
Registration with a Moving Zoom Lens Camerafor Augmented Reality AppliationsGilles Simon and Marie-Odile BergerLORIA- INRIA LorraineBP 10154602 Villers les Nany, Franeemail:fgsimon�loria.fr,berger�loria.frgAbstrat. We fous in this paper on the problem of adding omputer-generated objets in video sequenes that have been shot with a zoomlens amera. While numerous papers have been devoted to registrationwith �xed foal length, little attention has been brought to zoom lensameras. In this paper, we propose an eÆient two-stage algorithm forhandling zoom hanging whih are are likely to happen in a video se-quene. We �rst attempt to partition the video into amera motionsand zoom variations. Then, lassial registration methods are used onthe image frames labeled amera motion while keeping the internal pa-rameters onstant, whereas the zoom parameters are only updated forthe frames labeled zoom variations. Results are presented demonstratingregistration on various sequenes. Augmented video sequenes are alsoshown.1 IntrodutionAugmented Reality (AR) is a tehnique in whih the user's view is enhanedor augmented with additional information generated from a omputer model. Inontrast to virtual reality, where the user is immersed in a ompletely omputer-generated world, AR allows the user to interat with the real world in a naturalway. This explains why interest in AR has substantially inreased in the pastfew years and medial, manufaturing or urban planning appliations have beendeveloped [2, 5, 15, 18℄.In order to make AR systems e�etive, the omputer generated objets andthe real sene must be ombined seamlessly so that the virtual objets align wellwith the real ones. It is therefore essential to determine aurately the loationand the optial properties of the ameras. The registration task must be ahievedwith speial are beause the human visual system is very good at deteting evensmall mis-registrations.There has been muh researh in the �eld of vision-based registration foraugmented reality [1, 12, 14, 18℄. However these works assume that the internalparameters of the amera are known (foal length, aspet ratio, prinipal point)and they only address the problem of omputing the pose of the amera. This isa strong limitation of these methods beause zoom hanging is likely to happen



in a video sequene. A method is proposed in [11℄, whih an retrieve metrireonstrution from image sequenes obtained with unalibrated zooming am-eras. However, onsidering unknown prinipal point leads to unstable results ifthe projetive alibration is not aurate enough, the sequene not long enough,or the motion sequene ritial towards the set of onstraints. More stable resultsare obtained when the prinipal point is onsidered as �xed in the entre of theimage, but this assumption is inompatible with [19℄ and is not aurate enoughfor image omposition. Other attempts have been made to ope with varying in-ternal parameters for AR appliations [10℄. However this approah uses targetsarbitrarily positioned in the environment. It is therefore of limited use if outdoorsenes are onsidered.In this paper we extend our previous works on vision based registrationmethods [12, 13℄ to the ase of zoom-lens ameras. Zoom-lens amera alibrationis still found to be very diÆult for several reasons [16, 3℄: modeling a zoom-lens amera is diÆult due to optial and mehanial misalignments in the lenssystem of a amera. Moreover, zoom-lens variations an be onfused with ameramotions: for instane, it is diÆult to disriminate a translation along the optialaxis from a zoom.In this paper, we take advantage of our appliation �eld to redue the problemomplexity. Indeed, we assume that the viewpoint and the foal length do nothange at the same time. This assumption is ompatible with the tehniques usedby professional movie-makers. We develop in this paper an original statistialapproah: for eah frame of the sequene, we test the hypothesis of a zoom againstthe hypothesis of a amera motion. If the motion hypothesis is retained, we stillhave to ompute the amera pose with the old internal parameters. Otherwise,the internal parameters are omputed assuming that the amera pose does nothange. Camera parameters are supposed to be known in the �rst image of thesequene (they an be obtained easily from a set of at least 6 2D/3D pointorrespondenes pointed out by the user).This paper is organized as follows: �rst, we disuss in setion 2 the pinholeamera model and we show the diÆulties to reover both the amera poseand the internal parameters with varying foal lengths. Setion 3 then desribesour original method for zoom/motion partitioning of the sequene. Setion 4desribes how registration is performed from this segmentation. Examples whihdemonstrate the e�etiveness of our method are shown in setion 5.2 Registration diÆulties with a zoom-lens ameraIn this setion, we �rst desribe the pinhole model whih is widely used foramera modeling. Then we desribe our attempts to ompute both the zoomand the motion parameters in a single stage. This task is alled full alibrationin the following. We show that lassial registration methods fail to reoverboth the internal and the external parameters, even though some of the intrinsiparameters are �xed.



