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Abstract. In this paper we present a contour tracker on echographic
image sequences. To do this, we use a hierarchical approach: we first
compute a global estimation of the ventricular motion. Then we use a
fine tuning algorithm to adjust the detection of the ventricular wall. The
global estimation is based on a parametric motion model with a small
number of parameters. This allows us to compute the motion in a robust
way from the velocity computed at each point of the contour.
Results are presented demonstrating tracking on various echographic se-
quences. We conclude by discussing some of our current research efforts.

1 Introduction

Parameters of cardiac functions can be drawn from the analysis of echocardio-
graphic image sequences, especially the motion of the ventricular wall, heart wall
thickness and shape parameters. These analyses are based on the detection of
the left ventricular internal wall edge. Usually, the ventricular edges are man-
ually traced by the physician but this operation is time consuming if an entire
cardiac cycle must be analyzed. Hence, there is considerable interest in devel-
oping methods to perform automatic extraction of the ventricular contours in a
sequence.

Several authors have recently proposed contour trackers which rely on a pre-
liminary learning stage [3]. This allows them to restrict the class of allowable
motion (shape deformations) to an admissible set that has been learned on a
training data set of the patient to be examined. As the variability of the ven-
tricular deformation between patients can be large, the allowable deformations
for a given patient is likely to be not suited for another one.

That is the reason why we attempt to measure cardiac motion directly on
grey level images. Within the computer vision community, considerable atten-
tion has been given to tracking and understanding object motion. Methods for
computing motion can roughly be categorized as either differential or match-
ing methods. However, the performance of these techniques are not the same:



the accuracy, reliability and density of the computed velocity field can differ
significantly according to the technique used.

– differential techniques: the common assumption is that the observed in-
tensity is constant over time. The constant brightness assumption can be
formally stated as I(x, y, t) = I(x+ δx, y+ δy, t+ δt). Expanding the image
brightness function in a Taylor’e series around the points (x, y) we obtain
the gradient constraint equation:

∇I(x, y, t).v + It(x, y, t) = 0 (1)

It is a single equation which allows us to compute the normal optical flow
v⊥. Due to the finite differences used to approximate derivatives in the con-
sistancy equation (1), differential techniques are thus inacurrate for large
displacements. This may cause problems to track the mitral valve because
this structure is thin and can undergo large motions.

– matching techniques [5]: such approaches define velocity v as the shift
that yields the best fit between image regions at different times. Finding the
best match amounts to minimize a similarity measure over v such as the sum
of squared differences:

v = argmin{v=(vx,vy)}

i=w∑

i=−w

j=w∑

j=−w
[I(x+i, y+j, t)−I(x+i+vx, y+j+vy, t+1)]2

However, as there are no specific points on the ventricular wall, the peak
of the correlation is not always clearly discernible. It is therefore difficult
to estimate point wise motion. Consider for instance Fig.1: The left image
shows the ventricular wall traced by an expert. The right image shows the
correspondences given by the correlation (original points are drawn in black
and the detected points are drawn in white). In regions where gradient in-
formation is missing (right part of the ventricle), results are of course very
poor. On the left side, the computed motion is more reliable. In contrast to
differential techniques, large displacements can be handled with correlation
based methods provided that the size w of the window correlation is large
enough. However, the reliability of the computed motion is not very good.

Fig. 1. Correspondences given by correlation: (a) the ventricular wall in a given frame
(b) the motion computed with correlation in the next frame.



To conclude, due to the weak signal to noise ratio in echocardiographic im-
ages, the computed velocity is not relevant at several places of the contour.
These measurements can not therefore be used as is for the ventricular wall de-
tection. Following previous works on deformable structures [2] we therefore use
a hierarchical algorithm; we first compute a global estimation of the ventricular
deformation. Then we use a fine tuning deformation to adjust the details. The
global estimation is based on a parametric motion model with a small number
of parameters (4, 5 or 6). These parameters are estimated in a robust way from
the velocity field computed at each point of the contour. From this estimation,
active contours models are used to detect the ventricular wall.

The motion models we use are described in section 2. The overview of our
tracker is given in section 3. Section 4 describes our method for computing
motion. Finally, we show in section 5 experimental results that demonstrate the
validity of our approach.

2 Which motion model?

In order to describe the ventricular wall motion properly, we tested three motion
models: similarity, affinity and affine model. The similarity model

X = s cosθx− s sinθy + tx
Y = s sinθx+ s cosθy + ty

describes a contraction (s < 1) or an expansion (s > 1) of the ventricle with
respect to a central point.

