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t. We fo
us in this paper on the problem of adding 
omputer-generated obje
ts in video sequen
es that have been shot with a zoomlens 
amera. While numerous papers have been devoted to registrationwith �xed fo
al length, little attention has been brought to zoom lens
ameras. In this paper, we propose an eÆ
ient two-stage algorithm forhandling zoom 
hanging whi
h are are likely to happen in a video se-quen
e. We �rst attempt to partition the video into 
amera motionsand zoom variations. Then, 
lassi
al registration methods are used onthe image frames labeled 
amera motion while keeping the internal pa-rameters 
onstant, whereas the zoom parameters are only updated forthe frames labeled zoom variations. Results are presented demonstratingregistration on various sequen
es. Augmented video sequen
es are alsoshown.1 Introdu
tionAugmented Reality (AR) is a te
hnique in whi
h the user's view is enhan
edor augmented with additional information generated from a 
omputer model. In
ontrast to virtual reality, where the user is immersed in a 
ompletely 
omputer-generated world, AR allows the user to intera
t with the real world in a naturalway. This explains why interest in AR has substantially in
reased in the pastfew years and medi
al, manufa
turing or urban planning appli
ations have beendeveloped [2, 5, 15, 18℄.In order to make AR systems e�e
tive, the 
omputer generated obje
ts andthe real s
ene must be 
ombined seamlessly so that the virtual obje
ts align wellwith the real ones. It is therefore essential to determine a

urately the lo
ationand the opti
al properties of the 
ameras. The registration task must be a
hievedwith spe
ial 
are be
ause the human visual system is very good at dete
ting evensmall mis-registrations.There has been mu
h resear
h in the �eld of vision-based registration foraugmented reality [1, 12, 14, 18℄. However these works assume that the internalparameters of the 
amera are known (fo
al length, aspe
t ratio, prin
ipal point)and they only address the problem of 
omputing the pose of the 
amera. This isa strong limitation of these methods be
ause zoom 
hanging is likely to happen



in a video sequen
e. A method is proposed in [11℄, whi
h 
an retrieve metri
re
onstru
tion from image sequen
es obtained with un
alibrated zooming 
am-eras. However, 
onsidering unknown prin
ipal point leads to unstable results ifthe proje
tive 
alibration is not a

urate enough, the sequen
e not long enough,or the motion sequen
e 
riti
al towards the set of 
onstraints. More stable resultsare obtained when the prin
ipal point is 
onsidered as �xed in the 
entre of theimage, but this assumption is in
ompatible with [19℄ and is not a

urate enoughfor image 
omposition. Other attempts have been made to 
ope with varying in-ternal parameters for AR appli
ations [10℄. However this approa
h uses targetsarbitrarily positioned in the environment. It is therefore of limited use if outdoors
enes are 
onsidered.In this paper we extend our previous works on vision based registrationmethods [12, 13℄ to the 
ase of zoom-lens 
ameras. Zoom-lens 
amera 
alibrationis still found to be very diÆ
ult for several reasons [16, 3℄: modeling a zoom-lens 
amera is diÆ
ult due to opti
al and me
hani
al misalignments in the lenssystem of a 
amera. Moreover, zoom-lens variations 
an be 
onfused with 
ameramotions: for instan
e, it is diÆ
ult to dis
riminate a translation along the opti
alaxis from a zoom.In this paper, we take advantage of our appli
ation �eld to redu
e the problem
omplexity. Indeed, we assume that the viewpoint and the fo
al length do not
hange at the same time. This assumption is 
ompatible with the te
hniques usedby professional movie-makers. We develop in this paper an original statisti
alapproa
h: for ea
h frame of the sequen
e, we test the hypothesis of a zoom againstthe hypothesis of a 
amera motion. If the motion hypothesis is retained, we stillhave to 
ompute the 
amera pose with the old internal parameters. Otherwise,the internal parameters are 
omputed assuming that the 
amera pose does not
hange. Camera parameters are supposed to be known in the �rst image of thesequen
e (they 
an be obtained easily from a set of at least 6 2D/3D point
orresponden
es pointed out by the user).This paper is organized as follows: �rst, we dis
uss in se
tion 2 the pinhole
amera model and we show the diÆ
ulties to re
over both the 
amera poseand the internal parameters with varying fo
al lengths. Se
tion 3 then des
ribesour original method for zoom/motion partitioning of the sequen
e. Se
tion 4des
ribes how registration is performed from this segmentation. Examples whi
hdemonstrate the e�e
tiveness of our method are shown in se
tion 5.2 Registration diÆ
ulties with a zoom-lens 
ameraIn this se
tion, we �rst des
ribe the pinhole model whi
h is widely used for
amera modeling. Then we des
ribe our attempts to 
ompute both the zoomand the motion parameters in a single stage. This task is 
alled full 
alibrationin the following. We show that 
lassi
al registration methods fail to re
overboth the internal and the external parameters, even though some of the intrinsi
parameters are �xed.