2.1 The pinhole amera modelLet (X;Y; Z) represent the oordinates of any visible pointM in a �xed referenesystem (world oordinate system) and let (X; Y; Z) represent the oordinatesof the same point in the amera entered oordinate system. The relationshipbetween the two oordinate systems is given by0�XYZ 1A = R0�XYZ 1A+ T = [R T ℄0BB�XYZ1 1CCAwhere [R; T ℄ is the 3D displaement (rotation and translation) from the worldoordinate system to the amera oordinate system.We assume that the amera performs a perfet perspetive transform withenter O at a distane f of the image plane. The projetion of M on the imageplane is (x = f XZ ; y = f YZ ). If 1=ku (resp 1=kv) is the size of the pixel alongthe x axes (resp. y axes), its pixel oordinates are:m = (kuf XZ + u0; kvf YZ + v0) (1)where u0; v0 are the oordinates of the prinipal point of the amera (i.e. theintersetion of the optial axis and the image plane).The oordinates of a 3D point M in a world oordinate system and its pixeloordinatesm = �uv � are therefore related by s24uv1 35 = 24kuf 0 u00 kvf v00 0 1 35| {z }A [R T ℄0BB�XYZ1 1CCAFull amera alibration amounts to ompute 10 parameters: 6 external pa-rameters (3 for the rotation and 3 for the translation) and 4 internal parameters(�u = kuf , �v = kvf , u0 and v0). Internal and external parameters are olle-tively referred to as amera parameters in the following.2.2 Diret full alibrationWhen the internal parameters are omputed o�-line, the registration proessamounts to ompute the displaement [R; T ℄ whih minimizes the re-projetionerror, that is the error between the projetion of known 3D features in the seneand their orresponding 2D features deteted in the image. For sake of larity,we only suppose that the 3D features are points but we an also onsider freeform urves [12℄. Moreover, we show in setion 4 that 2D/2D orrespondenesan be added to improve the viewpoint omputation.The amera pose is therefore the displaement [R; T ℄ whih minimizes thereprojetion error minR;T X dist(proj(Mi);mi)2



