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Abstract

Mixing video and computer-generated images is a new and promising area of research for enhancing reality.
It can be used in all the situations when a complete simulation would not be easy to implement. Past work on the
subject has relied for a large part on human intervention at key moments of the composition.

In this paper, we show that if enough geometric information about the environment are available, then efficient
tools developed in the computer vision literature can be used to build a highly automated augmented reality loop.
We focus on outdoor urban environments and present an application for the visual assessment of a new lighting
project of the bridges of Paris.

We present a fully augmented 300-image sequence of a specific bridge, the Pont Neuf. Emphasis is put on the
robust calculation of the camera position. We also detail the techniques used for matching 2D and 3D primitives
and for tracking features over the sequence. Our system overcomes two major difficulties. First, it is capable of
handling poor quality images, resulting from the fact that images were shot at night since the goal was to simulate
a new lighting system. Second, it can deal with important changes in viewpoint position and in appearance
along the sequence. Throughout the paper, many results are shown to illustrate the different steps and difficulties
encountered.

1 Introduction

Augmented reality is the technique by which real images can be enhanced by addition of computer-generated or
real information. At least, this is the definition of augmented reality we shall adopt in this paper, since the term
is currently used in different ways by different people, without what could reasonably be considered a consistent
definition. Augmented reality shows great promises in fields where a simulationin situwould be either impossible,
not realistic enough or too expensive. Of particular interest are applications in medical imaging [1, 25], urban design
- for instance for visually assessing the incidence of a future building in an already existing urban environment [7]
- and manufacturing [5]. Also, this type of integration is gaining importance in the film industry.

However, this area has up-to-now been largely under-explored and the few applications that have been developed
rely heavily on the intervention of the user at the different steps of the mixing process. There are two reasons for
this. First, the superposition of the real and virtual objects has to be very accurate for a satisfactory visual effect.
Jittering effects are highly unpleasing in a video sequence. Second, the camera may make abrupt position changes,
in which case it is very difficult to predict beforehand what features can be detected in images and what features
will be used to compute the viewpoint and do the tracking in a sequence.

1.1 A Look at the Literature

We focus here on those works in augmented reality where the authors have attempted to use vision tools for the
super-imposition of synthetic objects on video images. It should be noted that past research has essentially dealt
with very good quality images of indoor scenes.

Perhaps the first work to consider the overlay of computer-generated images onto a background photograph is
that of [28]. [18] give manual solutions for evaluating the visual impact of a building on the landscape. A first try
at automating the composition process is presented in [19]. The authors explore some of the key issues involved in
augmented reality: computation of the shadows cast by real light sources on virtual objects, simulation of weather
phenomena, improvement of the quality of the montage using a novel anti-aliasing technique. Their approach
suffers however from two drawbacks. The parameters of the camera are determined by matching 2D points with
the corresponding 3D points of the model, but these points are determined manually. In addition, the influence of
virtual light sources and specular inter-reflections is not taken into account.
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In [14], a composition technique is described that works for a full image sequence and a method for mapping an
aerial photograph onto a three-dimensional terrain model is presented. This environmental assessment application
is however largely simplified by the fact that aerial photo data are considered as textures. Also, viewpoint deter-
mination is only briefly addressed. [9] present a general system for combining virtual buildings and real images
of the environment, which is capable of realizing computer animations. Viewpoint determination is achieved by
assuming that there are points in the image whose world coordinates are known (passpoints). These passpoints are
then tracked in a sequence of images to estimate the new position of the camera from the one previously computed.
Also, the detection of occluding objects of the real scene is done manually.

A framework is proposed in [13] for automating as much as possible the mixing process. Applications presented
concern indoor environments (e.g., a virtual ball moving in front of a set of plates). The acquisition system can
be controlled with excellent precision, so its position is supposed to be known. The optical characteristics of the
camera are computed using a reference background object of the real scene.

The system of [27] uses computer vision techniques for overlaying real images onto very good quality video
images. Pose calculation uses Newton’s method but is only briefly discussed. Tracking is correlation-based and
object registration is reliably achieved by tracking many features of the object. To check whether features have
been correctly tracked, two cross-ratios of four areas of the triangles formed by five points are computed. They are
projective invariants and should remain the same over images. A low latency vision hardware allows overlay of
image to be done in real-time.

Finally, a registration system allowing to track objects in real time is presented in [21, 22]. A user-specified
set of model-image correspondences, known camera parameters and a pre-compiled aspect table that associates
discrete viewpoints with object features visible from those views are used to initialise the system. An initial pose
is computed using the given 2D-3D correspondences. The system then goes on by repeating a three-step loop:

� view indexing - pose information is used to extract visible features from the aspect table;

� tracking - visible features are used as location hypotheses of feature templates in the next image;

� pose computation - the templates are matched in the image and a new pose is computed.

Some of the system characteristics used by these authors match fairly closely our choices: use of robust meth-
ods for pose estimation - iterative re-weighting least squares form of M-estimation [17] -, and correlation-based
tracking, combined with steerable filters. Combinations of rotations and translations do not seem to be accurately
compensated by their tracker however. Also, the aspect table is constructed manually off-line.