2.1 The pinhole 
amera modelLet (X;Y; Z) represent the 
oordinates of any visible pointM in a �xed referen
esystem (world 
oordinate system) and let (X
; Y
; Z
) represent the 
oordinatesof the same point in the 
amera 
entered 
oordinate system. The relationshipbetween the two 
oordinate systems is given by0�X
Y
Z
 1A = R0�XYZ 1A+ T = [R T ℄0BB�XYZ1 1CCAwhere [R; T ℄ is the 3D displa
ement (rotation and translation) from the world
oordinate system to the 
amera 
oordinate system.We assume that the 
amera performs a perfe
t perspe
tive transform with
enter O at a distan
e f of the image plane. The proje
tion of M on the imageplane is (x = f X
Z
 ; y = f Y
Z
 ). If 1=ku (resp 1=kv) is the size of the pixel alongthe x axes (resp. y axes), its pixel 
oordinates are:m = (kuf X
Z
 + u0; kvf Y
Z
 + v0) (1)where u0; v0 are the 
oordinates of the prin
ipal point of the 
amera (i.e. theinterse
tion of the opti
al axis and the image plane).The 
oordinates of a 3D point M in a world 
oordinate system and its pixel
oordinatesm = �uv � are therefore related by s24uv1 35 = 24kuf 0 u00 kvf v00 0 1 35| {z }A [R T ℄0BB�XYZ1 1CCAFull 
amera 
alibration amounts to 
ompute 10 parameters: 6 external pa-rameters (3 for the rotation and 3 for the translation) and 4 internal parameters(�u = kuf , �v = kvf , u0 and v0). Internal and external parameters are 
olle
-tively referred to as 
amera parameters in the following.2.2 Dire
t full 
alibrationWhen the internal parameters are 
omputed o�-line, the registration pro
essamounts to 
ompute the displa
ement [R; T ℄ whi
h minimizes the re-proje
tionerror, that is the error between the proje
tion of known 3D features in the s
eneand their 
orresponding 2D features dete
ted in the image. For sake of 
larity,we only suppose that the 3D features are points but we 
an also 
onsider freeform 
urves [12℄. Moreover, we show in se
tion 4 that 2D/2D 
orresponden
es
an be added to improve the viewpoint 
omputation.The 
amera pose is therefore the displa
ement [R; T ℄ whi
h minimizes thereproje
tion error minR;T X dist(proj(Mi);mi)2



where minimization is performed only on the 6 external parameters (Euler anglesand translation).Theoreti
ally, zoom-lens variations during shooting 
an be re
overed in thesame way. We have therefore to 
ompute not only the 
amera viewpoint but alsothe internal 
amera parameters (fo
al length, pixel size, opti
al 
enter) whi
hminimize the reproje
tion error.minR;T;�u;�v ;u0;v0X dist(proj(Mi);mi)2As mentioned by several authors [3℄, this approa
h is unable to re
over boththe internal and external parameters. To over
ome this problem, some authorshave proposed to redu
e the number of unknowns by �xing some of the internalparameters to prede�ned values. As several experimental studies proved thatthe ratio �u�v remains almost 
onstant during zoom variations [4℄, the set of theinternal parameters to be estimated is then redu
ed to �u; u0; v0. Unfortunatelythis approa
h fails to re
over the right 
amera parameters. Consider for instan
eFig. 1 whi
h exhibits the results when registration is a
hieved on the 6 externalparameters and the 3 internal parameters. As the house stands on a 
alibrationtarget, the internal and external parameters 
an be 
omputed for ea
h frame us-ing 
lassi
al 
alibration te
hniques [6℄. They 
an therefore be 
ompared to those
omputed with the registration method. The 
amera motions with respe
t to theturntable and zoom variations during the 
ottage sequen
e are shown in Table3.a. The 
amera traje
tory along with the fo
al length 
omputed for ea
h frameof the sequen
e are shown in Fig. 1 in dashed lines. They have to be 
omparedto the a
tual parameters whi
h are shown in solid lines on the same �gure. Notethat the traje
tory is the position of the 
amera in the horizontal plane and thearrows indi
ates the opti
al axis. These results prove that some 
amera motionsare 
onfused with zoom variations: besides the 
ommon 
onfusion between zoomand translation along the opti
al axis, other motions do not 
orrespond to thea
tual one: between the frames 13 and 14, an unexpe
ted translation is dete
tedand is 
ompensated by a 
amera zoom out.Su
h 
onfusions are also observed in [3℄, but Bougnoux 
onsiders that theydo not really a�e
t the quality of the re
onstru
tion of the s
ene. Unfortunately,the 
on
lusion is not the same for the quality of a 
omposition: an augmentedsequen
e of the 
ottage using the 
omputed viewpoints and fo
al length is shownon our web site. Small errors on the 
amera parameters do not really a�e
t thereproje
tion of the s
ene but they indu
e jittering e�e
ts whi
h a�e
t the realismof the 
omposition.To take into a