where minimization is performed only on the 6 external parameters (Euler anglesand translation).Theoretially, zoom-lens variations during shooting an be reovered in thesame way. We have therefore to ompute not only the amera viewpoint but alsothe internal amera parameters (foal length, pixel size, optial enter) whihminimize the reprojetion error.minR;T;�u;�v ;u0;v0X dist(proj(Mi);mi)2As mentioned by several authors [3℄, this approah is unable to reover boththe internal and external parameters. To overome this problem, some authorshave proposed to redue the number of unknowns by �xing some of the internalparameters to prede�ned values. As several experimental studies proved thatthe ratio �u�v remains almost onstant during zoom variations [4℄, the set of theinternal parameters to be estimated is then redued to �u; u0; v0. Unfortunatelythis approah fails to reover the right amera parameters. Consider for instaneFig. 1 whih exhibits the results when registration is ahieved on the 6 externalparameters and the 3 internal parameters. As the house stands on a alibrationtarget, the internal and external parameters an be omputed for eah frame us-ing lassial alibration tehniques [6℄. They an therefore be ompared to thoseomputed with the registration method. The amera motions with respet to theturntable and zoom variations during the ottage sequene are shown in Table3.a. The amera trajetory along with the foal length omputed for eah frameof the sequene are shown in Fig. 1 in dashed lines. They have to be omparedto the atual parameters whih are shown in solid lines on the same �gure. Notethat the trajetory is the position of the amera in the horizontal plane and thearrows indiates the optial axis. These results prove that some amera motionsare onfused with zoom variations: besides the ommon onfusion between zoomand translation along the optial axis, other motions do not orrespond to theatual one: between the frames 13 and 14, an unexpeted translation is detetedand is ompensated by a amera zoom out.Suh onfusions are also observed in [3℄, but Bougnoux onsiders that theydo not really a�et the quality of the reonstrution of the sene. Unfortunately,the onlusion is not the same for the quality of a omposition: an augmentedsequene of the ottage using the omputed viewpoints and foal length is shownon our web site. Small errors on the amera parameters do not really a�et thereprojetion of the sene but they indue jittering e�ets whih a�et the realismof the omposition.To take into aount the interdependane of the internal parameters, Sturmexpresses u0 and v0 as polynomial funtions of �u [16℄. As the aspet ratio�u=�v remains onstant over the sequene, only one internal parameter �u hasto be determined. However, to determine the degrees and the oeÆients ofthe polynomial models, the amera has to be pre-alibrated for several zoompositions.Hene, resolving the general full alibration problem is diÆult. In this paper,we propose a robust solution to the partiular ase of sequenes where amera
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0 10 20 30 40 50 60 70Fig. 1. (a) A snapshot of the ottage sequene and the reprojetion of the 3D features.(b) The atual amera trajetory (solid line) and the omputed one (dashed line). ()The atual (solid line) and the estimated (dashed line) foal length during the sequene.pose and zoom do not hange at the same time. This partiular ase is very inter-esting for pratial appliations: indeed, when professional movie-makers makeshootings, they generally avoid to mix amera motions and zoom variations. Totake advantage of the struture of these sequenes, we ompute the reprojetionerror for eah frame of the sequene in the two possible ases zoom alone andamera motion alone: (i) we onsider that the internal parameters do not hangeand we searh for the amera pose [R; T ℄ that minimizes the reprojetion error(ii) we onsider that the amera is �xed and we searh for the internal param-eters. Surprisingly, experiments we onduted show that the smallest of thesetwo residuals does not always math the right amera parameters: Fig. 2 plotsthe reprojetion error between frames 22 to 35 on a amera zoom sequene. Foreah frame i, the reprojetion error between frame 20 and frame i is omputedfor the zoom and the motion hypothesis. This allows us to see the inuene ofthe zoom magnitude on the riterion. The results prove that this method fails toreover the right amera parameters unless the magnitude of the zoom variationis high.
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Fig. 2. Reprojetion error with the zoom and the motion assumption for a amerazoom motion.



3 Disriminating between zoom variation and ameramotionThe above results show that the lassial registration methods annot be used toope with zoom-lens ameras. We therefore resort to a two-stage method: we �rstattempt to partition the video into amera motions and zoom variations. Then,our registration method is used on the image frames labeled amera motion whilekeeping the internal parameters onstant, whereas the internal parameters areonly omputed for the frames labeled zoom variations. Unlike other methods forvideo partitioning whih are based on the analysis of the opti ow [20℄, ourmethod is only based on the analysis of a set of 2D orresponding points whihare automatially extrated and mathed between two onseutive images. Themotion information brought by the key-point is very reliable and allows us to dis-riminate easily between zoom variation and translation along the optial axis.Our approah stands out from [20℄ in several points : in [20℄, the mean and thestandard deviation of the optial ow are omputed in seven non-overlappingsub-regions of the image. These values are ompared with thresholds to dis-riminate between zoom, tilt, pan, Z-rotation, horizontal translation, vertialtranslation and Z-translation. However, it is not explained how the thresholdsare omputed, whereas it is the main point of the algorithm (furthermore, manyonfusions are observed in the �nal results). Moreover, to disriminate betweena zoom and a Z-translation, the authors suppose that the enter of the zoom isthe enter of the image, whih is not true in pratial situations [19℄.Setion 3.1 desribes the way to extrat key-points. Then we present theaÆne model of a zoom introdued in [4℄. Finally we give our algorithm forzoom/motion automati segmentation of the sequene (3.3).3.1 Extrating and mathing key-pointsKey-points (or interest points) are loations in the image where the signalhanges two dimensionally: orners, T-juntions or loations where the texturevaries signi�antly. We use the approah developed by Harris and Stephens [7℄:they exploit the autoorrelation funtion of the image to ompute a measurewhih indiates the presene of an interest point. More preisely, the eigenvaluesof the matrix � I2x IxIyIxIy I2y � (Ix = �I�x : : : )are the prinipal urvatures of the auto-orrelation funtion. If these values arehigh, a key-point is delared.We still have to math these key-points between two onseutive images. Todo this, we use orrelation tehniques as desribed in [21℄.Fig 3.a and 3.b exhibit the key-points whih have been automatially ex-trated in two suessive images in the loria sene and Fig. 3. shows the mathedkey-points.



