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Abstract

Realistic merging of virtual and real objects requires that
the augmented patterns be correctly occluded by foreground
objects. In this paper, we propose a semi-automatic method
for resolving occlusion in augmented reality which makes
use of key-views. Once the user has outlined the occluding
objects in the key-views, our system detects automatically
these occluding objects in the intermediate views. A region
of interest that contains the occluding objects is first com-
puted from the outlined silhouettes. One of the main con-
tribution of this paper is that this region takes into account
the uncertainty on the computed interframe motion. Then
a deformable region-based approach is used to recover the
actual occluding boundary within the region of interest from
this prediction.

Results and videos are available at the URL:
http://www.loria.fr/˜lepetit/Occlusions.

1. Introduction

The objective of augmented reality (AR) is to add vir-
tual objects to real video sequences, allowing computer-
generated objects to be overlaid on the video in such a man-
ner as to appear part of the viewed 3D scene. Applications
include computer-aided surgery, tele-operations, and spe-
cial effects for the film and the broadcast industries. This
paper concentrates on the particular application of video
post-production.

Realistic image composition requires that the augmented
patterns be correctly occluded by foreground objects. How-
ever, solving the occlusion problem for AR is challenging
when little is known about the real world we wish to aug-
ment. Theoretically, resolving occlusion amounts to com-
pare the depth of the virtual objects to that of the real scene.
However, computing dense and accurate depth maps from
images is difficult. This explains why the accuracy of the
obtained occluding boundary is generally poor. Moreover,
in most AR applications, the interframe motion is nota pri-

ori known but must be computed. Inacurate motion estima-
tion thus results in possibly large reconstruction errors.

In order to overcome problems stemming from possi-
bly large reconstruction errors, Ong [6] proposed a semi
interactive approach to solve occlusion: the occluding ob-
jects are segmented by hand in selected views called key-
frames. These silhouettes are used to build the 3D model
of the occluding object. The 2D occluding boundary is
then obtained by projecting the 3D shape in the intermediate
frames. However, due to the uncertainty on the computed
interframe motion, the recovered 3D shape do not project
exactly onto the occluding objects in the key-frames nor in
the intermediate frames.

In this paper, we also use the concept of key-views but
we do not attempt to build the 3D model of the occluding
objects from all the key-frames. The novelty in this paper
is twofold: (i) we do not attempt to recover the 3D model
of the occluding objects from all the key-views. We only
compute the 3D occluding boundary from two consecutive
key views. The projection of this 3D curve is a good pre-
diction of the actual 2D occluding boundary in the interme-
diate frames. (ii) we recover the actual occluding boundary
with a good accuracy using deformable region-based track-
ing followed by an adjustment stage based onsnakes. This
allows us to compensate easily for the interframe motion er-
ror. We then obtain an accurate estimation of the occluding
boundary over the sequence.

2. Overview of the system

Theoretically, the 3D shape of the occluding object can
be computed from its silhouettes detected in an image se-
quence. For AR applications however, the interframe cam-
era motion is computed from image/model correspondences
or with 2D/2D correspondences over time [4, 7]. The errors
resulting from this inaccurate registration makes the 3D re-
construction untractable. That is the reason why we only
attempt to recover the 3D occluding boundary from two
consecutive key-frames instead of recovering the 3D shape
of the occluding object from the whole sequence. Fig. 1
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explains the way we compute a first estimation of the 2D
occluding boundary in each frame of the sequence. First,
the user points out key-frames which correspond to views
where aspect changes of the occluding object occur. These
key-frames are framed in black in Fig. 1. The user also out-
lines the occluding object on these key-frames (in white).
It is well known that the 3D occluding boundary depends
on the camera viewpoint. However, the starting point for
our method is to build a good approximation of the 3D oc-
cluding boundary which will be used for all the frames be-
tween two kew-views. This 3D curve is built using stereo-
triangulation from the two silhouettes outlined by the user
provided that the translation between the two frames is not
null (Fig. 1.a and b). The projection of this approximated
occluding boundary on the intermediate frames thus pro-
vides a fair estimation of the 2D occluding boundary (Fig.
1.c and 1.d).