ount the interdependan
e of the internal parameters, Sturmexpresses u0 and v0 as polynomial fun
tions of �u [16℄. As the aspe
t ratio�u=�v remains 
onstant over the sequen
e, only one internal parameter �u hasto be determined. However, to determine the degrees and the 
oeÆ
ients ofthe polynomial models, the 
amera has to be pre-
alibrated for several zoompositions.Hen
e, resolving the general full 
alibration problem is diÆ
ult. In this paper,we propose a robust solution to the parti
ular 
ase of sequen
es where 
amera
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0 10 20 30 40 50 60 70Fig. 1. (a) A snapshot of the 
ottage sequen
e and the reproje
tion of the 3D features.(b) The a
tual 
amera traje
tory (solid line) and the 
omputed one (dashed line). (
)The a
tual (solid line) and the estimated (dashed line) fo
al length during the sequen
e.pose and zoom do not 
hange at the same time. This parti
ular 
ase is very inter-esting for pra
ti
al appli
ations: indeed, when professional movie-makers makeshootings, they generally avoid to mix 
amera motions and zoom variations. Totake advantage of the stru
ture of these sequen
es, we 
ompute the reproje
tionerror for ea
h frame of the sequen
e in the two possible 
ases zoom alone and
amera motion alone: (i) we 
onsider that the internal parameters do not 
hangeand we sear
h for the 
amera pose [R; T ℄ that minimizes the reproje
tion error(ii) we 
onsider that the 
amera is �xed and we sear
h for the internal param-eters. Surprisingly, experiments we 
ondu
ted show that the smallest of thesetwo residuals does not always mat
h the right 
amera parameters: Fig. 2 plotsthe reproje
tion error between frames 22 to 35 on a 
amera zoom sequen
e. Forea
h frame i, the reproje
tion error between frame 20 and frame i is 
omputedfor the zoom and the motion hypothesis. This allows us to see the in
uen
e ofthe zoom magnitude on the 
riterion. The results prove that this method fails tore
over the right 
amera parameters unless the magnitude of the zoom variationis high.
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Fig. 2. Reproje
tion error with the zoom and the motion assumption for a 
amerazoom motion.



3 Dis
riminating between zoom variation and 
ameramotionThe above results show that the 
lassi
al registration methods 
annot be used to
ope with zoom-lens 
ameras. We therefore resort to a two-stage method: we �rstattempt to partition the video into 
amera motions and zoom variations. Then,our registration method is used on the image frames labeled 
amera motion whilekeeping the internal parameters 
onstant, whereas the internal parameters areonly 
omputed for the frames labeled zoom variations. Unlike other methods forvideo partitioning whi
h are based on the analysis of the opti
 
