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Abstract: This paper addresses the problem of rigid and non-polyhedral object
tracking with a view to reconstructing 3D objects, without a priori knowledge on
objects and on the camera motion. The outlines of our algorithm have been previously
described in [{]. It is made up of a prediction step and of an identification step based
on active contour models. In this paper we focus on the identification stage and we
propose new snake strategies to be sure that the snake has reached the homologous
contour.

1 Introduction

Our interest lies in modeling of non polyhedral scenes from observations taken by
a camera whose motion is unknown. In order to recover the camera motion and
to recover the 3D structure of the objects from occluding contours, an efficient
tracking tool capable of tracking rigid curves as well as occluding contours is therefore
essential. This task must be performed without any knowledge on the motion, nor
on the 3D object shape. The tracking tool we have designed is based on the active
contour models and we will firstly justify this choice.

Most tracking algorithms are made up of two parts: a prediction step first allows
the velocity field to be computed more or less precisely. Then, the homologous con-
tour is searched for in the vicinity of the prediction on the basis of shape similarity.
This implies that the less the contour has salient characteristics, the more accurate
the motion estimation must be computed.

Concerning our application, since the contours to be tracked generally do not
have salient characteristics, the use of active contour models appears as an interesting
tracking way since their deformation capabilities allow them to converge towards the
homologous contour even if the initialization is far from the contour. Thus, a rough
estimation of the velocity field is only required and this makes the prediction step
easier and quicker.



1.1  Specific snake based tracking problems

The idea of tracking objects in a sequence using snakes has been originally proposed
in [7]. Since then, numerous works have demonstrated that snakes are well suited
for tracking rigid or non rigid objects [10, 8, 6, 4, 1, 9]. Among these works, we
must distinguish those which operate in a simple context [8, 6] (tracking a strong or
isolated contour on a dark background in order to make easier the feature ground
detection) from those operating in complex environments [4, 1].

In order tracking can be performed successfully in complex environments, two
important problems must be solved during the identification stage: mismatching
problems and accuracy problems.

Mismatching
The main difficulty with snake based tracking is to avoid mismatching: this means
that we have to develop means to ensure that the snake will converge towards the
right contour. This difficulty stems from the fact that the snake evolution is in some
sense blind since it converges towards the nearest edge. In fact, the initialization
contains all a prior1 information available on the contour. Mismatching not only
arises if the prediction is too far from the contour to be tracked but also if the
image 1s complex: if there exists another contour close to the contour to be tracked,
the snake may be attracted by this spurious contour even if the prediction 1s quite
acceptable.

Solutions generally used consist in reducing the deformation capabilities of the
snake so that it converges towards a curve whose shape is as similar as possible
to the initialization, and which is probably the homologous contour [10, 6, 4, 1].
Nevertheless, the only use of rigidification cannot solve all mismatching problems,
especially when there exists a strong contour close to the contour to be tracked (Fig.
2.b). Thus, if some properties of the searched contour (such as the gradient profile)
are not available, such failure cannot be detected and, of course, not corrected.

However, in the tracking context, the snake can be assessed to a large extent
because the intensity profile does not vary too much from frame to frame. One
of the contribution of this paper is to show that such an information can be used
to detect parts of the snake where tracking fails and that we can build a more
appropriate initialization to reach the right contour. Our strategy is based on the
growing method presented in [2].

Accuracy
Besides mismatching problems, the snake accuracy must be improved because
3D reconstruction requires well localized contours. To be convinced of this, the
reader may observe the quality of the 3D reconstruction on the glass sequence when
accurate (Fig. 4.d) or inaccurate (Fig. 4.b) snakes are used. The snake accuracy
must be especially improved in two typical situations:

1. to detect curves with corner points or high curvature points. Indeed, it is well
known that classical snakes only produce smooth curves.

2. to accurately detect contour outlining regions whose intensities are very dif-
ferent. In such a case (Fig. 3.a), the strong contour locally attracts the weak
contour and this gives rise to a localization error.



1.2 Contributions

We especially tackle the mismatching problem which has received little attention up
to now. The outlines of our algorithm are presented in section 2. The main causes of
mismatching problems are studied in section 3 and we explain the criterion allowing
such situations to be detected. The local strategies to overcome the mismatching
problems and to improve the snake accuracy are described in section 4.

2 Overview of the tracking algorithm

We summarize in this section the two main steps of our algorithm. The interested
reader can find technical developments as well as numerous examples in [4].
Initialization: the contour to be tracked is detected in the first frame

1. step 1 A prediction of the curve location in the next frame is computed iter-
atively from the normal optical flow. Since we are interested in rigid objects,
the contour shape does not vary too quickly from frame to frame. In order to
avoid the divergence trend often encountered with iterative flow field computa-
tion, we therefore resort to an explicit 2D model and approximate the velocity
field with a 2D rigid displacement. This gives rise to a robust estimation.