The affinity model:

X = s1cosθx− s2sinθy + tx
Y = s1sinθx+ s2cosθy + ty

uses two different scale factors s1 and s2 in two orthogonal directions. At first
sight, this is well suited for describing the ventricle motion: indeed, the main
motion of the ventricle is perpendicular to the long axis of the ventricle. In
addition, there is a small motion along the long axis.

The affine model:
X = ax+ by + tx
Y = cx+ dy + ty

is more general and allows various motions to be handled.
In the following, the motion model is denoted fp where p is the set of param-

eters models. p = [s, θ, tx, ty] for a similarity, p = [s1, s2, θ, tx, ty] for an affinity
and p = [a, b, c, d, tx, ty] for an affine model. The advantages and drawbacks of
these three models are discussed in the section devoted to the results.

3 Overview of tracker

The tracker is initialized with the contour traced by the expert in the first frame
of the sequence. Once initialized, the tracker operates in a loop following three
major steps: prediction, motion computation and adjustment (Fig. 2).



1. Computation of an initial guess using correlation based

methods.

2. Iterative computation of the velocity field using motion

model.

3. Adjustment of the ventricular wall with snakes.

Fig. 2. Block diagram of the tracker

Fig. 3. The main steps of the tracker: (a) the contour detected in a given frame (b)
the computed motion (c) prediction (in white) and result of the detection (in black).

The first step aims at computing an initial guess in order to overcome prob-
lems stemming from small structures undergoing large motion as the mitral
valve. Let {Mi}1≤i≤N be the points of the contour detected in a given frame.
Using cross correlation, these points can be matched with points Pi in the next
frame. If fp is the motion model used, a first estimation of the ventricle in
the next frame is obtained by minimizing the distance between the two curves
C = {fp(M1), ...fp(MN )} and C ′ = {P1, ..., PN}. As the correspondence given
by the correlation process is not always relevant, we use the closest point distance
and we compute the optimal parameters p minimizing

minp
∑

distance(fp(Mi), C
′)

where distance(fp(M), C ′) = mini||fp(M), Pi||. Hence, {fp(M1), ...fp(Mn)} is a
first rough estimation of the ventricular wall.

From this initial guess, the ventricle motion is computed iteratively using
only normal optical flow. This computation is described in section 4.

Finally, snakes [4] are used from the predicted position of the ventricle. In
most cases, this position is sufficiently close to the ventricular boundary so that
the snake converges successfully.

The main steps of our algorithm are illustrated in figure 3. Fig. 3.a shows the
ventricle border detected in a given frame. Fig. 3.b exhibits the motion (Step
1+2) computed between the two frames using the affinity model. Fig. 3.c shows
the results of the adjustment after the snake process.



4 Motion computation

Let C be the ventricular contour detected in a given frame I1 . Our aim is to
compute the motion of C between two consecutive frames I1 and I2.

We implemented a weighted least squares fit of local first-order constraint
(1) to a global model of v on the ventricular contour by computing p̂0 which
minimizes ∑

1≤i<N
|(−−−−−−−→Mifp(Mi).ni)ni − v⊥(Mi)|2 (2)

where ni is the unit normal to C at point Mi and v⊥ is the normal flow computed
from (1). This way, we calculate the motion p̂0 which yields the best fit with
the motion measurements computed with differential techniques. The use of a
global motion of the curve is very important because it permits us to override
divergence trends at erroneous flow points.

As the optical flow does not match the true displacement, we refine the
estimation iteratively in the following way: we compute the normal optical flow
v⊥1 on the curve fp̂0

(Mi){1≤i≤N} between the registered image I1(f−1
p̂0

) and I2.
Resolving (2) with v = v1 then allows us to compute fp̂1

. Hence, fp̂1
◦ fp̂0

is a
better estimate of the motion and so on... Successive infinitesimal refinements
fp̂q ◦ ... ◦ fp̂0

gives an accurate estimation of the motion field. The prediction
obtained is generally close to the true ventricular wall and the snake process can
be applied successfully.

5 Results

Our method has been tested within a project aiming at 3D reconstruction of
the beating left ventricle [6]. The system consists of a probe rotating around its
axis. For each rotation of the probe, an entire heart contraction is recorded at a
25 frames/sec rate. We then acquire a matrix of images. Its size is 8× 9 because
we only acquire images between end diastolic and end systolic (8 images) and
the probe rotation is 20 degrees.