ow [20℄, ourmethod is only based on the analysis of a set of 2D 
orresponding points whi
hare automati
ally extra
ted and mat
hed between two 
onse
utive images. Themotion information brought by the key-point is very reliable and allows us to dis-
riminate easily between zoom variation and translation along the opti
al axis.Our approa
h stands out from [20℄ in several points : in [20℄, the mean and thestandard deviation of the opti
al 
ow are 
omputed in seven non-overlappingsub-regions of the image. These values are 
ompared with thresholds to dis-
riminate between zoom, tilt, pan, Z-rotation, horizontal translation, verti
altranslation and Z-translation. However, it is not explained how the thresholdsare 
omputed, whereas it is the main point of the algorithm (furthermore, many
onfusions are observed in the �nal results). Moreover, to dis
riminate betweena zoom and a Z-translation, the authors suppose that the 
enter of the zoom isthe 
enter of the image, whi
h is not true in pra
ti
al situations [19℄.Se
tion 3.1 des
ribes the way to extra
t key-points. Then we present theaÆne model of a zoom introdu
ed in [4℄. Finally we give our algorithm forzoom/motion automati
 segmentation of the sequen
e (3.3).3.1 Extra
ting and mat
hing key-pointsKey-points (or interest points) are lo
ations in the image where the signal
hanges two dimensionally: 
orners, T-jun
tions or lo
ations where the texturevaries signi�
antly. We use the approa
h developed by Harris and Stephens [7℄:they exploit the auto
orrelation fun
tion of the image to 
ompute a measurewhi
h indi
ates the presen
e of an interest point. More pre
isely, the eigenvaluesof the matrix � I2x IxIyIxIy I2y � (Ix = �I�x : : : )are the prin
ipal 
urvatures of the auto-
orrelation fun
tion. If these values arehigh, a key-point is de
lared.We still have to mat
h these key-points between two 
onse
utive images. Todo this, we use 
orrelation te
hniques as des
ribed in [21℄.Fig 3.a and 3.b exhibit the key-points whi
h have been automati
ally ex-tra
ted in two su

essive images in the loria s
ene and Fig. 3.
 shows the mat
hedkey-points.



Fig. 3. (a,b) Key-points extra
ted in two 
onse
utive frames. (
) The mat
hed key-points.3.2 Modeling zoom-lens 
amerasPrevious studies on zoom-lens modeling proved that the ratio �u�v is very stableover long time periods. On the 
ontrary, the position of the prin
ipal point(u0; v0) depends on the zooming position of the 
amera. This point 
an vary upto 100 pixels while zooming! However, for most 
amera lens, it 
an be shown thatthe prin
ipal point varies on a line while zooming [4℄. That is the reason why anaÆne model with 3 parameters C0; a0; b0 
an be used to des
ribe zoom variations.En
iso and Vieville [4℄ show that if (u0; v0) and (u; v) are 
orresponding pointsafter zooming, we have �u0 = C0u+ a0;v0 = C0v + b0: (2)The 
urrent matrix of the internal parameters A0 is therefore dedu
ed fromthe previous one A by: A0 = 0�C0 0 a00 C0 b00 0 1 1AA: (3)If we want to use this property to dis
riminate between a zoom and a 
ameramotion, we must prove that a 
amera motion 
an not be approximated by thesame model. This 
an be shown from the equations of the opti
al 
ow : theopti
al 
ow (or instantaneous velo
ity) of an image point (x = f X
Z
 ; y = f Y
Z
 ),is � _x = � UZ
 + xWZ
 +Axy �B(x2 + 1) + Cy;_y = � VZ
 + yWZ
 +A(y2 + 1)�Bxy � Cx;where (U; V;W )T is the translational 
omponent of the motion of the 
amera,(A;B;C)T is its angular velo
ity and f is set to 1 [8℄. The opti
al 
ow obtainedfor the basi
 motions Tx (horizontal translation), Ty (verti
al translation), Tz(Z-translation), Rx (tilt), Ry (pan) and Rz (Z-rotation) are given in table 1.a.Theoreti
ally, none of these motions 
an be des
ribed by an aÆne transformationwith three parameters. However, if Z
 = Z0+�Z where�Z � Z0 for ea
h model



point, that is the depth of the obje
t is small with regard to the distan
e fromthe obje
t to the 
amera (
ase 1), then Tx, Ty and Tz 
an be approximated bya zoom model whose parameters C0, a0 and b0 are given in table 1.b (we usethe approximation _x = _uku = u0�uku�t and _y = v0�vkv�t ). Moreover, if x � 1 andy � 1, that is the fo
al length is large (
ase 2), then Rx and Ry 
an also beapproximated by a zoom model (see table 1.b).Hen
e, some 
amera motions 
an indu
e an image motion 
lose to the modelof the zoom. Fortunately, most of them 
an easily be identi�ed as 
ameramotions. Indeed, for a zoom motion, the invariant point of the aÆne model( a1�C0 ; b1�C0 ) is the prin
ipal point of the 
amera and lies approximately in themiddle of the image. On the 
ontrary, for Tx, Ty, Rx and Ry, this point is out-side the image and goes to in�nity be
ause C0 is 
lose to 1. Finally, only thetranslation along the opti
al axis Tz is really diÆ
ult to dis
riminate from azoom.
a.Motion _x _yTx � UZ
 0Ty 0 � VZ
Tz xWZ
 yWZ
Rx Axy A(y2 + 1)Ry �B(x2 + 1) �BxyRz Cy �Cx b. Case (C0; a0; b0)Tx + 
ase1 (1,�ku U�tZ0 ; 0)Ty + 
ase1 (1,0,�kv V �tZ0 )Tz + 
ase1 (1 + W�tZ0 ,�u0W�tZ0 ,�v0W�tZ0 )Rx + 
ase2 (1,0,A)Ry + 
ase2 (1,�B,0)- -Table 1. (a) Opti
al 
ow obtained for the basi
 motions. (b) Parameters of the ap-proximating aÆne model for ambiguous 
ases.
3.3 Zoom/motion partioningIn this se
tion, we present our approa
h for zoom/motion partioning. For ea
hframe of the sequen
e, we test the hypothesis of a zoom against the hypothe-sis of a 
amera motion. We pro
eed as follows: key-points (ui; vi)f1�i�Ng and(u0i; v0i)f1�i�Ng are extra
ted and mat
hed in two 
onse
utive frames Ik and Ik+1.If we suppose that a zoom o