Fig. 3. (a,b) Key-points extrated in two onseutive frames. () The mathed key-points.3.2 Modeling zoom-lens amerasPrevious studies on zoom-lens modeling proved that the ratio �u�v is very stableover long time periods. On the ontrary, the position of the prinipal point(u0; v0) depends on the zooming position of the amera. This point an vary upto 100 pixels while zooming! However, for most amera lens, it an be shown thatthe prinipal point varies on a line while zooming [4℄. That is the reason why anaÆne model with 3 parameters C0; a0; b0 an be used to desribe zoom variations.Eniso and Vieville [4℄ show that if (u0; v0) and (u; v) are orresponding pointsafter zooming, we have �u0 = C0u+ a0;v0 = C0v + b0: (2)The urrent matrix of the internal parameters A0 is therefore dedued fromthe previous one A by: A0 = 0�C0 0 a00 C0 b00 0 1 1AA: (3)If we want to use this property to disriminate between a zoom and a ameramotion, we must prove that a amera motion an not be approximated by thesame model. This an be shown from the equations of the optial ow : theoptial ow (or instantaneous veloity) of an image point (x = f XZ ; y = f YZ ),is � _x = � UZ + xWZ +Axy �B(x2 + 1) + Cy;_y = � VZ + yWZ +A(y2 + 1)�Bxy � Cx;where (U; V;W )T is the translational omponent of the motion of the amera,(A;B;C)T is its angular veloity and f is set to 1 [8℄. The optial ow obtainedfor the basi motions Tx (horizontal translation), Ty (vertial translation), Tz(Z-translation), Rx (tilt), Ry (pan) and Rz (Z-rotation) are given in table 1.a.Theoretially, none of these motions an be desribed by an aÆne transformationwith three parameters. However, if Z = Z0+�Z where�Z � Z0 for eah model