1.2 Motivations and General Framework

To be able to efficiently mix video and virtual images, it is necessary to have a robust method for computing the
position of the camera in order to insert the virtual objects at their right place in the images. Among existing systems
for the composition of images, one can distinguish between two classes: those which make use of markers ade-
quately placed in the scene to facilitate viewpoint determination and those which base the calculation of the camera
position on the natural structures of the scene. Since we aim at using our system in outdoor urban environments,
we can not hope to get help from markers. We are thus uniquely concerned with works on image composition
where registration is achieved using the sole geometric features of the scene. We also intend to bring the number
of manual operations to a minimum.

Most of the current research works on image composition deal with manufactured environments - see for in-
stance [27, 22] - filmed in good light conditions and from a close range. By contrast, our work is concerned with
complex outdoor environments filmed in poor lighting conditions, since the ultimate goal is to simulate the effect
of a new lighting system on the surrounding architectural elements. And even if the different steps leading to the
pose estimation remain the same,i.e., feature detection and extraction, tracking, viewpoint calculation, our system
stands out from previous work on the following grounds:

� Difficult primitive extraction . The scene is filmed from far range and the images are noisy. Contour
extraction is then a difficult operation and the contour chains obtained are not stable from one image to the
other. Contrary to other approaches, we have only few prominent points to extract and in addition they may
be poorly localized. Besides, it is out of the question to be able to properly extract junctions.

� Inaccurate modelling. Since it was built from architectural maps, the modelling of the architectural scene
considered deviates significantly from the truth at certain places. This, along with unreliable contour data,
explains why we have improved our calculations by the use of the robust technique of M-estimators.

2



Figure 1: The160th image of the sequence.

Figure 2: The complete wireframe model of the bridge. The poor quality of this modelling is quite apparent at
certain places. Small circles show the location of feature points used for 2D-3D primitive matching (those that
seemingly hover over the bridge correspond to street lamps).

� No structuring of primitives . In outdoor environments, the primitives extracted are often points, sometimes
lines and curves. However, only few more complex features such as corners or junctions are present. More-
over, the features extracted are not topologically structured, making it impossible to use a structural approach
to minimise the problems of the initial matching between image and model primitives.

� Large vision field. We do not impose anya priori either on the distance of observation or on the position of
the viewpoint. The “aspect graph” types of approach which propose model points likely to appear in the next
image are thus excluded because these points change drastically as a function of the distance of observation.

1.3 Application: The Bridges of Paris

A simulation of the illumination of a large architectural set may be quite difficult to implementin situ, not to mention
that it would be very expensive. Thus, recent years have seen computer simulations become more and more popular.
Reliable global illumination softwares are now available, so trial-and-error lighting experiments can now be done
almost routinely (at the cost of large computation times though). Our motivation came from the insertion of a model
illuminated synthetically in its real environment. Decision-makers of the Paris city administration were willing to
have a new lighting system for a number of bridges of the Seine around the “Ile de la Cité”. They wanted to test
several candidate illumination projects and be able to choose on computer simulations alone what project was the
best. Most importantly, they also wanted to evaluate the influence of this illumination on the surrounding elements.

A 300-image sequence of the Pont Neuf, one image of which is shown in Fig. 1, was shot at dusk time from
another bridge. The fact that the images are dark has a strong influence on the quality of the segmentation and
consequently on the strategies used for the tracking. It also restricts the number of reliable features that we are able
to use. The reader should keep this in mind when visually evaluating the final composition.

It should also be noted that the modelling of the bridge was done mostly manually using information from
architectural maps. Fig. 2 shows that it is very unreliable at places, as the staircase effect on some of the arches
reveals. Much better results could certainly be obtained with a laser modelling.
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Figure 3: An augmented reality loop.

1.4 Paper Outline

In this paper, we present a framework for enriching a large image sequence of an outdoor urban environment and
we apply these solutions to the sequence of the Pont Neuf. We assume noa priori knowledge on the extrinsic
parameters of the camera system and the detection of features in images is autonomous, except for the first image
and at certain key images where it is guided.

Our augmented reality loop works as follows. A set of non-coplanar features is detected in the first image of
the sequence and matched semi-automatically to their corresponding features in the 3D model of the virtual object
to inlay. These features are used to compute an estimate of the position of the camera with the scaled orthography
approach of [8]. This initial guess is then refined by a robust minimisation of the projection errors. Once the
viewpoint has been computed, a virtual object, rendered previously by a radiosity algorithm, can be embedded in
the image. The features detected in the first image are then tracked over the sequence and matched to 3D features.
This way, viewpoint position is determined for each image by applying the above procedure to the features tracked.

We now proceed as follows. In Section 2, the complete augmented reality loop is outlined in more details. The
algorithms used for estimating pose are presented in Section 3 and the method for matching 2D image points with
3D geometric primitives in the first image is explained in Section 4. Section 5 presents the techniques we have
developed for tracking features over the sequence of images. Results of the composition for the bridge sequence
are then presented in Section 6. Finally, areas of current and future research are discussed in Section 7, before
concluding. Note that a preliminary version of this work appeared in [3].