urs, the model parameters C0; a0; b0 whi
h best�t the set of 
orresponding key-points are 
omputed by minimizing the residualr = 1N NXi=1(u0i � C0ui � a0)2 + (v0i � C0vi � b0)2: (4)We must now estimate the goodness of �t of the data to the aÆne model ofthe zoom. We have to test if the dis
repan
y r is 
ompatible with the noisemagnitude on the extra
ted key-points. Otherwise the zoom hypothesis shouldbe questioned.Statisti
al tests, su
h as �2 tests, are often used to estimate the 
ompatibilityof the data with the model with a given signi�
an
e level a (90% for instan
e).



However, the standard deviation is needed for ea
h datum. In our 
ase, it is verydiÆ
ult to 
al
ulate an error on the lo
ation of the key points. The �2 test hasalso a serious drawba
k: how 
an we set the signi�
an
e level a? For a very largevalue of a, the hypothesis is always admitted, while for a very small value of athe hypothesis is always reje
ted.That is the reason why we resort to another 
riterion to assess the zoom hy-pothesis. An important thing to note is that a zoom variation does not introdu
enew features in the images whereas translation motion does: some features whi
hare visible for a 
amera viewpoint are no longer visible for a neighboring 
ameraposition. In Fig. 4.a, point A is not visible from Ck be
ause it is o

luded bythe obje
t O1. But point A be
omes visible when the 
amera moves from Ck toCk+1. Note that su
h a phenomenon also arises for translation along the opti
alaxis (Fig. 4.b). These features whi
h be
ome visible due to the 
amera motionare very important for assessing the zoom hypothesis. As key-points are notne
essarily dete
ted in the areas whi
h be
ome visible or whi
h disappear, thekey-points are not well suited for zoom assessment. We therefore use the set ofall the 
ontours dete
ted in image Ik to assess the parameters (if C0 < 1 we useimage Ik+1). We �rst 
ompute a 
orrelation s
ore for ea
h 
ontour. This s
orebelongs to [�1; 1℄ and is all the better that the zoom hypothesis is ful�lled. If thezoom hypothesis is satis�ed, the gray levels Ik(u; v) and Ik+1(C0u+a0; C0v+b0)must be nearly the same. Moreover the neighborhood of these two 
orrespondingpoints must be similar. We therefore use the 
orrelation s
ore to evaluate thezoom hypothesis. First, we de�ne the 
orrelation for a given point m = (u; v) inIk: s
ore(m) = Pi;j=ni;j=�n Ik(u+ i; v + j) � Ik+1(C0(u+ i) + a0; C0(v + j) + b0)(2n + 1)2�(Ik)�(Ik+1) ;where �(Ik) (resp. �(Ik+1)) is the standard deviation of Ik (resp. Ik+1) at point(u; v) in the neighborhood (2n+1)�(2n+1) of (u; v) (resp. (C0u+a0; C0v+b0)).The s
ore ranges from �1 for two 
orrelation windows whi
h are not similar atall, to 1 for two 
orrelation windows whi
h are identi
al.If a 
ontour is given by the points m1; :::;mp, the s
ore of a 
ontour C isde�ned as the average of the s
ores of all points:s
ore(C) = 1=p i=pXi=1 s
ore(mi):Finally the s
ore of the zoom hypothesis is 
omputed as the minimum of thes
ore of ea
h 
ontour (note that only the strong 
ontours are kept). This is arobust way to assess the zoom hypothesis. Indeed, if a zoom variation reallyhappens, the s
ore is high for ea
h 
ontour, and the global s
ore is high too. Onthe 
ontrary, if a 
amera motion happens, the s
ore is generally low for nearlyall the 
ontours when the 
amera moves be
ause the aÆne zoom model does notmat
h the image transformation. Moreover, in 
ase of a translating motion, thes
ore is low for the 
ontours of Ik whi
h are o

