A Flexible Iterative Method for 3D Reconstruction from X-ray Projections
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Abstract

The problem of reconstructing a three-dimensional im-
age of an object from a few number of X-ray projections
is highly underdetermined. We propose a flexible method
based on the regularization of the inverse linear problem
witha general quadratic criterion. The minimizationis per-
formed by an iterative algorithm with a Gauss-Seidel be-
haviour. Thanks to the Discrete Smooth Interpolation (DSI)
formulation, additional linear constraints are inserted, and
the method is ensured to converge to the unique minimum.
The application of this method is shown for 3D reconstruc-
tion of cerebral blood vessels from six projections, and the
effect of various criteria is compared to the result of other
algebraic methods.

1. Introduction

Recovering a three-dimensional image of an object from
a number of X-ray projections is of major interest in many
fields, and especially in medicine. In Digital Subtraction
Angiography (DSA) the superimposition of blood vessels
branches on projected images makes their relative position
in space difficult to understand. Thus, for complex vessel
networks such as the ones present in the brain, a three-
dimensional image can be very useful to the diagnosis.

In X-ray projection images, a pixel represents the sum
of a density function (the absorption coefficient of the ob-
ject) over the line going from the X-ray source to this pixel.
Different methods have been developed to reconstruct a 3D
image of a vascular network from DSA images, depending
on the number and the nature of the available projections.
‘When dealing with only two orthogonal projections, one
must use additional information or a strong a priori model.
For coronary arteries, missing information can be retrieved
thanks to cardiac movement [1]. In some cases, a geomet-
ric model based on the characteristics of the vessels [2] can
be used. The flow information of the contrast agent prop-
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agation in the vessels can also help the reconstruction [5].
Binarity hypotheses have also been used [12] to reconstruct
vessels from two or three projections, sometimes associ-
ated with simulated annealing [11]. Nevertheless, when a
pathology such as an aneurysm or an Arteriovenous Malfor-
mation (AVM) is present in the images, such models cannot
be used and a fully tomographic reconstruction is usually
necessary.

The algebraic formulation has been widely used for solv-
ing 3D tomography problems [3]. The object space is dis-
cretized in cubic voxels, and the problem is transformed into
the resolution of a huge linear system:

Y = Hf M

The unknown N-dimensional vector f represents the
density for all voxels, and the M -dimensional data vector Y
contains all the pixels of the P projection images. The cone-
beam projection process can be seen as a sparse (M X N)
matrix H where each row h; corresponds to the equation
of one ray. The size of this system makes standard inver-
sion techniques intractable; it can be solved by use of relax-
ation iterative methods that only require storage of vector
Y and vector f. The basics and the properties of such iter-
ative algorithms are reviewed in section 2. Those algebraic
methods are preferred when a large number of projections is
available. A multiscale reconstruction scheme has also been
devised to give efficient high-resolution 3D images [14].

Those methods sometimes suffer from a lack of flexibil-
ity when the number of projections is low (from 4 to 6). In
section 3, we present another iterative method inspired from
discrete constrained interpolation. This method allows to
minimize with a Gauss-Seidel approach a general criterion
composed of quadratic terms. Various forms of the crite-
rion are proposed which correspond to different kinds of
regularization of the ill-posed inverse problem. In section 4,
the algorithm is applied to cerebral vascular reconstruction
from six projections, and the effect of different criteria is
compared to the solution given by classic algebraic meth-
ods.



2. Classic iterative methods

The ART (Algebraic Reconstruction Technique) algo-
rithm for reconstruction from projections is based on the
iterative formula for a given ray j:
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ART is a row-action technique since for each iteration,
the volume is updated according to a different row of ma-
trix H. One cycle is completed when the M rays have been
processed. If the linear system is consistent and if the relax-
ation coefficient is always comprised between 0 and 2, ART
is known to converge to the minimum variance solution of
(1), which is also the minimum norm solution [4]. If the
system is inconsistent, the algorithm can be stopped after a
few iterations, in order to give a suitable reconstruction.
MART (Multiplicative ART) 1s identical to ART except
that the volume is updated multiplicatively instead of addi-
tively:
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It has been proven [7] that if the system is consistent and
if the volume is properly initialized, MART converges to
the maximum entropy solution of (1).

3. Proposed algorithm

In most of the algebraic methods, a particular minimum
of ||'Y —Hf|| is selected. Moreover, when data are noisy, the
convergence of ART and MART is not insured. Appropriate
relaxation coefficients and number of iterations must then
be selected in order to avoid oscillatory effects.

Regularization methods have been used to solve complex
3D recovery problems [13]. In our case, quadratic terms are
preferred to keep the convergence and the efficiency of the
method. The approach we propose is based on a regulariza-
tion of the inverse problem by a smoothness function and
more generally by extending the criterion with any linear
term. Our method uses the Discrete Smooth Interpolation
(DSI) formulation, which furnishes a general tool for solv-
ing a large system of equations. The resolution is done by a
Gauss-Seidel iterative approach where here again, only the
volume and the projections need to be stored in computer
memory.

