
Report SRI-CSL-2000-02, SRI International, Menlo Park, CA, 2000.

13. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. InWorkshop on Formal Methods and Security Protoch899.

14. H. Hittel. Deciding framed bisimilarity. INFINITY’02, August 2002.

15. L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom protocol.
Journal of Computer Securit®(3):197-216, 2001.

16. R. Ramanujam and S.P.Suresh. Tagging makes secrecy decidable for unbounded nonces as
well. In 23rd Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’03Ylumbai, 2003.

17. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions and
Composed Keys is NP-complet€heoretical Computer Scienc299:451-475, 2003.

18. Eugen Zalinescu, &onique Cortier, and Micliéh Rusinowitch. Relating two standard no-
tions of secrecy. Research Report 5908, INRIA, Avril 2006.

[S20FN

15