luded in Ik+1. Hen
e the globals
ore is low too.We still have to 
hoose a threshold Ths
ore whi
h allows us to distinguishbetween zoom variation and 
amera motion a

ording to the global s
ore. This
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(a) (b)Fig. 4. New features appear under translating motion: point A is not visible from Ckbut be
omes visible from Ck+1.value has been determined experimentally on various sequen
es. Experimentswe have 
ondu
ted (see se
tion 5.2) prove that the value Ths
ore = :5 
an beused for all the 
onsidered sequen
es to dis
riminate between zoom variationand 
amera motion even for the diÆ
ult 
ase of a translation along the opti
alaxis. Hen
e, if global s
ore > :5 and if the invariant point of the aÆne model liesinside the image, then the zoom hypothesis is a

epted, otherwise the 
ameramotion hypothesis is retained.4 Registration with a zoom lens 
ameraOn
e the zoom/motion partitioning has been a
hieved, registration 
an be per-formed. If the frame belongs to a 
amera zoom sequen
e, then registration isperformed only on the set of the internal parameters. Otherwise, registration isperformed only on the set of the external parameters. As des
ribed in [12℄, weuse n 2D/3D 
urve 
orresponden
es. On
e the 
urves 
orresponding to the 3Dfeatures have been dete
ted in the �rst frame of the sequen
e, they are tra
kedfrom frame to frame.4.1 Registration for a 
amera motionIf the frame belongs to a 
amera motion sequen
e, we perform a six-parametersoptimization from the 
urve 
orresponden
es:�k+1u = �ku; �k+1v = �kv ;uk+10 = uk0 ; vk+10 = vk0 ;Rk+1; T k+1 = argminR;T Pi r2i ;where ri is a robust distan
e between 2D 
urve i and the proje
tion of its3-D 
ounterpart. The 
omputation of the residual ri is detailed in [12℄. However,one of the limitations of using 2D/3D 
orresponden
es originates in the spatialdistribution of the model features: the reproje
tion error is likely to be large far



from the 3D features used for the viewpoint 
omputation. An example is shownin Fig 5.a: the viewpoint has been 
omputed using the buiding in the ba
kgroundof the s
ene (the Opera). If we add a 
omputer generated 
ar on the foregroundof the the s
ene, this 
ar seems to hover.
a. b.Fig. 5. (a) Registration using only 2D/3D 
orresponden
es. (b) Registration with themixing method.In order to improve viewpoint 
omputation, we propose to use the key-pointsthat have being mat
hed for the partitionning stage. Previous approa
hes at-tempted to re
over the viewpoint from 2D/2D 
orresponden
es alone [17℄; un-fortunately, this approa
h turns out to be very sensitive to noise in image mea-surements. For this reason, points 
orresponden
es between frames are here usedto provide additional 
onstraints on the viewpoint 
omputation.Our approa
h en
ompasses the strength of these two methods: the viewpointis de�ned as the minimum of a 
ost fun
tion whi
h in
orporates 2D/3D 
orre-sponden
es between the image and the model as well as 2D/2D 
orresponden
esof key-points. Note that the extra
ted key-points bring information in areaswhere the 3D knowledge available on the s
ene are missing (�g. 5.b).Given the viewpoint [Rk; Tk℄ 
omputed for a given frame k, we now explainhow we 
ompute the viewpoint in the next frame k + 1 using the 3D model aswell as the mat
hed key-points (qik; qik+1)1�i�N . Let qik be a point in frame k.Its 
orresponding point in frame k + 1 belongs to the interse
tion of the imageplane with the plane (Ck ; Ck+1; qik). This line is 
alled the epipolar line. For twomat
hed points (qik ; qik+1), the quality of the viewpoint 
omputed 
an be assessedby measuring the distan
e vi between qik+1 and the epipolar line of qk in framek+1 [9℄. Then, a simple way to improve the viewpoint 
omputation using theinterest points is to minimizeminRk+1;Tk+1  1n nXi=1 r2i + �N NXi=1 v2i! : (5)The � parameter 
ontrols the 
ompromise between the 
loseness to the avail-able 3D data and the quality of the 2D 
orresponden
es between the key-points.We use � = 1 in our pra
ti
al experiments. The minimum of equation 5 is
omputed by using an iterative algorithm for minimization su
h as Powell'salgorithm, initialization being obtained from the parameters 
omputed in the