2 Augmented Reality Loop

Let us first outline the different building blocks of our augmented reality system. As can be seen on Fig. 3, this
system really consists of three distinct parts. The first relies on computer vision tools and is the subject of this
paper. The second part originates in image synthesis and in the third computer-generated and real information are
combined to enhance the reality and produce a visually satisfying result. For sake of completeness we give a very
short presentation of these last two parts here, but the interested reader should refer to [7] for more details on how
to properly handle the interactions between real and virtual objects and light sources.

2.1 Image synthesis

The computer graphics part of our system aims at modelling the objects to inlay in the sequence of images and at
globally illuminating these objects. Modelling the 3D scene really is a three-fold process: it involves

� modelling the geometry - here, a set of polygonal faces obtained from various architectural plans;

� modelling the properties of the materials assigned to the surfaces of the scene - this is based onin situ
measures [6];

� modelling the positions and intensities of the virtual light sources,i.e., imitating real source characteristics.

Objects in an urban environment are made of diffuse and specular materials. A radiosity algorithm is used to
compute the diffuse inter-reflections between the surfaces [10]. A major feature of radiosity methods is that their
computations are viewpoint-independent, so that illumination will not have to be computed for each image of the
sequence.
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2.2 Image composition

Once the viewpoint is determined for each image, the computer-generated images are rendered using a ray-casting
algorithm. The main bottleneck of this step lies in the determination of the real occluding objects that stand between
the camera and the virtual objects. The different virtual objects are then superimposed using composition operators
(overlay, addition, multiplication) and the coherence of the composition is ensured.

In the image sequence of the Pont Neuf, a boat is stationed in front of the rightmost bridge pile in the last 40
images of the sequence and thus occludes the synthetic bridge. Currently, these occlusions are determined manually
roughly every ten images and by interpolation in-between. But since occlusions may be more severe in general, we
are currently investigating ways of automating their determination - see Section 7 and [4] for more.

3 Viewpoint Determination

To accurately place virtual objects in a video image, a necessary task is to compute the position of the camera
that shot the image. When the computation is done using images ofn scene points and their 3D counterparts, the
problem is known as theperspectiven-point problem.

Past work on the subject has seen two different kinds of solutions: closed-form and iterative methods. Closed-
form solutions usually deal with very special configurations of scene primitives (four coplanar points, three orthog-
onal segments, a circle, . . . ). Iterative solutions use a number of features usually larger than closed-form methods
but may be more robust both because measurement errors and image noise usually average out between features
and because of the redundancy of information brought by the larger number of features.

We have implemented two methods for estimating pose in our system: the first is closed-form and based on
the perspective inversion of four coplanar feature points [11] and the second is iterative and takes as input a set of
non-coplanar points [8]. Though looking for coplanar features seemed a natural way to go in an urban environment,
computations with such features have however turned out to be unstable and thus difficult to use in our application.
We will thus mainly focus on the second method in this section but report a few interesting conclusions we drew
after using the first.

3.1 Camera Setup and Calibration

The camera model used is the classical pinhole model. The intrinsic parameters of the camera are obtained by
calibration on a reference object close to the observer - in the 3 meters range - while the scene under consideration
is far from the camera - in the 300 meters range -, which induces a lot of noise on these parameters. The reason
why the computation of the intrinsic parameters has been clearly separated from viewpoint determination is that the
number of features that we will be able to detect and track over the sequence is usually small (typically, between
10 and 20), and in any case insufficient to perform a complete calibration.

We assume that our camera is centered at pointO and that the image plane is located atz = f , with f the
focal length. A scene with feature pointsM0; � � � ;Mn is in the camera field of view, with the coordinate frame
(M0u;M0v;M0w) attached to it. The coordinates of the pointMi in the object frame are assumed to be known, as
well as the image coordinates(xi; yi) of the projectionmi ofMi. CallW the matrix transforming world coordinates
into viewing coordinates,

W = RT ;

whereR is the3� 3 rotation matrix andT is the3� 1 translation matrix. The perspective projection matrixM is
then obtained fromW as follows:

M =

0
@ f 0 0

0 f 0
0 0 1

1
A � W :

Determining viewpoint then consists in computing the six parametersa1; � � � ; a6 of matrixW , i.e., the three pa-
rameters of the rotation matrixR (for instance the Euler angles) and the three parameters of the translation matrix
T .

3.2 The Method of Ferri et al.

The first method we have implemented for estimating pose is the exact perspective inversion of four coplanar points,
which follows from the invariance of the cross ratio of four collinear points [11]. We thoroughly tested this method
of determining viewpoint, but it turned out to be highly unreliable in our experiments:
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Figure 4: Viewpoint determination with Ferri’s method given four perfectly coplanar points on a plane of a calibra-
tion pattern and their 2D correspondents.