First, we compare the performance of the tracking algorithm using the three
motion models we use: similarity, affinity and affine model. A frame by frame
visual comparison of tracking using these three models showed that the affinity
model generally gives superior results in term of how closely the tracker followed
the ventricle. Indeed, it appears that the similarity model does not manage to
encompass the variability of the shape deformation. On the other hand, the
affine model is not sufficiently restrictive when the noise level is high and the
prediction step may be erroneous. Hence, the use of affinity appears as a good
compromise.

We tried to quantify the degree of improvement by comparing our results to
the ventricle manually traced by an expert in some sequences. Note that these
traces can only be considered as indicative and not as ground truth. Indeed,
there is a large variability between the traces outlined by different experts [1].



Error Metric
We compare the areas enclosed by the expert detection and the computed de-
tection. We think that this measure is more appropriate because the area of the
ventricle is an important clinical parameter to evaluate the left ventricular func-
tion. More precisely, if Acomp (resp Aexpert) is the area enclosed by the computed
(resp. expert) detection, the metric used is defined as

area error =
#{x ∈ Acomp and x 6∈ Aexpert} ∪ {x 6∈ Acomp and x ∈ Aexpert}

#Aexpert

where #E denotes the cardinal number of E.

Tracking experiments

Four matrix database have been outlined by the expert. This amounts to
outline the ventricle in 8 × 9 images for each patient. In order to test our al-
gorithm, we considered the contour ci×j traced by the expert in frame i of the
sequence which corresponds to the probe angle j × 20 degrees. We computed
the distance between the results given by the algorithm in the next frame to the
contour ci+1×j traced by the expert. The results are averaged on all the images
which have been outlined by the expert in the database.

This computation was performed for the three motion models and the results
are shown in table 5. The area error in percentage is around 6%.

These results prove that the affinity model is slightly more appropriate than
the two others. Not surprisingly, the affine model gives the worst results because
of its excessive flexibility. The standard deviation is the highest for this model;
when we look at the results (Fig.4, 6), we can see that results are sometimes very
good with this models. Unfortunately they are sometimes poor for high noise
level. We now give tracking results for different patients. Fig 4 shows snapshot
views of tracking using the affinity models. The detected curve is shown in white
whereas the expert trace is drawn with black points. The visual impression is
good. Fig 5.a plots the evolution of the area errors with the three motions models.
In this case, the area errors are rather similar and the results obtained in the
last frame are close too (Fig. 5.b).

Fig. 6 shows tracking results for another patient. Tracking results are good
except at the end of the sequence because the process is unable to handle the
ventricular deformation in the right direction.

3D reconstruction Fig. 7 exhibits the 3D construction of the left ventricle
with the patient used in Fig. 6.

Motion model area errors (in %) area errors min error max error
Mean standard deviation

Similarity 6.0837 1.6884 3.6258 10.5606

Affinity 5.8903 1.5169 3.8016 10.0563

Affine 6.2169 1.9765 3.6323 14.1187
Table 1. Comparison of the tracking error for the three motion models.



Fig. 4. Tracking results: the tracked ventricle is shown in white and the trace of the
expert is shown with black points.
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Fig. 5. (a) Plot of the area errors trough the sequence for the three motion models (b)
results of the tracking in the last frame: similarity is in gray, affinity is in white and
affine in black.

Fig. 6. Tracking results: the tracked ventricle is shown in white and the trace of the
experts is shown with black points.



Fig. 7. 3D reconstruction of the beating left ventricle between end diastolic and end
systolic.

6 Discussion and Conclusion

To conclude we have presented a new approach to tracking on echocardiographic
images. Our approach, which combines both motion based approach and fine
adjustment with snakes, give promising results. The use of this hierarchical ap-
proach allows us to compute a reliable estimation of the velocity which can be
used successfully as initial guess for the adjustment stage.

It is clear that further investigation should be made into the problem of
ventricular adjustment. In fact, the snakes can be attracted by structures which
do not belong to the endocardium. Indeed, gradient information obtained from
echographic images is always incomplete because of drop outs. This problem
especially appears because of shadowing effect caused by the ribs. We currently
investigate how the spatial coherency of our data can be used to overcome the
above problems. Indeed, some structures of the endocardium which are missing
in a scan plane are likely to be present in the neighbored scan planes. That is the
reason why we want to achieve the adjustments stage in the 3D space instead of
the 2D space.
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