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Abstract

A model registration system capable of tracking an
object, the model of which is known, in an image se-
quence is presented. It integrates tracking, pose de-
termination and updating of the visible features. The
heart of our system is the pose computation method,
which handles various features (points, lines and free-
form curves) in a very robust way and is able to give a
correct estimate of the pose even when tracking errors
occur. The reliability of the system is shown on an
augmented reality project.

1 Introduction

Our aim is to build a model registration system
capable of tracking an object, the model of which is
known, in an image sequence. Such systems are of
great interest for augmented reality applications, in
particular when virtual objects must be overlaid on an
image sequence or when an object in the scene must
be replaced with another one [2, 17, 21].

The registration system must be able to automati-
cally track features in the images and to compute the
pose from their correspondences with the 3D model.
Since the world around us is not piecewise planar, sig-
nificant features that can be extracted in an image are
often curved contours, especially if we consider out-
door environments. Thus, the features we consider for
pose computation are points, lines and curves.

It is generally assumed that correspondences are
maintained during tracking. Unfortunately, tracking
errors will sometimes result in a model feature being
matched to an erroneous image feature. Even a single
such outlier can have a large effect on the resulting
pose. For point features, robust approaches allow the
point to be categorized as outlier or not [10]. When
curved features are considered, the problem is not so
simple, as some parts of the 2D curves can perfectly
match the 3D model whereas other parts can be er-
roneously matched. To make real progress, it is then
necessary to devise a robust algorithm capable of ex-

tracting the parts of the features that match the 3D
model.

Besides the pose computation problem, another
problem must be solved for maintaining registration
over time: as the camera undergoes motion with re-
spect to the object, new features may appear while
old ones disappear. Hence, the set of model features
that are tracked in the sequence must be dynamically
updated.

1.1 Previous Work

Computing the pose from 3D-2D correspondences
often consists in the following steps. First, matching
hypotheses are generated. Then, the pose is computed
using these correspondences. In the tracking context,
arough estimate of the pose is available (the pose com-
puted for the previous frame). Hence, the correspon-
dent can be searched for in a limited neighbourhood
of the projected feature.

Since a single outlier can have a large effect on the
resulting pose, special care is often taken in the match-
ing process, to reduce possible false matches. For in-
stance, Lowe [15] uses a probabilistic criterion to guide
the search for correct correspondences, before using a
weighted least squares including a priori constraints
for stabilization. Other methods [9, 12] use a veloc-
ity model and a Kalman filter to better predict the
position of the image feature. Unfortunately the use
of a velocity model imposes regularity constraints on
the camera motion; this can be inappropriate for aug-
mented reality applications for which the scene is often
shot by a moving observer.

We therefore advocate a less constraining approach.
Instead of attempting to refine the matching process,
we prefer to use a robust statistical method to com-
pute the pose from the matching induced by the track-
ing process. Our approach has some common points
with [17]. They also use robust methods for pose com-
putation after the tracking stage. But they only con-
sider point features, whereas we consider points, lines
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Figure 1: The temporal registration system.

or curved features. Moreover, their tracking strategy
based on correlation cannot be extended to complex
features.

2 System Overview

Our temporal registration system is initialized with
known camera parameters and a user specified set of
3D features that give rise to easily detectable 2D fea-
tures. At the beginning of the process, the pose in
first image is computed from four 3D-2D correspond-
ing points pointed out by the user (with method of
Dementhon and Davis [4]), and the 2D features corre-
sponding to the visible model features are automati-
cally determined by the updating algorithm presented
below. Once initialized, the system follows a four step
loop (Figure 1):

Step 1: Tracking the features. The set of features
is tracked in the current image using a curve-based
tracker that we have previously developed [1]. We
have shown that this method is reliable, fast and that
it is able to account for sufficiently large motions. Ne-
vertheless, the tracking may sometimes fail if the snake
is attracted by some local edge maxima: this often re-
sults in a curve that is only partially well localized
(see features 1 and 4 on Figure 3.d). If the predic-
tion step failed (because of the instability of the flow
computation), the position reached is generally com-
pletely erroneous (see feature 5 on Figure 3.d). Hence,
among the set of tracked curves, a small number may
be mis-detected or completely erroneous.