previous image of the sequen
e. More details about this method 
an be found in[13℄.4.2 Registration for a zoomIf the frame belongs to a 
amera zoom sequen
e, we get the new intrinsi
 pa-rameters of the 
amera from equation 3. However, as approximation errors 
anpropagate from frame to frame, we prefer to perform a three-parameters op-timization from the 2D/3D 
orresponden
es. Hen
e, the 
amera parameters inframe k+1 are dedu
ed from the 
amera parameters in frame k by the relation:Rk+1 = Rk; T k+1 = T k;Ck+10 ; uk+10 ; vk+10 = argminC0;u0;v0 Pi r2i ;�k+1u = Ck+10 �ku;�k+1v = Ck+10 �kv :5 Experimental resultsIn this se
tion, we �rst justify experimentally the use of the threshold Ths
ore =0:5 to dis
riminate between zoom variations and 
amera motions. Then, se
tion5.2 present results of the partitioning pro
ess. Finally, registration results aregiven and augmented s
enes are shown.5.1 Choosing Ths
oreTo prove that Ths
ore = 0:5 is well suited to dis
riminate between 
amera motionand zoom variation, we 
onsidered a variety of video sequen
es (see Fig. 6). Ea
hsequen
e alternates zoom variations with 
amera motions, in
luding translationsalong the opti
al axis TZ . For ea
h frame of the sequen
e, the labeling in termsof zoom variation, rotation motion, translation motion is known. This allows usto 
ompare the results of our algorithm with the a
tual ones.
1:The 
ottage sequen
e 2:The 
up sequen
e 3:The oÆ
e sequen
e 4:The Loria sequen
eFig. 6. Snapshots of the s
enes used for testing the zoom/motion partitioning algo-rithm.We �rst 
ompute the s
ore of the zoom hypothesis for ea
h frame of the foursequen
es. Then we 
ompute the mean along with the standard deviation of the



s
ore for the frames of the sequen
e 
orresponding to zoom variation, rotationand translation and (more diÆ
ult 
ases) Z-translation and panorami
 motion.These results are shown in table 2: the �rst 
olumn shows the kind of variationundergone by the 
amera. The se
ond and third 
olumns give the s
ene under
onsideration and the number of frames in the sequen
e 
orresponding to the
amera variation. Columns 4 and 5 show the mean and the standard deviationof the residual 
omputed from the 
orresponding key-points (see equation 4).Finally, 
olumns 6 and 7 shows the mean and the standard deviation of the s
oreof the zoom hypothesis. These results 
learly show that the use of the residualde�ned in equation (4) does not permit to dis
riminate between zoom variationsand translation along the opti
al axis. On the 
ontrary, the s
ore we have de�nedgives high values when zoom happens and mu
h smaller results when 
ameramotion happens, even in 
ase of TZ translation. Finally, these experiments provethat the value Ths
ore = :5 is appropriate to distinguish zoom variations from
amera motions. variation in s
ene nb r �r mean �s
orethe 
amera frames s
oreparametersZoom 1 6 0.617 0.030 0.747 0.0552 4 0.460 0.266 0.860 0.0553 32 0.860 0.057 0.677 0.1334 29 0.515 0.014 0.561 0.064Rotation 1 10 3.593 1.439 -0.591 0.171+ translationTranslation 1 2 0.651 0.020 0.393 0.066along the 2 4 0.841 0.018 0.274 0.035opti
al axis 3 16 1.380 0.190 0.047 0.277Panorami
 4 15 0.630 0.066 -0.209 0.315motionTable 2. S
ore of the zoom hypothesis for various 
amera parameters.
5.2 Results in zoom/motion partitioningWe now give detailed results of our algorithm on the 
ottage sequen
e and theLoria sequen
e. Note that the 
amera parameters are known for the 
ottagesequen
e be
ause the house stands on a 
alibration target. The Loria sequen
eis a long sequen
e whi
h has been shot outside our laboratory. It 
onsists of 700frames of size 768�576. The a
tual 
amera parameters are not available for thissequen
e. However we have manually partition the sequen
e (see table 3.b) toenable 
omparison with the automati
 algorithm.For ea
h of the two sequen
es (Fig. 7), we show the s
ores 
omputed alongthe sequen
e, the results of our partitioning algorithm, and the 
omputed zoomfa
tor C0. Also shown in the Fig. 7.b and 7.e is the a
tual partition of thesequen
e for 
omparison. For the 
ottage sequen
e, the algorithm performan
e isquite good and the 
omputed parameters are very 
lose to the a
tual parameters.For the Loria sequen
e, the reader 
an noti
e that some s
ores are higher than