2. step 2 Then the identification step i1s based on the active contour model and
uses the predicted curve as initialization. In order to reduce mismatching, we
use a rigid snake model so that the snake converges towards the contour whose
shape is the most similar.

3. step 3 Go to step 1 for the next image.

Statistical tests to avoid divergence of the prediction steps have been added and
the prediction is now robust. We now focus on the way to control that the snake
has reached the right contour.

3 Typology and detection of mismatching errors

We now describe successively the main causes of mismatching errors and the criteria
we have developed to detect them.

3.1 Origins of mismatching errors

1. Bad prediction
The obtained prediction is badly localized, due to a strong perspective effect
between two frames for instance, making the 2D rigid displacement hypothesis
transgressed.

2. Scene complexity
Even with a correct initialization, problems may occur if there exists a strong
contour very close to the contour to be tracked (Fig. 2). Indeed, if there are
holes in the gradient profile of the contour to be tracked, the strong contour
attracts the weak contour because of the small distance between them (Fig.



2.b). Moreover, the snake can also be attracted by a very close contour because
the numerical scheme used to control snake evolution create small oscillations.
Consequently, the snake may jump from one contour to another.

3. Contour profile
If the contour to be tracked outlines regions with very different intensity (Fig.
3), some localization errors occur in the neighborhood of a junction of a weak
contour with a strong one.

3.2 Detecting the mismatching errors

We now focus on the way to detect the contour parts on which tracking fails. Local
strategies are then applied on these parts to recover the whole contour. At first,
it must be noticed that accurate assessment criteria are not required. Indeed, if a
piece of contour is labeled as erroneous whereas it 1s not, the local strategies applied
afterwards will restore the initial curve. We have therefore defined three criteria to
detect erroneous parts:

Criterion 1: the gradient profile is not preserved from frame to frame

Given the parameterization induced by the active contours (if M/ is the it" curve
point in frame ¢, M;'H denotes the position reached by this point after both predic-
tion and convergence step), the points verifying:

|V (M) — VI (MY /|V T (M])| > threshold (in practice 30%)

are considered as possible mismatched points.

Criterion 2: Analysis of shape variations between two consecutive contours
The contour shape may vary a lot between two frames without mismatching occurs
(for occluding contours and large motion for instance). Thus, only strong curvature
variations are significant because they often indicate that the snake either locks on
a small detail (for instance on the circle used for camera calibration (Fig. f3)) or
starts to converge towards the wrong contour (Fig. 2.b). If m and ¢ are respectively
the average and the standard deviation of the curvature variation dif f.,, between
two consecutive contours, the points such that dif feyry () > m + 30 are considered
as problematic.

Criterion 3: Detection of localization errors
In order to detect the third mismatching case, contour points where the gradient
modulus varies a lot are searched for.

Error detection

The first criterion delivers parts of the contour whose gradient profile varies a
lot between two frames. Therefore it suggests either mismatching problems or real
change in the contour profile (when a pattern appears on an occluding contour for
instance). The second criterion is used to distinguish these two cases. When the
snake converges towards an erroneous contour, a high curvature variation appears at
the junction between the right and the wrong contour (Fig. 2.b). Therefore, strong
variations of the gradient profile on a sufficiently large interval lead us to suppose
mismatching whereas variation of the gradient profile on a small interval without
curvature variation will be considered as a natural profile variation.



The different cases are summarized below, and we also indicate corresponding
strategies used to override these difficulties, which we will present in the next section.

|| || Detection criterion | Diagnosis and Method ||

Case 1 || Similarity of the gradient profile acceptable tracking
No curvature variation

Case 2 || Similarity of the gradient profiles except | Quite usual variations
on small intervals — acceptable tracking
No curvature variation

Case 3 || Strong gradient profile variations Mismatching on this interval

between two frames on a large interval — growing snake method
Case 4 || No gradient profile variation (or only on | localization error due

a small interval) between two frames. to a detail

strong curvature variation — Continuity extension
Case 5 || Strong gradient profile variations along localization error due

the first contour, often strong curvature | to a junction

variation between the two contours — improve the accuracy

It must be noticed that several situations locally give rise to curvature variations:
for instance when a part of the snake is attracted towards another contour (case 3),
the extremities of these parts often present curvature variations which must not be
processed using case 5. On the same way, points where the gradient profile varies
a lot (case 4) may involve curvature variations which must not be processed using
case 5. Thus, the curvature variations considered in case 5 are points which are
concerned by neither case 3 nor by case 4.

4  Growing strategies to recover the homologous
contour

Once the mismatching errors have been detected, we use local strategies based on
the growing method to recover the homologous contour. The aim is to supply the
snake process with a more appropriate initialization than the predicted curve. The
growing strategy presented in [2] allows the whole contour to be recovered from a
small part. We briefly recall the principles of our method and then we present an
improved growing method which works fine in complex environments.