In this section, we first review the basics of DSI algo-
rithm and its convergence properties. Secondly, we show
that it can be applied to the reconstruction problem. Fi-
nally, we enumerate some additional constraints that can be
used to make the algorithm converge to a wide variety of
solutions.

3.1. Discrete Smooth Interpolation

DSI was introduced by Mallet [8] as a generic algorithm
to smoothly interpolate data from various origins. We con-
sider a function ¢ defined on the set Q = {1,2,...,N}
indexing the nodes of a given graph G. Typically, G can
model a surface composed of polygonal facets and ¢ rep-
resents the position of each vertex. In image processing,
G can represent a regular discretization of a volume in cu-
bic voxels, and ¢ the grey level. We consider here the case
where ¢ has to be evaluated over the whole set 2. We de-
note N () a neighbourhood of node « defined as the set of
nodes that can be reached from ¢ in less than a given num-
ber s of steps in graph G. A(w) is the orbit of ¢, defined as
N(a) — {a}.

The DSI problem is to find ¢ which minimizes R*(¢) =
R(p) + p(y), where R quantifies the roughness and p the
violation of a set C of weighted linear constraints. These
two terms are defined as:
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{v*(k)} are given weighting coefficients which corre-
spond to a planarity constraint. They are supposed to verify
v (k) > 0if @ € A(k), and v% (k) = — 37 o) v (k)
otherwise.

The linear constraints ¢ are ., Ac(k)p(k) = b., and
w, is their associated ‘“‘certainty factor”.

When considering a single node «, the resolution of
%%(10‘;’—)) = 0 leads to the following formula (called the local
form of the DSI equation):
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The main property of this formulation is that the contri-
bution of each linear constraint is additive both in the nu-
merator and in the denominator of (3). Thus, the introduc-
tion of new constraints 1s easy: one only needs to calculate
the corresponding terms I'; and . with (6).
An iterative algorithm to minimize R* is obtained by
successively updating ¢ for every node « according to:
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We say that one iteration of DSI is accomplished when
all the nodes of € have been scanned, which correspond to
N elementary iterations. The main result concerning DSI is
the following uniqueness and convergence property:

If ¢ is known on at least one node or if there is one non-
null linear constraint, then R* () has a unique minimum
and the DSI algorithm converges to this minimum.

The proof can be found in [9]. It must be noticed that
uniqueness is mainly due to the roughness criterion, which
can be written R(p) = @7 W, where W is a symmetric
positive semi-definite matrix whose rank is N — 1. More-
over the algorithm in (7) is equivalent to a Gauss-Seidel
method for solving the linear system:

(W + szATA Zw AT, (8)

3.2. Application to the tomography problem

We now address the reconstruction problem defined in
section 2. Let €2 be the set of voxels of the algebraic formu-
lation, and G the graph for the 6-neighbours connectivity.
The reconstruction problem can be seen as the construction
of a smooth density function f which respects the linear sys-
tem Y = Hf as well as possible. We can consider the ray
equations in (1) as linear constraints, all having the same
weight zo. The criterion to be minimized is then:

R*(f) = R(f) + = ||Y — Hf||” ©)

To be consistent with the previous notations, we now de-
note f(i) as well as f; the ¢** component of f. The 7"
equation is h;f = y; and, by use of (6), it leads to two addi-
tive terms in the DSI iterative formula at voxel a:
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Note that if we call g, the volume null everywhere ex-

cept in voxel & where gqo(e) = 1, we have the following
equality:
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HT is the backprojection operator: it sets the value of
a voxel to the sum of the corresponding densities on the
projections. Hg, represents the reprojected images of gq-
Therefore, in our problem, the value of HY (Hg, ) in voxel
« can be replaced by the number P of X-ray projections. If
we denote 60" (@) = Y7, hio(y; — hif (™)) the residual for
voxel «, by substituting (10) in (7) for all rays and use of
(11), we obtain the DSI update formula for tomography:
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The main difference with ART-like algorithms is that
each iteration acts on one voxel instead of acting on one ray.
Moreover, if the roughness terms M * and I'* are removed
from (12), the iteration is identical to ICM (Iterated Condi-
tional Modes), recently proposed by Payot [10] for vessels
reconstruction.

3.3. Additional constraints

Regularizing the inverse problem with a smoothness
function is sufficient to insure convergence and uniqueness
of the method. Nevertheless, one may want to insert more
prior knowledge in the model. In this subsection, we de-
scribe four constraints that can be added to change the as-
pect of the solution without losing the properties of the
method.