point, that is the depth of the objet is small with regard to the distane fromthe objet to the amera (ase 1), then Tx, Ty and Tz an be approximated bya zoom model whose parameters C0, a0 and b0 are given in table 1.b (we usethe approximation _x = _uku = u0�uku�t and _y = v0�vkv�t ). Moreover, if x � 1 andy � 1, that is the foal length is large (ase 2), then Rx and Ry an also beapproximated by a zoom model (see table 1.b).Hene, some amera motions an indue an image motion lose to the modelof the zoom. Fortunately, most of them an easily be identi�ed as ameramotions. Indeed, for a zoom motion, the invariant point of the aÆne model( a1�C0 ; b1�C0 ) is the prinipal point of the amera and lies approximately in themiddle of the image. On the ontrary, for Tx, Ty, Rx and Ry, this point is out-side the image and goes to in�nity beause C0 is lose to 1. Finally, only thetranslation along the optial axis Tz is really diÆult to disriminate from azoom.
a.Motion _x _yTx � UZ 0Ty 0 � VZTz xWZ yWZRx Axy A(y2 + 1)Ry �B(x2 + 1) �BxyRz Cy �Cx b. Case (C0; a0; b0)Tx + ase1 (1,�ku U�tZ0 ; 0)Ty + ase1 (1,0,�kv V �tZ0 )Tz + ase1 (1 + W�tZ0 ,�u0W�tZ0 ,�v0W�tZ0 )Rx + ase2 (1,0,A)Ry + ase2 (1,�B,0)- -Table 1. (a) Optial ow obtained for the basi motions. (b) Parameters of the ap-proximating aÆne model for ambiguous ases.
3.3 Zoom/motion partioningIn this setion, we present our approah for zoom/motion partioning. For eahframe of the sequene, we test the hypothesis of a zoom against the hypothe-sis of a amera motion. We proeed as follows: key-points (ui; vi)f1�i�Ng and(u0i; v0i)f1�i�Ng are extrated and mathed in two onseutive frames Ik and Ik+1.If we suppose that a zoom ours, the model parameters C0; a0; b0 whih best�t the set of orresponding key-points are omputed by minimizing the residualr = 1N NXi=1(u0i � C0ui � a0)2 + (v0i � C0vi � b0)2: (4)We must now estimate the goodness of �t of the data to the aÆne model ofthe zoom. We have to test if the disrepany r is ompatible with the noisemagnitude on the extrated key-points. Otherwise the zoom hypothesis shouldbe questioned.Statistial tests, suh as �2 tests, are often used to estimate the ompatibilityof the data with the model with a given signi�ane level a (90% for instane).



However, the standard deviation is needed for eah datum. In our ase, it is verydiÆult to alulate an error on the loation of the key points. The �2 test hasalso a serious drawbak: how an we set the signi�ane level a? For a very largevalue of a, the hypothesis is always admitted, while for a very small value of athe hypothesis is always rejeted.That is the reason why we resort to another riterion to assess the zoom hy-pothesis. An important thing to note is that a zoom variation does not introduenew features in the images whereas translation motion does: some features whihare visible for a amera viewpoint are no longer visible for a neighboring ameraposition. In Fig. 4.a, point A is not visible from Ck beause it is oluded bythe objet O1. But point A beomes visible when the amera moves from Ck toCk+1. Note that suh a phenomenon also arises for translation along the optialaxis (Fig. 4.b). These features whih beome visible due to the amera motionare very important for assessing the zoom hypothesis. As key-points are notneessarily deteted in the areas whih beome visible or whih disappear, thekey-points are not well suited for zoom assessment. We therefore use the set ofall the ontours deteted in image Ik to assess the parameters (if C0 < 1 we useimage Ik+1). We �rst ompute a orrelation sore for eah ontour. This sorebelongs to [�1; 1℄ and is all the better that the zoom hypothesis is ful�lled. If thezoom hypothesis is satis�ed, the gray levels Ik(u; v) and Ik+1(C0u+a0; C0v+b0)must be nearly the same. Moreover the neighborhood of these two orrespondingpoints must be similar. We therefore use the orrelation sore to evaluate thezoom hypothesis. First, we de�ne the orrelation for a given point m = (u; v) inIk: sore(m) = Pi;j=ni;j=�n Ik(u+ i; v + j) � Ik+1(C0(u+ i) + a0; C0(v + j) + b0)(2n + 1)2�(Ik)�(Ik+1) ;where �(Ik) (resp. �(Ik+1)) is the standard deviation of Ik (resp. Ik+1) at point(u; v) in the neighborhood (2n+1)�(2n+1) of (u; v) (resp. (C0u+a0; C0v+b0)).The sore ranges from �1 for two orrelation windows whih are not similar atall, to 1 for two orrelation windows whih are idential.If a ontour is given by the points m1; :::;mp, the sore of a ontour C isde�ned as the average of the sores of all points:sore(C) = 1=p i=pXi=1 sore(mi):Finally the sore of the zoom hypothesis is omputed as the minimum of thesore of eah ontour (note that only the strong ontours are kept). This is arobust way to assess the zoom hypothesis. Indeed, if a zoom variation reallyhappens, the sore is high for eah ontour, and the global sore is high too. Onthe ontrary, if a amera motion happens, the sore is generally low for nearlyall the ontours when the amera moves beause the aÆne zoom model does notmath the image transformation. Moreover, in ase of a translating motion, thesore is low for the ontours of Ik whih are oluded in Ik+1. Hene the globalsore is low too.We still have to hoose a threshold Thsore whih allows us to distinguishbetween zoom variation and amera motion aording to the global sore. This
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(a) (b)Fig. 4. New features appear under translating motion: point A is not visible from Ckbut beomes visible from Ck+1.value has been determined experimentally on various sequenes. Experimentswe have onduted (see setion 5.2) prove that the value Thsore = :5 an beused for all the onsidered sequenes to disriminate between zoom variationand amera motion even for the diÆult ase of a translation along the optialaxis. Hene, if global sore > :5 and if the invariant point of the aÆne model liesinside the image, then the zoom hypothesis is aepted, otherwise the ameramotion hypothesis is retained.4 Registration with a zoom lens ameraOne the zoom/motion partitioning has been ahieved, registration an be per-formed. If the frame belongs to a amera zoom sequene, then registration isperformed only on the set of the internal parameters. Otherwise, registration isperformed only on the set of the external parameters. As desribed in [12℄, weuse n 2D/3D urve orrespondenes. One the urves orresponding to the 3Dfeatures have been deteted in the �rst frame of the sequene, they are trakedfrom frame to frame.4.1 Registration for a amera motionIf the frame belongs to a amera motion sequene, we perform a six-parametersoptimization from the urve orrespondenes:�k+1u = �ku; �k+1v = �kv ;uk+10 = uk0 ; vk+10 = vk0 ;Rk+1; T k+1 = argminR;T Pi r2i ;where ri is a robust distane between 2D urve i and the projetion of its3-D ounterpart. The omputation of the residual ri is detailed in [12℄. However,one of the limitations of using 2D/3D orrespondenes originates in the spatialdistribution of the model features: the reprojetion error is likely to be large far