� When applied to a perfectly modelled calibration pattern as shown in Fig. 4, the exact perspective inversion
method gives a viewpoint for which the four coplanar points used are perfectly reprojected. But as one moves
away from those points, the projection error grows larger and larger.

� If in addition we consider an environment for which the model is noisy, then the viewpoint computed with
Ferri’s method can only serve as a starting point for an iterative method that minimises the projection errors.
Unfortunately, since the model of our bridge is highly biased, this starting point is so far from the actual view-
point that convergence may be hard to attain. As an example, Fig. 5.a shows the initial estimate computed
with Ferri’s method on four coplanar points and Fig. 5.b displays the result after 52 iterations of minimising
projection errors. After if the result after minimisation is much closer to the truth, we are still pretty far from
the actual viewpoint position, as may be seen for instance by looking at the leftmost pile of the bridge.

� If more than four coplanar points are available, some techniques may be used to select the best 4-point
configurations and to properly combine the results obtained for each configuration, as we have described
in [3]. The criteria used for this selection are aimed at ensuring the stability of perspective inversion, and
were based on considerations on the length of the diagonals and the angle between the diagonals. We also
evaluated situations when a large number of features was available, some of them being coplanar, applying
Ferri’s method to the coplanar points and including the other points in the computation of the projection error.
But even when 20 feature points can be used, 10 of them being coplanar, the estimate obtained this way was
far from the true viewpoint position, though the results have improved.

The unperfect initial viewpoint provided by Ferri’s method, along with our biased model, has led us to use a
different method to determine viewpoint, getting rid of the need for the coplanarity hypothesis.

3.3 The Method of DeMenthon and Davis

Consider the setup of Fig. 6. The rotation matrixR is the matrix whose rows are the coordinates of the unit vectors
i, j, k of the camera system expressed in the object coordinate system (as usual,i is along thex axis, j is along
the y axis andk is along thez axis). To compute the rotation, only the vectorsi and j are needed,k being the
cross producti� j. The translation vectorT is the vector

���!
OM0, whose coordinates areX0; Y0; Z0. If point M0 is

a visible feature of the scene with image pointm0, the translation vector is aligned with vector
���!
Om0 and equal to

Z0

f

���!
Om0. Globally, object pose is thus well-defined oncei; j andZ0 have been computed.
The main idea behind the algorithm described in [8] is to first compute an approximate pose under the assump-

tion that the image points have been obtained by a scaled orthographic projection (called Pose from Orthography
and Scaling - POS for short). The next iterations consist in shifting the feature points of the object in the pose
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a.

b.

Figure 5: a. Initial estimate provided by the exact perspective inversion of four coplanar points. b. Refined estimate
after 52 iterations.
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Figure 6: Setup for the method of DeMenthon and Davis.
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obtained to the lines of sight, obtain a scaled orthographic projection of these shifted points, and compute an ap-
proximate pose using this projection (algorithm called POSIT - POS with iterations). Only a few iterations are
needed to converge to an accurate pose.

3.3.1 Perspective Projection

Call 	 the plane throughM0 and parallel to the image plane. The viewline throughMi intersects	 in Ni andMi

projects orthogonally onto	 in Pi. Thus

����!
M0Mi =

���!
M0Ni +

���!
NiPi +

���!
PiMi:

It is clear that
���!
M0Ni =

Z0

f
���!m0mi:

If C is the intersection of thez axis with the image plane, then the two vectors
���!
NiPi and

��!
Cmi are proportional:

���!
NiPi =

����!
M0Mi:k

f

��!
Cmi:

Now we want to take the dot product of
����!
M0Mi with i. The product

���!
PiMi:i is zero. The product���!m0mi:i is xi � x0

and
��!
Cmi:i is xi. We thus end up with the first fundamental equation of perspective projection:

����!
M0Mi:

f

Z0
i = xi(1 + "i)� x0;

where

"i =
1

Z0

����!
M0Mi:k:

Similarly,
����!
M0Mi:

f

Z0
j = yi(1 + "i)� y0:

Writing I = f
Z0

i andJ = f
Z0

j, the system of equations is then:

(
����!
M0Mi:I = xi(1 + "i)� x0;
����!
M0Mi:J = yi(1 + "i)� y0:

(1)

3.3.2 Scaled Orthographic Projection

Scaled orthography is an approximation to perspective projection, where assumption is made that the depthsZi of
the different points of the scene do not vary much and can be set to the depth of a reference pointM0. The image
of a pointMi is thus a point of the image plane
 with coordinates

x0i = f
Xi

Z0
; y0i = f

Yi

Z0
:

Now we may work out a construction somewhat similar to the above. We have:

����!
M0Mi =

���!
M0Pi +

���!
PiMi:

The vector
���!
M0Pi is Z0

f
���!m0pi, wherepi is the image ofPi. The dot product of���!m0pi with i is x0i � x0 and the dot

product
���!
PiMi:i is zero. We thus have that:

x0i = xi(1 + "i);

and similarly
y0i = yi(1 + "i):
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3.3.3 Pose Estimation

The basic idea behind the POS algorithm is that if values are given to"i, then System (1) is a linear system of
equations the unknowns of which are the coordinates ofI andJ. Once we haveI andJ, i andj are obtained by
normalisingI andJ, andZ0 is obtained from the norm of one of the vectors:Z0 = f

kIk . See the next section for
the scheme used for solving System (1).