4.1 The growing strategy

Fig. 1 summarizes the main steps of the method. First, the assessment criteria (see
section 3) allows the mismatchings to be detected (a). Then the snake is lengthened
at each extremity in the tangent direction (b) and we let the snake converge (c).
The preceding stages are then iterated until the whole contour has been detected.

4.2 The improved growing strategy

An improved strategy is needed in complex environments. For instance in (Fig.
1.b), the snake may converge to the other object if the growth is too large. A
weaker growth is therefore needed to avoid that the snake may be influenced by the
wrong contour. Nevertheless, because of the shrinking effect due to the energy term
[ 1v'(s)]? of the active models, the snake length does not increase as soon as the
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Figure 1: The growing method (a,b,c) and the boundary condition

growth is too small. We therefore use special boundary conditions to override this
problem: we impose that the snake extremity belongs to the line passing through
the snake extremity and perpendicular to the contour. Such a boundary condition
ensures that the snake does not retract even with small growth, and the method
therefore converges even in intricate environments.

On a technical point of view such conditions are called transversality condition
in the Euler formalism and can be dealt with by the use of an additional equation.
Nevertheless, this simplified case can be solved straightforwardly; if n is normal to the
snake at the extremity A (Fig. 1), in the frame (A4, ¢, n), the coordinates (X (¢), Y (¢))
of the snake satisfy the conditions: X(0) = 0; the other snake extremities Y (0)
and (X(n),Y(n)) are free. We therefore impose the further conditions Y"(0) =
Y"(0) = X"(n) = X" (n) =Y"(n) = Y"(n) = 0. Hence the discretization matrix
associated to the X and Y coordinates can be computed (more technical details on
the implementation of the snake evolution can be found in [3]).

Nevertheless, the snake must be assessed after each growth to be sure that it
has not been attracted by the strong contour again. A simple way to do that is
to cut the snake before the locus where mismatching has been detected. After
convergence of the mismatched parts, the strong contour is then naturally detected.
It is therefore easy to decide after each growth whether the snake extremities belong
to this spurious contour or not. Significant results are shown in (Fig. 2). The
contour to be tracked is the owl eye (Fig. 2.a) but the tracking fails in the next
frame because the strong occluding contour attracts the snake (Fig. 2.b). The
detected mismatchings are shown in (Fig. 2.c) and the result of snake growing as
well as an intermediary step are shown in (Fig. 2.e and d).

4.3 Improving the accuracy: avoiding localization errors

Given a contour, the points where gradient varies a lot can be easily detected. Let
M (iy) be such a jump location. The main idea is identical as the one developed
for snake growing assessment: the snake is broken so that the two contours (the
strong one and the weak one) may be detected and does not influence each other
during the snake process. The whole contour can therefore be recovered from the
two others in the following manner: the snake is cut on the side where the gradient
is the weakest. let mg be the gradient average for points M; such that ¢x — d <
t < 2g and let my be the gradient average for points M; such that ig +d > i > 1
(in practice d = 20 pizels) . If mg > my the snake is split into the two parts
Mioye—d... Miyye and My qe..Miqeqq ; otherwise in the two parts My, —c—q...Mi,—
and M;,—¢..M;,—cyq (Fig. 3.a). The contour is therefore broken and gives rise to the
two natural contours (Fig. 3.b.) and (Fig. 3.c) because the first part is attracted by
the strong contour whereas the second part,which has been split under the junction
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Figure 2: Tracking the owl eye with the improved growing method

converges towards the weakest contour without being attracted by the other contour.
The snake boundary condition is the same as for growing assessment in order to avoid
retraction. The whole contour must then be recovered : the weakest contour is then
extended by a line until the strong contour has been reached. If this line does not
intersect the strong contour, the connexion between the two contours is the point
such that the distance between the line and the strong contour is the smallest (Fig.
3.d). This strategy allows delocalization errors to be overcome as shown in (Fig.
3.e). Significant results on the whole sequence are shown in (Fig. 4). The first
figure (Fig. 4.a) exhibits the tracking results when the classical method is used
whereas the use of the described method above leads to significant improvements
of the tracking (Fig. 4.b) especially on the upper glass corners. This allows 3D
reconstruction [5] to be noteworthy improved (Fig. 4.d).
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Figure 3: Avoiding the delocalization errors.
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Figure 4: Tracking on the whole sequence without (a) and with (¢) correction of the
localization errors and the associated reconstruction

5 Conclusion

The main contribution of this article is to provide control strategies on the identifi-
cation step when no a priori knowledge is available. This point has been little dealt
with in works involving snake based tracking. We have shown in this paper that
local strategies based on the growing method allow most mismatching problems to
be overcome in the case of rigid objects or not very deformable objects. In fact,
local strategies we have developed aim to supply the snake with a more appropriate
initialization than the one given by the prediction stage.
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