from the 3D features used for the viewpoint omputation. An example is shownin Fig 5.a: the viewpoint has been omputed using the buiding in the bakgroundof the sene (the Opera). If we add a omputer generated ar on the foregroundof the the sene, this ar seems to hover.
a. b.Fig. 5. (a) Registration using only 2D/3D orrespondenes. (b) Registration with themixing method.In order to improve viewpoint omputation, we propose to use the key-pointsthat have being mathed for the partitionning stage. Previous approahes at-tempted to reover the viewpoint from 2D/2D orrespondenes alone [17℄; un-fortunately, this approah turns out to be very sensitive to noise in image mea-surements. For this reason, points orrespondenes between frames are here usedto provide additional onstraints on the viewpoint omputation.Our approah enompasses the strength of these two methods: the viewpointis de�ned as the minimum of a ost funtion whih inorporates 2D/3D orre-spondenes between the image and the model as well as 2D/2D orrespondenesof key-points. Note that the extrated key-points bring information in areaswhere the 3D knowledge available on the sene are missing (�g. 5.b).Given the viewpoint [Rk; Tk℄ omputed for a given frame k, we now explainhow we ompute the viewpoint in the next frame k + 1 using the 3D model aswell as the mathed key-points (qik; qik+1)1�i�N . Let qik be a point in frame k.Its orresponding point in frame k + 1 belongs to the intersetion of the imageplane with the plane (Ck ; Ck+1; qik). This line is alled the epipolar line. For twomathed points (qik ; qik+1), the quality of the viewpoint omputed an be assessedby measuring the distane vi between qik+1 and the epipolar line of qk in framek+1 [9℄. Then, a simple way to improve the viewpoint omputation using theinterest points is to minimizeminRk+1;Tk+1  1n nXi=1 r2i + �N NXi=1 v2i! : (5)The � parameter ontrols the ompromise between the loseness to the avail-able 3D data and the quality of the 2D orrespondenes between the key-points.We use � = 1 in our pratial experiments. The minimum of equation 5 isomputed by using an iterative algorithm for minimization suh as Powell'salgorithm, initialization being obtained from the parameters omputed in the