As we have seen, solving for pose by assuming that"i is given amounts to finding the pose for which the points
Mi have as scaled orthographic projections the image points with coordinates[xi(1 + "i); yi(1 + "i)].

Initially, one can set"i = 0. The POS algorithm then solves System (1) fori; j andZ0. From these values,
vectork is computed and a new value of"i is obtained:

"i =
1

Z0

����!
M0Mi:k:

With this new value, System (1) is solved again. The repetition of the above process is the core of the POSIT

algorithm. Several iterations are sufficient to converge to an accurate pose estimation.

3.3.4 Solving the Linear System

Suppose then that the values of"i have been computed at the previous step. Writing System (1) for then pointsMi

of the scene, we have two matrix equations:

AI = a; AJ = b;

wherea (resp. b) is the vector withi-th coordinatexi(1 + "i) (resp. yi(1 + "i)) andA is the matrix of the
coordinates of the pointsMi in the object frame.

If we have at least three visible points other thanM0, such that these points are not coplanar, then matrixA has
full rank and one can compute its pseudo-inverseB using a Singular Value Decomposition ofA. This justifies what
we do in Section 4.

3.4 Refining the First Estimate

Once the method of DeMenthon and Davis has given us a perspective projection matrix that is more or less close
to the correct one, the idea now is to use this matrix as a starting point to iteratively converge to the best possible
matrix.

The robustness of the above estimation must be improved because errors or outliers in the tracking stage will
severely affect the accuracy of the viewpoint location. Such a process is needed for at least two reasons: mismatches
may occur during the tracking process (for instance, two neighbouring features may overlap) and will be propagated
along the sequence. Besides, the 2D features are not detected accurately due to the bad quality of our images.
Hence a robust technique for the viewpoint computation is needed [17] because it is well-known that least-square
estimations are very sensitive to noise. The most popular estimators are the M-estimators and the least median of
squares. The advantage of the M-estimator is that it can be reduced to a weighted least square problem. It is robust
to bad localisation errors but it is not really robust to false matches (outliers). On the other hand, the least median
of squares is robust to outliers but it cannot be reduced to a formula. In our application, we mainly have to deal
with bad localisations, so we focus on the use of the M-estimator.

3.4.1 Improving Robustness

Suppose thata1; � � � ; a6 are the six parameters of displacement,i.e., the parameters of matrixW . The optimisation
is done only on these six parameters. Then, if(u0i; v

0
i) are the pixel coordinates of the projection of a pointMi

(obtained byM) and (ui; vi) its pixel coordinates as given by the feature detector, we want to minimise the
function:

g(a1; � � � ; a6) =
nX
i=1

�(ri);

wheren is the number of points considered,ri = ri(a1; � � � ; a6) = d((ui; vi); (u
0
i; v

0
i)) is the residual andd denotes

the Euclidean distance. Note that each point could be weighted for instance by a measure of confidence�i given
by the feature detector, in which case we would minimise the function

Pn
i=1

1
�i

�(ri).
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The function� is chosen according to statistical considerations [23]. If� is the derivative of�, then the above
amounts to solving the following system:

nX
i=1

�(ri)
@ri

@ak
= 0; k = 1; � � � ; 6:

This shows that� may be seen as a weighting or influence function. Different probability distributions can be used
(normal, doubly exponential), but an appropriate choice is the Cauchy-Lorentz distribution, with:

�(z) = log

�
1 +

z2

2

�
; �(z) =

z

1 + z2

2

:

That is, the more the points deviate from the model, the less importance they have in the calculation. The Cauchy-
Lorentz distribution thus allows in practice to eliminate the more distant points.

3.4.2 Minimising the Functiong

a.

b.

Figure 7: a. Initial estimate with the method of DeMenthon and Davis applied to four non-coplanar points. b.
Refined estimate after 23 iterations using Powell’s method.

Numerous works have been devoted to the minimisation of a multivariate function starting from an initial
positionA0 - see in particular [20] and [26]. This complex problem is generally decomposed into several simpler
ones: a set of 1-dimensional minimisations done successively in several directions. The main difference between
the different methods lies in the choice of these directions. For instance:

� Powell proposed a very simple algorithm, said ofquadratic convergence, which converges to a local mini-
mum: the direction used at stepi isAi �Ai�p, wherep is some positive integer.

� The conjugate gradient method minimises at stepi in the direction�rg(Ai).
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Figure 8: Projection errors in pixels after the initial estimate (squares) and after refinement with Cauchy-Lorentz
(circles), using the method of DeMenthon.