Step 2: Computing the pose. This step is the
heart of our system. It allows the pose to be com-
puted from various features despite possible tracking
errors. We use some kind of [terative Closest Point
(ICP) algorithm to achieve this task (see section 3).
This algorithm stands out from previous works by the

use of robust estimators in a two-stage process: a lo-
cal stage, which computes a robust residual for each
feature, and a global stage, which minimizes a robust
function of these residuals. The interest of our algo-
rithm is two-fold: first it computes the pose in a robust
manner, second it allows us to detect and discard the
erroneous features. The choice of the robust estima-
tors that are used for the local and the global stage is
discussed in section 3.

Step 3: Updating the visible model features.
When the camera undergoes large motion, it becomes
essential to update the set S of tracked features; other-
wise, the number of features that are visible decreases
(even becomes null) and the pose cannot be computed
with sufficient reliability. Given a robustly computed
pose, we are able to determine which part of the model
features projects in the image. When a new feature
appears, we have to determine the corresponding 2D
feature that will be tracked in the subsequent frames.
To perform this task, we first realize a classical Canny
edge detection [3] and consider all the contours that
are sufficiently close to the projection of the model
feature. For each contour ¢, we compute the pose cor-
responding to § U ¢ using the pose algorithm of step
2. As a result of our algorithm, we can see if the con-
tour ¢ has been discarded from the computation. If
not, this means that c is likely to be the projection of
the model feature and is added to S (if more than one
contour is retained, we try to concatenate them and
keep the longest obtained contour). Precisions about
this method can be found in [20]. It is also used to
update the features that are discarded in step 2.

Step 4: Re-estimation of the pose. Finally, the
pose is re-estimated by taking into account the new
set of model features.

3 Pose Computation

Most pose estimation algorithms use simple fea-
tures: points [10, 4], lines [5, 19, 14] or circles [8].
But only few papers have been devoted to the 3D-
2D registration of curves. Kriegman [13] proposed an
algebraic method to compute the pose of a curved ob-
ject from the observation of its occluding contours (it
can be easily applied to perform 3D-2D registration).
Unfortunately, this method only deals with surfaces or
curves that can be described by a collection of para-
metric patches (ratio of polynomials). Moreover, the
use of elimination theory to compute the pose turns
out to be very expensive. The 3D-2D registration
problem has also been considered in [7], for medical
tasks. Starting from a gross estimation of the pose,
an ICP algorithm is used to perform registration. An



extended Kalman filter is used to discard outliers by
performing x? tests. Nevertheless, since the results de-
pend on the order of processing of the measurements,
the estimation process may be trapped into a local
minimum, especially if the initial estimate is not very
accurate. Such a process is therefore not really robust
against gross errors.
3.1 The Problem

The problem consists in finding the rotation R and
the translation t which map the world coordinate sys-
tem to the camera coordinate system. Therefore, if the
intrinsic parameters of the camera are known (they
can be determined by a calibration process [6]), we
have to determine 6 parameters (three for R and three
for t), denoted by vector p. We suppose we know the
3D-2D matching of n various features described by
chains of points. Let:

e (; be a 3D curve, described by the chain of 3D
points {M; ;}1<;<i, (note that C; can be any 3D
feature, including points and lines),

e ¢; be the projection of C; in the image plane, de-
scribed by the chain of 2D points {m; ;}1<j<i,,
where m; ; = Proj(RM;; +t) (Proj denoting
the projection of a 3D point in the image plane),

e ¢, be the detected curve (tracked curve) corre-
sponding to C;, described by the chain of 2D

points {mj ;}1<j<i-

A simple solution would be to perform a one stage
minimization

minz p(d; ;) (1)

where d; ; = Dist(m];,c;) (Dist being a function

which approximates the Euclidean distance from a
point to a contour) and p is a positive, symmetric func-
tion, used to reduce the influence of erroneous parts
(see below).

Unfortunately, this method is unsatisfactory be-
cause it merges all the features into a set of points,
and makes no distinction between local errors (when
a feature is only partially well localized), and gross
errors (when the position of a feature is completely
erroneous). However, these two kinds of errors are not
identical, and not treating them separately induces a
great loss of robustness and accuracy.