Due to the uncertainty on the computed interframe mo-
tion, this prediction can be relatively far from the actual
occluding boundary for at least two reasons (see for in-
stance Fig. 5.a): (i) the computed 3D occluding bound-
ary is only an approximation of the real one because stereo-
triangulation is performed from two occluding contours. (ii)
more importantly, errors on the camera parameters induce
reconstruction errors on the 3D curve and consequently er-
rors on its projection in the considered frame.

One of the main contributions of this paper is to show
that the error on the computed camera parameters can be
estimated. The uncertainty on the 3D occluding boundary
can then be deduced. This allows us to define a region
of interest around the predicted contour which is likely to
contain the actual occluding boundary (section 3). The re-
finement stage (section 4) is then carried out within this re-
gion: region-based tracking is first used to recover the re-
gion whose size and texture only differ from the predicted
shape with an affine transformation. Finally, active contour
models are used to adjust the occluding boundary.

3. Reconstructing the 3D occluding boundary

3.1. Computing the camera parameters

In this section we first briefly recall how we compute
the camera motion over the sequence. Our approach to
motion computation takes advantage of 3D knowledge on
the scene as well as 2D/2D correspondences over time [7].
Given the viewpoint[R
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Let C

1

andC
2

be the occluding object outlined in the
two key-views. We build the 3D occluding boundary using
stereo triangulation: Letm

1

be a point onC
1

. Its corre-
sponding point in the other key-view is the intersection of
the epipolar line withC

2

. As usual, the order constraint is
used to solve the ambiguity of the correspondence problem.

3.2. Taking into account the error on the estimated
motion

The critical role of motion error in scene reconstruction
has been pointed out in [8]. Recently, Csurka and Faugeras
[3] attempted to compute the covariance on the fundamental
matrix recovered from point correspondences between two
frames. The uncertainty is computed under the assumption
that the matched points are independent. However, this sta-
tistical assumption leads to decrease arbitrarily the uncer-
tainty on the fundamental matrix as the number of matched
points increases.

That is the reason why we prefer to use the� indifference
region [1] to investigate the reliability of the estimated cam-
era parameters. The fact that we have elected to minimize a
function�(p) means that we set some store by obtaining a
low value of this function. It is reasonable to suppose that
values of� almost as low as�� would satisfy us almost as
much as��. This gives rise to an� indifference region inp
space described by the equation:
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In a sufficiently small neighborhood ofp� we may ap-
proximate� by means of its Taylor equation:
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whereH� is the hessian of� computed atp = p

�. More
details on the computation ofH� are given in Annex A.

As p� is the minimum of�, the gradient is null at the
optimumr�(p�) = 0 and equation (2) becomes
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The� indifference region is then defined by:
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which is the equation of a 6-dimensional ellipsoid.
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Figure 1. Overview of the system.

Figure 2. The indifference regions for the
translation parameters over the Stanislas se-
quence.

Fig.2 shows these indifference regions computed along
the Stanislas sequence (we use� = 1). The building in the
background is the 3D model used for registration. For each
frame of the sequence, we drew the� indifference region for
the translation parameters.

We can now compute the reconstruction error on the oc-
cluding boundary from these indifference regions. If point
correspondences were available, the reconstruction error
could be recovered in an analytical way from viewpoint un-
certainties [8]. Unfortunately, as we only have curve corre-
spondences, the matched points depends on the viewpoint
and are computed as the intersection of the epipolar line
of the point withC

2

. We therefore resort to an exhaus-
tive approach. We consider theextremal viewpoints, that are
the vertices of the 6-dimensional indifference ellipsoid.Let

fp
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g) the extremal viewpoints in
the two key-views. Letm

1

be a point onC
1

. Given an ex-
tremal viewpointp

1

, we can compute the12 possible recon-
structions ofm

1

with the12 extremal views in key-frame 2.
Using the12 extremal viewpoints in key-frame 1, we then
obtain122 extremal reconstructions ofm

1

according to the
uncertainty computed on the two key-views. The convex
hull of these144 points is a good approximation of the 3D
reconstruction error onm