a. image motion/zoom0 ! 20 rotation 40Æ20 ! 35 zoom in35 ! 40 translation 10
m40 ! 55 zoom out55 ! 65 rotation �20Æ b. Image frames 
amera parameters0! 120 panorami
 motion121! 344 Zoom in345! 408 no motion, nor zoom409! 600 Zoom out601! end panorami
 motionTable 3. Camera parameters during (a) the 
ottage sequen
e and (b) the Loria se-quen
e.the threshold during the panorami
 motion between frames 0 and 100 (Fig. 7.d).However, in Fig. 7.a and 7.d, the test on the invariant point is shown with thedash-dot lines: the value 1 indi
ates that the invariant point is inside the image,while the value 0 indi
ates that the invariant point is outside the image. Usingthis 
onstraint, the results of the partition pro
ess is very good (Fig. 7.b and7.e).
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d: e: f:Fig. 7. Results for the 
ottage sequen
e (�rst row) and the Loria sequen
e (se
ondrow).5.3 Registration resultsIn this se
tion, registration results are shown for the 
ottage sequen
e and theLoria sequen
e. As the a
tual parameters are known for the 
ottage sequen
e, Fig.8 shows the traje
tory and the fo
al length 
omputed with our algorithm (dashed



lines) along with the a
tual parameters (solid lines). The reader 
an noti
e thatthe parameters obtained are in 
lose agreement with the a
tual values. To provethe a

ura
y of the 
amera parameters, we have augmented the s
ene with apalm tree and a bea
h umbrella (Fig. 9). Note that the shadows between thes
ene and the 
omputer generated obje
ts greatly improve the realism of the
omposite images. They have been 
omputed from a rough 3D re
onstru
tionof the s
ene given by the 
orresponding key-points. The reproje
tion of the 3Dmodel features with the 
omputed 
amera parameters is also shown. The overallimpression is very good.
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0 10 20 30 40 50 60 70Fig. 8. Comparison of the a
tual traje
tory (a) and fo
al length �u (b) (solid lines)with the 
omputed ones (dashed lines).

Fig. 9. Registration results on the 
ottage sequen
e: reproje
tion of the model (�rstrow) and snapshots of the augmented s
ene (se
ond row).We do not have the a
tual 
amera parameters for the Loria sequen
e. Hen
elooking at the reproje
tion of the model features is a good way to assess the



registration a

ura
y. Fig. 10 exhibits the reproje
tion of the model every hun-dred frames. The reader 
an noti
e that the reproje
tion error is small even atthe end of the sequen
e, whi
h proves the eÆ
ien
y of our algorithm. Finally, weaugment the sequen
e with the well known s
ulpture La femme �a la 
hevelured�efaite realized by Mir~o. The interested reader 
an look at the video sequen
esof our results1.

Fig. 10. Registration results on the Loria sequen
e: the reproje
tion of the model everyhundred frames (�rst row) and snapshots of the augmented s
ene (se
ond row).6 Con
lusionIn this paper we have presented an eÆ
ient registration algorithm for a zoomlens 
amera. We restri
ted our study to the 
ase of image sequen
es whi
h alter-nate zoom variation alone and 
amera motion alone. This is a quite reasonableassumption whi
h is always ful�lled by professional movie-makers. The perfor-man
e of our algorithm is quite good and our algorithm is 
apable of dis
rimi-nating between zoom variations and TZ translations. However, our experimentsshow that some improvements and extensions 
an be made to our approa
h.First, experiments on the Loria sequen
e show that the 
amera traje
tory issomewhat jagged. Smoothing the traje
tory afterwards is not appropriate be-
ause the 
orresponden
es between the image and the 3D model are not main-tained. We 
urrently investigate methods to in
orporate regularity 
onstraintson the traje
tory inside the registration pro
ess.Se
ond, as was observed in our experiments, moving obje
ts in the s
enemay perturb the partitioning pro
ess. Indeed, the 
orrelation s
ore is always lowfor moving obje
ts and this may lead to false reje
tion of the zoom hypothesis.Dete
ting moving obje
ts in the s
ene prior to the registration pro
ess 
ouldhelp to solve this problem.1 http://www.loria.fr/~gsimon/e

v2000.html.
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