By contrast, we propose to perform a robust esti-
mation in a two-stage process: a local stage, which
computes a robust residual for each feature, and a
global stage which minimizes a robust function of these

residuals. The local stage reduces the influence of er-
roneous sections of the contours (features 1 and 4 on
Figure 3.d), whereas the global stage discards the fea-
ture outliers, i.e. contours which are completely er-
roneous, or which contain too large a portion of erro-
neous points (feature 5 on Figure 3.d).

3.2 The Global Stage

This stage fits the tracked 2D features to the pro-
jection of the 3D features, by minimizing the residu-
als r; which are computed for each couple of 3D/2D
features (see the local stage). In order to reduce the
influence of the feature outliers, that is features whose
residual is relatively large when the correct pose has
been found, we have to perform a robust optimization
(using a classical least squares - LS - technique, that
is minimizing ;" , r?, would increase the influence of
the features linearly with their residual).

Statisticians have suggested many different robust
estimators. Among them, the two most popular are
the M-estimators and the least median of squares
(LMS) method, which have been used in many com-
puter vision problems [10, 14, 22].

The LMS technique, suggested by Rousseeuw and
Leroy [18], consists of minimizing the median of the
squared residuals:

mgn med;r?. (2)
Minimizing the median ignores the errors of the largest
ranked half of the data elements. Thus, this method
is able to handle data sets which contain less than
50% outliers. However, as only a part of the data is
considered, the LMS is not very accurate. That’s why
we often perform a reduced least squares (RLS) after
a LMS, that is a LS which includes all the data whose

residual is lower than 2.5 9, where o is the standard

deviation of the residuals. Factor & has itself to be
estimated in a robust way: we take

where h is equal to n—[n/2] and T(Q)(l) <. <72 are
the ordered squared residuals. Like LMS, the second
factor of equation (3) only considers the first ranked
half of the data. The first factor is introduced be-
cause %2?21 ri(i) is estimated to be approximately
1/2.6477% when the residuals are random numbers
sampled from the gaussian normal distribution N (0, 1)
(see [18] for more details). Nevertheless, this method
often leads to a local minimum. Indeed, as LMS only



minimizes the residuals of half of the features, it can
easily happen that these residuals are much smaller
than the ones of the other features, which are hence
not taken into account when performing RLS.

We therefore prefer to use the M-estimation tech-
nique, developed by Huber [11], which minimizes the
sum of a function of the residuals:

min " p(r). @

where p is a continuous, symmetric function with min-
imum value at zero. Its derivative ¥ (x) is called the
influence function because it occurs as a weighting
function in optimization (4). These functions are very
efficient, but are not suited to cases where the presence
of outliers in the data is too large (experimentally, it
must be kept below approximately 20%). Table 1 lists
three commonly used p functions and their derivative.
Among these estimators, some are more restrictive
than others: when Tukey’s influence function is null
for residuals larger than a threshold ¢, Cauchy’s re-
mains larger than zero while decreasing, whereas Hu-
ber’s remains constant, equal to c. We therefore prefer
to use Tukey’s function, which is restrictive enough to
suppress the influence of outliers, but which takes all
the data into consideration (by contrast with LMS).
The threshold c is taken equal to kS, where k is a con-
stant (we take k = 4 for Tukey), and S a scale factor

equal to 9.

Minimization (4) can be performed by standard
techniques using an initial estimate of p: a very sim-
ple approach like Powell’s method [16] proved to be
sufficient in our case, and relatively fast to compute
(for temporal registration, the initial estimate of p is
the pose computed for the previous frame).

Type p(x) P(z)
Huber

if |2| < ¢ z? z
{ if |z > ¢ { C(‘ﬁ, ¢/2) { ¢ x sgn(x)
Cauchy Slog (1+(2)?) 1+?£)2
Tu}?llz‘ <e &2 [1_ (1_ (5)2)3i| $(17 (£)2)2
{ if o] > ¢ { ; ¢ { 0 ‘

c”/6

Table 1: Three commonly used M-estimators.