Powell’s method may be very useful in situations where the gradient ofg is unknown. In our case, we know
the derivative of�, so the gradient ofg is also known. Both of these methods have been implemented, but Powell’s
method turned out to be more efficient in our application, using the Cauchy-Lorentz distribution seen above.

3.4.3 Results

Consider Fig. 7. As can be seen, the initial estimate given by the method of DeMenthon and Davis is much better
than the one computed with Ferri’s exact perspective inversion (Fig. 5) and is not hindered by the noisy model of
the bridge. And it takes less iterations to converge to a viewpoint position accurate enough for our application. To
see where refinement with Cauchy-Lorentz has improved the projection, the reader should direct his attention for
instance to the bottom of the back arches of the bridge.

When dealing with a new image of the sequence, we may either directly use the iterative pose estimation
method above to compute a first estimate of viewpoint position or compute such an estimate by minimisation using
the viewpoint calculated in the previous image and the information provided by the tracker. Both methods have
proved reliable in our experiments. Generally speaking, the second would however be difficult to apply on a sparse
image sequence, with larger rotation angle between two images. In such a situation, tracking would in general be
possible but the estimate given by the previous position may not be sufficient for the optimisation to converge. The
images displayed in the rest of the paper have been computed using the first strategy.

Figure 8 is a plot of the mean projection error for each image of the sequence, taking into account for each
image all the primitives visible in that image. The curve with boxes represents the mean of the projection error
after the computation of the initial guess, whereas the curve with circles shows the projection error after the robust
estimation of the viewpoint using the Cauchy-Lorentz estimator. One conclusion of this plot is that considering the
inaccurate detection and the poor quality of the modelling, we are still able to keep the projection errors at a low
and quite acceptable level.

4 2D-3D Primitive Matching

Here is how we achieve the matching between 2D and 3D primitives in the first image of the sequence. A number
m of interest points (between 10 and 20) is extracted in this image. Currently, these points are extracted manually.
Obtaining them automatically seems to be computationally prohibitive even when the images are of good quality.
In the ensuing images of the sequence, interest points are obtained by tracking those found in the previous image,
except when the number of such points falls below a minimum or when these points are not well spread over the
object. Indeed, the scene is not viewed in its entirety from a single viewpoint, so that as the camera moves, some
interest points disappear and some other come into the field of view. There are thus moments when the user is
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Figure 9: Contour chains.

requested to point some new feature points in the image. These new 2D points have to be automatically matched
with the 3D points of the model.

4.1 Pruning the Hypotheses

To solve the problem of matching 2D and 3D primitives in the first image of the sequence, we have the following
at our disposal:

� a wireframe model of the scene (see Fig. 2) or to be more precise a complete wireframe model of an object
that may not be fully visible in any image of the sequence.

We have manually extracted from this modeln distinguished feature points (roughly 70): corners, top point
of each arch, centres of the lamps... They are shown on Fig. 2.

� m 2D points extracted manually from the first image corresponding to feature points of the model.

Also we suppose that at any moment there are at least four 3D model points that we know are present in the current
image.

Now, four non-coplanar 3D feature points and their 2D matches are sufficient to compute the pose of the scene.
From these, we can generatem!

(m�4)! potential pose estimates. To prune these estimates and find the best one, we
apply successively two heuristics that have proved reliable for the application of the bridges of Paris:

� Heuristic 1 is classical: keep only those pose estimates for which the sum of the projection errors for the four
3D points is smaller than some threshold. We usually keep between 100 and 400 estimates at this stage.

� Heuristic 2 is similar to the first except that the calculation of the projection error is achieved on all feature
points of the model. When computing this error, we penalise those model points for which we have not been
able to locate a 2D correspondent in a given window. We keep the best estimate after this step.

4.2 A Few Words on the Use of Contour Chains

Initially, we planned to use the contour image of the scene to evaluate the adequation of the projection of the model
of the bridge with the real bridge. Unfortunately, since the sequence has been shot at night, the images are not
sufficiently contrasted and it is very difficult to obtain a significative gradient image. The contour chains built from
these gradients are “unstable”: they are very dependent on viewpoint position and very sensitive to the threshold
used - compare Figs. 9 and 11.a. They also lead to poor evaluations when superimposing the image of chains of
strong gradient and the projection of the model.

A high threshold produces few chains which do not generally correspond to parts of the model, since the bridge
is not sufficiently “contrasted” with respect to the surrounding environment. A low threshold produces many chains
for which any viewpoint estimate is equally correct: it is easy to find a chain in the neighbourhood of a contour of
the reprojected model. Our images are not good enough to obtain correct contour chains and to allow the evaluation
of each viewpoint estimate by comparing the entire edge contours of the object with the image edges as in [12].
To be efficient in our context, this method would need to be coupled with somea priori knowledge on the scene,
something we wanted to avoid.
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b.

Figure 10: Matching 2D and 3D primitives. a. The first image of the sequence, including 20 points extracted
manually from the contour map. b. Result of computing viewpoint by automatic 2D-3D primitive matching.