1

.
We can now predict the position of the 2D occluding

boundary in the in-between frames by simply reprojecting
the 3D occluding boundary. To estimate the 2D uncertainty
on the projected boundaryC, we have to take into account
the 3D reconstruction error and the uncertainty on the con-
sidered viewpoint. We again resort to an exhaustive method:
for each pointm

i

on C, the122 possible extremal recon-
structions are projected onto the current frame using the12

extremal viewpoints of this frame. We define the spatial un-
certainty on the predicted occluding boundary associated to
m

i

as the convex hull of these123 image points. This area
is denoted�

i

in the following.
The main stages for computing the 2D uncertainty on

the predicted occluding boundary are illustrated in Fig. 3:
Fig. 3.a exhibits a point on the predicted boundary and Fig.
3.b shows the projection of the corresponding 3D extremal
points using the extremal viewpoints and the convex hull
�

i

. Finally, Fig. 5.a shows the 2D uncertainty computed
for each point of the predicted boundary (dotted line). The
points are drawn with black circles or crosses and the un-
certainty is drawn in white. The reader can notice that some
points on the steps have no associated spatial uncertainty.
Indeed, because the key silhouettes do not match exactly,



a b

Figure 3. Computation of the spatial uncer-
tainty on the predicted occluding boundary.

the epipolar line computed with some extremal viewpoints
does not always intersectC

2

. If more than 50% of the
epipolar lines computed with the122 extremal viewpoints
do not intersectC

2

, the spatial uncertainty is not defined at
this point.

4. Refining the occluding boundary

As a result of the prediction stage we get an estimate
of the occluding boundary along with its 2D uncertainty in
the considered frame. In addition we compute not only the
boundary but also the texture of the occluding object so as
to get apredicted templateof the occluding object. The
textureI

template

is computed from the nearest key-view by
using 2d local image transformation.

We still have to determine the occluding object from the
predicted template. Due to the error on the computed mo-
tion and also because reconstruction is achieved from oc-
cluding contours, the template boundary can be relatively
far from the actual occluding object and their shapes can
also differ (see for instance Fig. 5.a). However, it is im-
portant to note that the actual boundary belongs to the com-
puted uncertainty region. Following previous works on de-
formable structures [2] we use a hierarchical algorithm; we
first compute a global estimation of the shape deformation
between the key-frame and the current frame. Then we use
a fine tuning deformation to adjust the details. As affine
transformations seem to be appropriate to describe shape
variations due to motion uncertainties, the affine motion that
best matches the occluding template on the considered im-
age is searched for:
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The optimal parametera is defined as the one that yields
the best fit between the predicted templateI

template

and the
current imageI . The best match is defined as the minimum
of the correlation measure:
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where the predicted curveC is defined by the set of ver-
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), W is the size of the cor-
relation window andR

C

is the region insideC. Note that
only the points which are inside the occluding objects are
considered in the estimation. This way, points belonging to
the changing background do no affect the matching process.

In addition, we have slightly modified the correlation
measure in order to take into account the 2D uncertainty
on the predicted curve. A penalty term is used to ensure
that the matched point belongs to�

i

. The penalty has the
form �W

2 where� is a constant value. The function to be
minimized is therefore defined as:
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1, the first item of 
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is used because the assumption
transf
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is fullfiled. These points are therefore
considered in the correlation function without further con-
straints. Finally, fine tuning adjustement of the occluding
boundary is performed with snakes fromtransf

a

(C).

5. Results and discussion

The effectiveness of our approach is demonstrated on
two sequences. The Stanislas sequence was shot from a
car which turned around the square. Our aim is to incrust a
virtual plane passing behind the statue. Here, the 3D model
of the opera is used for registration (the building in the back
of the scene) while the 3D model of the statue is unknown.
The three key-frames chosen by the user are shown in Fig.
4 (frames 66, 118, 150). Fig. 4 exhibits the recovered oc-
cluding boundary in the frames 15, 66 and 130. The overall
visual impression is very good though the predicted bound-
ary is sometimes relatively far from the actual one.

Fig. 5 clearly proves the efficiency of incorporating mo-
tion error into our process. The uncertainty on the predicted
curve is drawn in white. The pointsm

i

that are outside
the uncertainty region�

i

after the region based tracking are
shown black crosses, whereas the points inside the region
are drawn with black circles. For both images, the predicted
2D curve is shown in dotted lines. If the 2D uncertainty is
not considered (Fig. 5.a), the recovered boundary is erro-
neous, especially near the steps. On the contrary, if points
are constrained to be in the uncertainty region, the occlud-
ing boundary is successfully recovered (Fig. 5.b).