previous image of the sequene. More details about this method an be found in[13℄.4.2 Registration for a zoomIf the frame belongs to a amera zoom sequene, we get the new intrinsi pa-rameters of the amera from equation 3. However, as approximation errors anpropagate from frame to frame, we prefer to perform a three-parameters op-timization from the 2D/3D orrespondenes. Hene, the amera parameters inframe k+1 are dedued from the amera parameters in frame k by the relation:Rk+1 = Rk; T k+1 = T k;Ck+10 ; uk+10 ; vk+10 = argminC0;u0;v0 Pi r2i ;�k+1u = Ck+10 �ku;�k+1v = Ck+10 �kv :5 Experimental resultsIn this setion, we �rst justify experimentally the use of the threshold Thsore =0:5 to disriminate between zoom variations and amera motions. Then, setion5.2 present results of the partitioning proess. Finally, registration results aregiven and augmented senes are shown.5.1 Choosing ThsoreTo prove that Thsore = 0:5 is well suited to disriminate between amera motionand zoom variation, we onsidered a variety of video sequenes (see Fig. 6). Eahsequene alternates zoom variations with amera motions, inluding translationsalong the optial axis TZ . For eah frame of the sequene, the labeling in termsof zoom variation, rotation motion, translation motion is known. This allows usto ompare the results of our algorithm with the atual ones.
1:The ottage sequene 2:The up sequene 3:The oÆe sequene 4:The Loria sequeneFig. 6. Snapshots of the senes used for testing the zoom/motion partitioning algo-rithm.We �rst ompute the sore of the zoom hypothesis for eah frame of the foursequenes. Then we ompute the mean along with the standard deviation of the



sore for the frames of the sequene orresponding to zoom variation, rotationand translation and (more diÆult ases) Z-translation and panorami motion.These results are shown in table 2: the �rst olumn shows the kind of variationundergone by the amera. The seond and third olumns give the sene underonsideration and the number of frames in the sequene orresponding to theamera variation. Columns 4 and 5 show the mean and the standard deviationof the residual omputed from the orresponding key-points (see equation 4).Finally, olumns 6 and 7 shows the mean and the standard deviation of the soreof the zoom hypothesis. These results learly show that the use of the residualde�ned in equation (4) does not permit to disriminate between zoom variationsand translation along the optial axis. On the ontrary, the sore we have de�nedgives high values when zoom happens and muh smaller results when ameramotion happens, even in ase of TZ translation. Finally, these experiments provethat the value Thsore = :5 is appropriate to distinguish zoom variations fromamera motions. variation in sene nb r �r mean �sorethe amera frames soreparametersZoom 1 6 0.617 0.030 0.747 0.0552 4 0.460 0.266 0.860 0.0553 32 0.860 0.057 0.677 0.1334 29 0.515 0.014 0.561 0.064Rotation 1 10 3.593 1.439 -0.591 0.171+ translationTranslation 1 2 0.651 0.020 0.393 0.066along the 2 4 0.841 0.018 0.274 0.035optial axis 3 16 1.380 0.190 0.047 0.277Panorami 4 15 0.630 0.066 -0.209 0.315motionTable 2. Sore of the zoom hypothesis for various amera parameters.
5.2 Results in zoom/motion partitioningWe now give detailed results of our algorithm on the ottage sequene and theLoria sequene. Note that the amera parameters are known for the ottagesequene beause the house stands on a alibration target. The Loria sequeneis a long sequene whih has been shot outside our laboratory. It onsists of 700frames of size 768�576. The atual amera parameters are not available for thissequene. However we have manually partition the sequene (see table 3.b) toenable omparison with the automati algorithm.For eah of the two sequenes (Fig. 7), we show the sores omputed alongthe sequene, the results of our partitioning algorithm, and the omputed zoomfator C0. Also shown in the Fig. 7.b and 7.e is the atual partition of thesequene for omparison. For the ottage sequene, the algorithm performane isquite good and the omputed parameters are very lose to the atual parameters.For the Loria sequene, the reader an notie that some sores are higher than