4.3 Result Images

The first image of the scene contains 20 of then distinguished feature points of the bridge model and is shown in
Fig. 10.a. The result of computing the viewpoint by automatic matching of 2D-3D primitives on the first image of
the sequence is given on Fig. 10.b.

5 Feature Tracking

We describe in this section the tracking techniques that we implemented in our system. Two kinds of features will
be tracked: points, used to determine the viewpoint, and curve segments (the arches). The arches are not used
directly as curved segments for viewpoint determination in the present version of the system, as could be done with
the method of [16], but only because they provide interesting feature points (the top of each arch for instance - see
point 4 of Fig. 11.c). In fact, we will see that even points are tracked using a curve-based tracking tool.

Features to be tracked are selected before execution in the first image and the corresponding 3D points in the
model are retained. Then, they are tracked along the sequence in the autonomous way described below. Because of
the length of the sequence, new features to be tracked appear as the sequence evolves. The tracking process is thus
stopped momentarily to select these new features.

The sequence we consider here was shot in nighttime. Consequences are that the segmentation is very poor and
that feature points cannot be tracked using the contour map. Hence, we use a curve-based tracking tool capable
of tracking interest curves containing the feature points used for the pose computation. For instance, as shown in
Fig. 11, instead of tracking the point at the basis of the bridge pier, we track the curve drawn in red and we infer
the point position by computing the corner best fitting the curve. As shown in the examples, sufficiently accurate
features can then be obtained.

Other points than the bases of the piers can be of great interest for the pose computation: the street lamps on the
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4

Figure 11: Tracking features. a. The contour map for the60th image. b. The curves obtained with the snakes
techniques. c. The points obtained after approximating these curves with corners.
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bridge whose 3D position is known. The light emitted by these lamps always appears as white blobs in the images
whatever the viewpoint and can be tracked using correlation methods as described below.

We now describe in details the two tracking techniques used: correlation-based tracking and curve-based track-
ing.

5.1 Correlation-Based Tracking

As soon as a new street lamp appears, the centre of the light bulb is detected in the following way: the user draws
a small polygon enclosing the light bulb; because the light appears as a white blob on the image, the bulb can be
outlined using a simple threshold. The centroid of this blob is then considered as the image of the 3D centroid of
the bulb.

The lamp is then tracked along the sequence using correlation. Given a small square enclosing the lamp in
the current image, the correlation process computes the translation best fitting this window in the next image. The
centroid of the white blob in this new window gives the position of the feature in the next image.

5.2 Curve-Based Tracking

Other points than the lamps are tracked using a curve tracker. The tracker we designed is described in earlier
works [2]. It is made up of the following two steps:

� a predictionstep: an approximation of the 2D motion field is computed iteratively from the normal optical
flow on the whole curve;

� a convergencestep: from the predicted curve, an active contour [15] converges towards the nearest contour
which is generally the homologous one. It must be noted than some strategies have been developed to best
ensure this convergence.

This tool is used to track curved features like the arches of the bridge. In order to detect feature points, we
take advantage of the fact that most of them are the corner points of contour lines. Once an interest point has been
chosen, a sufficiently contrasted curve containing this point is outlined using for instance a snake technique. This
curve is then tracked along the sequence using the tool described above. Then, we search for the angular point of
each of these curves: for each pointMi belonging to such a curve, the two lines best fittingMjfj<ig andMjfj�ig
are computed. The point giving rise to the best fitting score is retained and the intersection of these two lines is
considered as the searched feature point (point 1 on Fig. 11.b). Note that this method is used to track angular
points between lines or between curves. In fact, if the curve containing the feature point is sufficiently small, the
approximation of the curve with a line is quite satisfactory (points 2 and 3 on Fig. 11.b). Such a method turns out
to be very robust to noise since most feature points are not easily detectable in the images.

Nevertheless, some of these angular points do not correspond to 3D points of the model because they are the
intersections of a vertex of the bridge with the river surface (points 1, 2, 3 in Fig. 11.b). The elevation of these
points can however be roughly estimated because the dimensions of the bridge are known. The elevation of the river
surface is then refined in the following way: from the upper estimationh0, we compute for each elevationh in the
[h0� 50 cm; h0+50 cm] range (regularly sampled) the viewpoint corresponding to the tracked set of points, when
the elevation of the points on the river surface is set toh. The correct elevation is the one for which the projection
error is the smallest.

6 Results and Discussion

In the previous sections, we have examined the different components of our system separately and discussed the
algorithmic choices we made. We now turn our attention to the augmented reality loop as a whole, present results
of applying it to the Pont Neuf sequence and discuss its performance.

A quantitative analysis of the performance of the feature tracking and pose estimation algorithms on synthetic
data and for various types of features is given elsewhere [24].

6.1 The Augmented Pont Neuf Sequence

The entire 300-image sequence has been augmented with the procedure described in this paper. Fig. 12 describes the
composition of the 60th image: Fig. 12.a shows the original image on which we have superimposed the projection
of the model using the viewpoint computed and Fig. 12.b shows the final result of the composition. Figure 13 shows
similar results for the 100th image.