3.3 The Local Stage

The aim of this stage is to reduce the influence of er-
roneous sections of the features: to perform this task,

Figure 2: The complete wire-frame model of the
bridge.

the residual error r; of curve C; is computed by a ro-
bust function of the distances {d; j}1<;<;;. We could
take r; equal to the median of the {d;;}, but once
again, this method can lead to a local minimum, where
only a part of a projected feature is superimposed on
the corresponding 2D feature. That’s why we prefer
to use the M-estimation technique by taking

1
L
ry = 7 > o(dig). (5)
1 =1

This estimate must not be too restrictive, for the rea-
son just evoked. We have hence chosen Huber’s func-
tion for the local stage (with k set to 2), which has
proved to be a good choice in our experiments.
3.4 Discarding of Feature Outliers

Once a first estimation of the pose has been done
using the previous method, the detection of feature
outliers can be performed easily: as they should not
have influenced the estimation, their residual must be
much larger than the other ones. We therefore only
have to compare them with the standard deviation of

all the residuals: if r; > 2.5 P (where & is given by
equation (3)), then the feature discarded.

In order to refine the pose, we can now perform a
LS estimation on the retained features (r; being still
given by equation (5)).

4 An Augmented Reality Application

We present in this section an application of our
method to an augmented reality application: the il-
lumination of the bridges of Paris. Our motivation
came from the encrustation of a model illuminated
synthetically in its real environment. The aim was to
test several candidate illumination projects for a num-
ber of bridges of the Seine, and be able to choose on
computer simulations alone what project was the best.
Most importantly, we wanted to evaluate the influence
of this illumination on the surrounding elements.



A 300-image panoramic sequence of the Pont Neuf
was shot at dusk time from another bridge. The fact
that the images are dark and noisy has a strong in-
fluence on the quality of the segmentation (see Fig-
ure 3.a) and restricts the number of reliable features
that we are able to use (typically, between 6 and 8
curves). It should also be noted that the modelling of
the bridge was done mostly manually using informa-
tion from architectural maps. It is very unreliable at
places (e.g. the staircase effect on some of the arches -
see Figure 2). The intrinsic parameters of the camera
are obtained by calibration on a reference object close
to the observer (in the 3 meters range) while the scene
under consideration is far from the camera (in the 300
meters range), which induces a lot of noise on these pa-
rameters. The reader should keep these facts in mind
when visually evaluating the final composition.

Figure 3.b shows the set of tracked features for the
10" image. The solid lines correspond to the tracked
2D features, whereas the dashed lines correspond to
the projection of the corresponding model features
(black is used for the features which are not - yet -
used). The reader may notice that feature 4 is not
fully correct. This is mainly due to the snake pro-
cess, that makes the snake attracted by high gradi-
ents. However, as a great part of the feature correctly
matches the arch, it is retained in the set of tracked
features. The result of the tracking in the 12! image
is shown in Figure 3.c. Except for feature 5, the other
primitives are well tracked. The error on feature 5 is
due to the failure of the prediction step in the tracking
process due to noise in the image. Hence, the snake
converges towards an erroneous contour.

Figure 3.d shows the re-projection of the model fea-
tures after the robust pose computation. Despite the
bad accuracy of the model, the result is visually con-
vincing. In order the reader to be aware of the parts
of the curve which are less taken into account in the
computation, we have drawn in black the points for
which the residual is greater than ¢ (c is defined in
Table 1). Roughly speaking, these points are the ones
for which the weight in the computation is decreased
because their residual is too large. It must also be
noticed that feature 5 is considered as an outlier and
is removed from the set of tracked features (discarded
features are drawn in black).

In Figure 3.e, a new feature has been added to the
set of tracked features (5). Note that in this case,
this new feature replaces the one which has been mis-
tracked. Using this new set of features, the pose is
re-estimated (Figure 3.f). Figure 4 shows the result
of the composition of the computer-generated and the

Figure 4: Final composition for the 6oth image.

video image for the 60*" image. Precisions about this
composition may be found in [2].

5 Conclusion

We have presented an autonomous model registra-
tion system capable of tracking an object in an image
sequence. Emphasis has been put on the pose com-
putation method, which handles various features in a
very robust way and is also used to update the set of
visible features along the sequence. An application to
the simulation of a lighting project of a bridge in Paris
has proven the validity of our approach.

Several directions for further investigation are sug-
gested: in order to use our method for real time ap-
plications, we could greatly improve the speed of our
algorithms by processing both the tracking task and
the pose estimation in a parallel way. As our pose
estimation method admits points, we could also track
them along the sequence by using a corner tracker or
other kind of point tracking. Finally, we work on an
automatic way of finding the more pertinent tracked
3D features.
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