a. image motion/zoom0 ! 20 rotation 40Æ20 ! 35 zoom in35 ! 40 translation 10m40 ! 55 zoom out55 ! 65 rotation �20Æ b. Image frames amera parameters0! 120 panorami motion121! 344 Zoom in345! 408 no motion, nor zoom409! 600 Zoom out601! end panorami motionTable 3. Camera parameters during (a) the ottage sequene and (b) the Loria se-quene.the threshold during the panorami motion between frames 0 and 100 (Fig. 7.d).However, in Fig. 7.a and 7.d, the test on the invariant point is shown with thedash-dot lines: the value 1 indiates that the invariant point is inside the image,while the value 0 indiates that the invariant point is outside the image. Usingthis onstraint, the results of the partition proess is very good (Fig. 7.b and7.e).
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d: e: f:Fig. 7. Results for the ottage sequene (�rst row) and the Loria sequene (seondrow).5.3 Registration resultsIn this setion, registration results are shown for the ottage sequene and theLoria sequene. As the atual parameters are known for the ottage sequene, Fig.8 shows the trajetory and the foal length omputed with our algorithm (dashed



lines) along with the atual parameters (solid lines). The reader an notie thatthe parameters obtained are in lose agreement with the atual values. To provethe auray of the amera parameters, we have augmented the sene with apalm tree and a beah umbrella (Fig. 9). Note that the shadows between thesene and the omputer generated objets greatly improve the realism of theomposite images. They have been omputed from a rough 3D reonstrutionof the sene given by the orresponding key-points. The reprojetion of the 3Dmodel features with the omputed amera parameters is also shown. The overallimpression is very good.
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0 10 20 30 40 50 60 70Fig. 8. Comparison of the atual trajetory (a) and foal length �u (b) (solid lines)with the omputed ones (dashed lines).

Fig. 9. Registration results on the ottage sequene: reprojetion of the model (�rstrow) and snapshots of the augmented sene (seond row).We do not have the atual amera parameters for the Loria sequene. Henelooking at the reprojetion of the model features is a good way to assess the



registration auray. Fig. 10 exhibits the reprojetion of the model every hun-dred frames. The reader an notie that the reprojetion error is small even atthe end of the sequene, whih proves the eÆieny of our algorithm. Finally, weaugment the sequene with the well known sulpture La femme �a la hevelured�efaite realized by Mir~o. The interested reader an look at the video sequenesof our results1.

Fig. 10. Registration results on the Loria sequene: the reprojetion of the model everyhundred frames (�rst row) and snapshots of the augmented sene (seond row).6 ConlusionIn this paper we have presented an eÆient registration algorithm for a zoomlens amera. We restrited our study to the ase of image sequenes whih alter-nate zoom variation alone and amera motion alone. This is a quite reasonableassumption whih is always ful�lled by professional movie-makers. The perfor-mane of our algorithm is quite good and our algorithm is apable of disrimi-nating between zoom variations and TZ translations. However, our experimentsshow that some improvements and extensions an be made to our approah.First, experiments on the Loria sequene show that the amera trajetory issomewhat jagged. Smoothing the trajetory afterwards is not appropriate be-ause the orrespondenes between the image and the 3D model are not main-tained. We urrently investigate methods to inorporate regularity onstraintson the trajetory inside the registration proess.Seond, as was observed in our experiments, moving objets in the senemay perturb the partitioning proess. Indeed, the orrelation sore is always lowfor moving objets and this may lead to false rejetion of the zoom hypothesis.Deteting moving objets in the sene prior to the registration proess ouldhelp to solve this problem.1 http://www.loria.fr/~gsimon/ev2000.html.
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