Positivity. This constraint can be used when the recon-
structed volume is known to be positive. Then, as it is usu-
ally done with ART, each voxel is forced to remain positive
at update time.

Closeness to a given volume. The solution can be con-
strained to stay close to a given volume f*. This is incor-
porated in DSI as N linear constraints f(7) — f*(7) = 0,
all having the same weight t,. Each constraint only acts
on one voxel, so there are two extra terms in the iterative
formula which are v, = w? and ['; (@) = —w2f*(a).

Minimal variance. In the DSI formulation, inserting
the variance V(f) in the minimized criterion is equiva-
lent to adding N linear constraints f(i) — f = 0 with
the same weight cz,. The calculation of the Ulobal con-
uributions 4, and T, from (6) leads to vy, = w@?? N L and

To(e) = @2 (= T za 1)

Minimal total density. The square of the total volume
density S(f) can also be inserted in the criterion. This cor-
responds to the addition of a single constraint ), f{7) = 0,
weighted by wy. This induces, for a voxel a: 74 = =@} and

La(e) = @330 F(7):

Finally, merging all those constraints leads to the follow-
ing algorithm:
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Figure 1. Six angiographic projections of an
internal carotid artery

which converges to the unique positive minimum of:
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(14)

4. Application to 3D vascular reconstruction

In this section, our algorithm is compared to other al-
gebraic methods for reconstruction of an internal carotid
artery from six DSA images. The projections (see Fig. 1)
were extracted from three biplane anglographic sequences
acquired in stereotactic conditions. Images were corrected
from geometric distortions through an accurate calibration
and correction technique [6], and the projection matrices
were computed using the fiducial markers of the stereotac-
tic frame.

4.1. Reconstruction results

All experiments were made using the positivity con-
straint; it is a natural assumption in vascular reconstruction.
One iteration of DSI is almost as much time-consuming as
one cycle of ART or MART, but more iterations are needed
for obtaining convergence. The initial volume has an influ-
ence over the number of iterations until convergence, but
not over the final solution, since it is unique. We chose to
initialize the volume with a null value. We stopped DSI
after six iterations and ART after two or three. A nor-
malized weight for X-ray equations constraint is defined as
w = (@w?P)/M*(a), so that when w = 1, the roughness
term and the linear system term are equal in the denomina-
tor of (12).

Fig. 3.c shows the result of a DSI reconstruction with
w = 1.5 and without other additional constraint. The so-
Iution satisfies very well the linear system (low reprojec-
tion error) but, as can be seen on the axial slice, the recon

structed volume suffers from a lack of uniformity. The min-
imal variance constraint can be used to add a regulariza-
tion effect on the solution. The normalized weight is in this
case wy = w2(N—1)/(NM~*(c)). Such experiments were
made and unsurprisingly led to reconstructions very similar
to the ART solution.

The constraint of minimizing the distance to a given vol-
ume £* is only interesting in the case where a prior solution
is known. Unfortunately, this not often the case, especially
when dealing with images containing pathologies. The cor-
responding normalized weight is w, = w?/M*(a). Since
a vascular volume is made of a large majority of black vox-
els, the algorithm could be used with f* = 0, but the re-
constructed volume is once again very similar to the ART
solution. In this case, a quadratic norm minimization is per-
formed during the reconstruction.

A constraint was presented in section 3.3 where the sum
of the densities in the volume is minimized. The normalized
weigth can be taken as wy = (N/N,)w?/M* (), where
N, is the approximate number of voxels composing one ray
equation, i.e. the number of non-null elements in a line of
matrix H. When { is positive, such a minimization tends to
find a solution with a low L; norm and does not keep the
average volume density (Fig. 4). Fig. 3.d shows the recon-
struction obtained using w = 1.5 and wy = 1.5. Compared
to DSI without additional constraint, the quality has signif-
icantly improved: more vessels can be seen on the recon-
struction. Moreover, the contrast on small vessels seems a
little better than in the MART reconstruction and the arti-
facts due to occluding objects are avoided (see Fig. 2).

4.2. Discussion

We have presented a flexible iterative method for recon-
structing an object from its projections which is based on
the DSI formulation. The algorithm minimizes a criterion
composed of different linear terms whose weights change
the aspect of the reconstructed volume. One of them is a
roughness criterion which gives a smooth aspect to the so-
Iution. Its special form ensures the uniqueness of the solu-
tion and the convergence of the algorithm, even with noisy
data. Implementation of the method leads to a voxel by -
voxel algorithm behaviour instead of the classical ray by ray
methods. Its application for cerebral vascular reconstruc-
tion from a few number of projections shows promising re-
sults, especially when the total volume density is inserted in
the minimized criterion.
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Figure 3. Comparison of (a) ART, (b) MART,
(c) DSI with w=1.5 and (d) DSl with
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