15



a.

b.

Figure 12: Composition for the 60th image. a. The red curves correspond to the model projected onto the image
using the viewpoint computed. The 2D features used for viewpoint determination appear in green and the projection
of the corresponding 3D points are in blue. b. Result of the composition.
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a.

b.

Figure 13: Composition for the 100th image of the sequence.
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Several MPEGmovies are available on our WWW server at the address:

http://www.loria.fr/isa/Bridges/

(
tracking

projection
augmented

)
.mpg ;

where tracking stands for the sequence showing the features used for the tracking,projection for the
original sequence with the model superimposed andaugmented for the fully augmented sequence, with the
bridge illuminated synthetically (each is roughly 2.4 MB in size).

6.2 Discussion

Some comments are in order. The above results prove that our system can handle poor quality images and an
inaccurate modelling of the object to inlay. In addition, it can account for a large vision field and a rotating motion:
in the Pont Neuf application, the motion is purely panoramic and the total camera rotation is roughly 20 degrees
(the bridge is 90 meters long and the viewpoint is located 300 meters away from the bridge). Our experiments show
that the tracker is able to deal with an apparent motion of the primitives of up to 20 pixels between two consecutive
images.

Considering the conditions that we have already mentioned (bad segmentation due to darkness, poor modelling),
the overall visual impression is quite satisfactory. The reader who gets a chance to see the entire augmented
sequence will however witness a slight jittering effect, that may best be explained with the help of Fig. 14. The
world coordinates are such that thez-axis represents the depth of field and they coordinate is the elevation. In
Fig. 14, we drew the evolutions of thex; y andz coordinates of a pointP standing on the optical axis of the camera
at a distance of one meter of the optical centreC. It appears that the evolutions of thex andz coordinates are very
regular, but that ofy is highly singular, thus yielding this jittering. Incidentally, our analysis of the modelling of the
bridge showed that it is quite correct in thex andz directions, but inconsistent in they direction. For instance, we
were never able to correlate both the lamps on the parapets and the arches at the same time, due to this incoherent
modelling in they direction. Also, it should be noted that the lens of the camera used had a distortion that we were
not able to fully correct.

6.3 System Performance

Although latency and execution speed are not central to the present application, they usually are key issues in
augmented reality research. We shall thus say a few words here about the computational requirements of our
system.

Without any kind of optimisation, the only algorithmic part that does not currently achieve real time is the
2D-3D primitive matching for the first image. On a Sun Ultra 1 Model 10 (the following computation times have
all been measured on this machine with Rational Software’s Quantify), this matching takes 34.4 seconds for a set
of 17 2D points and 70 3D points. The determination of viewpoint with the method of DeMenthon and Davis
applied to 20 input points takes less than one millisecond, while optimisation to converge to an accurate viewpoint
position takes 92 milliseconds. And tracking a primitive of 30 points takes 97 milliseconds for the prediction step
and 70 milliseconds for the convergence step. In other words, apart from the initialisation on the first image of the
sequence, the tools presented in this paper are amenable to real-time performance. Of course, global illumination
algorithms are known to have large computation times. And indeed, notably because of the high number of light
sources involved, more than 50, the rendering of the bridge we inlayed in our image sequence took more than 7
hours to compute.

7 Conclusion and Future Research Directions

We have presented in this paper a complete augmented reality forward loop. An application to the simulation of a
lighting project of a bridge in Paris has been explained and results are shown that prove the validity of our approach.
Emphasis has been put on the computer vision tools used to determine viewpoint and to track a set of features in
a sequence of images of an outdoor urban environment. The method overcomes several weaknesses of previous
approaches, especially as far as automatic and robust viewpoint determination is concerned.

We are currently working on several features that would robustify and enhance our augmented reality system:

� Perspective inversion of curved segments.If curved arcs are present in the scene, they may be used to
further converge to the position of the viewpoint. Except in the case of circles [11], an exact perspective
inversion for ellipses is not possible. We may thus use an iterative algorithm developed by [16], taking
as initial estimate the perspective projection matrix obtained for a number of (coplanar or non-coplanar)
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Figure 14: Evolutions of thex; y andz coordinates of a point standing on the optical axis of the camera. Abscissa
represents frame number and ordinate is measured in meters.
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points. We did not use this feature in the application described because the modelling of the arches was too
inconsistent.

� Smoothing the sequence.We do not currently ensure any kind of global coherence of the sequence, meaning
that it is not smoothed to avoid jittering for instance (tracking provides a local coherence). This could very
well be accounted for by a technique based on Kalman filtering for instance. Also, the regularity of the
camera motion could be used to improve the prediction of a feature position in the next image.

� Occlusions. One of the limitations of the present system is that the mask of the occluding objects must be
determined by hand. Hence we are currently investigating an algorithm allowing the static occluding objects
to be detected without 3D reconstruction. The underlying idea is to compare for each image point the optical
flow of this feature with the theoretical flow generated by the 3D point of the virtual object that projects onto
the feature point [4].
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