Finally, our algorithm is demonstrated on thecow se-
quence. Zooms on the cow and the user-defined silhouettes



Figure 4. (first row) : The key-views along with the user-defin ed silhouette: frame 60, 118 and 150.
(second row): The recovered occluding boundary in the frame s 15, 66,130 and the augmented scene.

are presented in Fig. 6.b, c and d. The three key-views are
relatively far. Moreover, the aspects of the cow are very dif-
ferent in the considered key-frames. Even in this case, the
recovered occluding boundary before the snake process is
quite convincing (see Fig. 6.e). Finally, adjustment with
snakes allows us to recover accurately the occluding object
(Fig. 6.f) and to augment the scene (Fig 6.g and 6.h).

6. Conclusion

We have presented a new approach for resolving occlu-
sion for AR tasks. The key concept is that fine detection
of occluding boundary can be achieved with moderate user
interaction. One of the main strengths of our algorithm con-
cerns its ability to handle uncertainties on the computed
motion between two frames. Through judicious choice of
key-frames, our approach seems to be more convenient and
more accurate than most existing approaches.

Annex A: Computing the HessianH�

H

� is the value of the HessianH =

�

�z

(

��

�z

)

t com-
puted at the minimump� of �. � is defined as�(p) =

1

n

P

n

i=1

r

i

2

+

�

2m

P

m

i=1

v

i

2 where

r

i

2

= dist

2

(m

i

; proj(M

i

))

v

i

2

= dist

2

�

q

i

k+1

; ep

k+1

(q

i

k

)

�

+ dist

2

�

q

i

k

; ep

k

(q

i

k+1

)

�

r

i

2 andv
i

2 can be expressed as an analytical function
of the 6-dimensional vectorp = (�; �; ; t

x

; t

y

; t

z

) using
the fundamental matrix. Because the analytic expression
of the second derivatives ofv

i

2 with respect top are really

untractable, we use an approximation to the first order:H �

2

P

1

n

�

�r

i

�p

�

t

�

�r

i

�p

�

+

�

2m

P

�

�v

i

�p

�

t

�

�v

i

�p

�

.

References

[1] Y. Bard. Nonlinear Parametric Estimation. Academic Press,
1974.

[2] B. Bascle and R. Deriche. Stereo Matching Reconstruction
and Refinement of 3D curves Using Deformable Contours.
In Proceedings of 4th International Conference on Computer
Vision, Berlin (Germany), pages 421–430, 1993.

[3] Csurka, C. Zeller, Z. Zhang, and O. Faugeras. Characterizing
the Uncertainty of the Fundamental matrix.Computer Vision
and Image Understanding, 68(1):18–36, May 1997.

[4] A. Fitzgibbon and A. Zisserman. Automatic Camera Recov-
ery for Closed or Open Images Sequences. InProceedings of
5th European Conference on Computer Vision, University of
Freiburg (Germany), pages 311–326, June 1998.

[5] C. Harris and M. Stephens. A Combined Corner and Edge De-
tector. InProceedings of 4th Alvey Conference, Cambridge,
Aug. 1988.

[6] K. C. Ong, H. C. Teh, and T. S. Tan. Resolving Occlusion in
Image Sequence Made Easy.The Visual Computer, 14:153–
165, 1998.

[7] G. Simon, V. Lepetit, and M.-O. Berger. Computer Vision
Methods for Registration: Mixing 3D Knowledge and 2D
Correspondences for Accurate Image Composition. InFirst
International Workshop on Augmented Reality, San Fran-
cisco, Nov. 1998.

[8] J. Thomas, A. Hanson, and J. Oliensis. Understanding Noise:
The Critical Role of Motion Error in Scene Reconstruction.
In Proceedings of 4th International Conference on Computer
Vision, Berlin (Germany), 1993.



a.

regionsΛ i

b.

Figure 5. The recovered occluding boundary without (a) and w ith (b) the use of the 2D uncertainty.
The predicted curve is shown with dotted lines. The points that belong to the uncertainty region�

i

are shown with black
circles, whereas the points outside�

i

are drawn with black crosses.

a. b. c. d.

e. f. g. h.

Figure 6. The cow sequence.
(a): an image of the cow sequence; (b,c,d) zoom on the key-views and the user defined silhouettes (frames 0,30,60); (e): the
recovered occluding boundary before snake adjustment in frame 46; (f): the recovered final boundary; (g,h): the augmented
scene.


