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Abstract 

The Active Contour Models provide a unified treatment involving 
t,he minimization of energy functionals for numerous computer 
vision problems. Nevertheless, numerical problems arise during 
minimization of the functional and the results depend heavily on 
t,he initialization.. . 
The strengths and also the drawbacks of this kind of method are 
described in this paper and we show the absolute necessity to  
have at disposal an assessment criterion of the solutions. This 
leads us to propose a method called "snake growing", based on 
successive lengthenings of the snake. The strength of this ap- 
proach is that at each stage, we are in good convergence condi- 
tionR and that it allows us to  get rid of initialization problems. 

1 Introduction 

One of the main problems with standard edge detectors is their 
inability to find the most salient edges. Too many or too few 
contours are in fact detected. Recently, new algorithms based on 
Active Contour Models have been proposed [Kas 881, [Zuc 881. 
An active contour is described as an elastic line which is slithering 
under forces created by some kind of energy. Local minima of 
this energy constitute the searched image features. 

Methods using minimization principles have been described 
in [Mon 711 and particularly by Kass, Witkin and Terzopoulos 
[Kw 881. An active Contour is called a snake. The energy func- 
tional always consists in the sum of two terms: 

The Internal ene rgy  Elnt, which describes the properties of 
the elastic line C = (x(t),y(t)). In the Snake system, the curve 
model is a controlled continuity spline [Ter 861. Elnt is written 

(Parameters CY and p influence the elasticity or stiffness of the 
curve) 

The Ex te rna l  energy E,,t depends on the features which 
are searched for in the image (dark lines, white lines. edges, ter- 
minat,ion of line segments . . . ). For instance, in edge detection, 
E,,, is defined as 
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where V I ( v ( t ) )  is the gradient of the intensity image. Each of 
the terms can be weighted. We then have to  minimize the global 
energy E = XE,,t + Eezt; 

Such a method is a way to  regularize the edge detection prob- 
lem, which is ill posed [Pog 851. The curves for which IVl(v(t))l 
is maximal are searched for in the restricted class of splines under 
tension. 

This class of edge detector is of great interest in some situ- 
ations: accurate localization of edges near a given initialization, 
detection of subjective contours, motion tracking.. . .Nevertheless, 
the minimization of the energy functional E is still problematic. 
For instance : 

0 How can the numerous parameters be calculated ? (the 
weight of various energies, the regularization parameter, 
the parameter of the numerical minimization method used 
to  minimize E ) .  

0 Numerical problems: high degree derivatives appear while 
solving Euler equations to  minimize E and the algorithm 
is not numerically stable. 

0 A judicious initialization is required. 

Part of those instability problems are actually due to  the fact 
that several minima of functional E can be found in the searching 
area. Section 2 comes back to  numerical problems and section 3 
deals with the estimation of the quality of the numerical solution. 
Finally, we propose in the last two sections a method whose main 
idea is to  be always in good convergence conditions and which 
frees us from initialization drawbacks. 

2 Study of the method 

The resolution method proposed in [Kas 881 is studied here. Other 
methods have been proposed [Ami 881 using dynamic program- 
ming. hilt we don't deal with them. 

2.1 An ill posed problem 

A problem is well posed in the sense of Hadamard when its solu- 
tion is unique and depends continuously on the initial data. More 
precisely, in accordance with Tikhonov [Tik 761, the problem of 
finding a solution z from initial data U is well posed if 
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1. For all U ,  a unique solution z = R(u) exists. 

2. The problem is stable : 

Given any E > 0, we can find 6 so that  d(u1, u2) < 6 in such 
a way that d(zl. zz) < E. 

This means that a small perturbation of the initial data  
induce a small variation of the solution. 

The ill posed problem notion is fundamental because it deals 
with the ability of using numerical methods from initial data  
which are generally roughly known. What is the state of the 
present problem ? 

Contours in the image are local minima of the energy func- 
tional E.  Those minima are determined with variational calculus 
using the Euler equations : 

(3) 

But we must keep in mind that solutions of (3) are only sta- 
tionary points and not always minima. An assessment criterion 
of numerical solutions is therefore required. 

In practice, we don't want to  determine all solutions, but only 
edges in the vicinity of the initial curve So given by the user. The 
snake SO deforms itself into conformity with the nearest salient 
contour. 

But this problem is ill posed. When several contours exist in 
the vicinity of So, the solution is not unique (two different curves 
can yield the same energy E ) .  Furthermore, the solution does not 
always depend continuously on the initial data. For instance, let 
us consider the case of two rectilinear contours [A,  B] and [A,  C ] ,  
and let D be the bisector of ( B , A , C ) .  An initialization by a 
segment containing A and making an angle 0 > 0 with D will be 
attracted by [A.  C]  but will be attracted by [A ,  B] if 0 is negative, 
whatever angle we t,ake. 

When SO cuts several edges or lies in the neighborhood of a 
junction, the active contour is attracted by several contours a t  the 
same time. The numerical method is then instable or stabilizes 
numerically towards a position which does not fit any contour. 

Those remarks bring an obvious fact to light: we must esti- 
mate the quality of the numerical solution. Often, only part of 
the resulting curve C is truly a contour. This case particularly 
arises when open contours are searched for; numerical calculus is 
then interrupted (because the solution doesn't move any more) 
whereas the resulting solution is not a local minima. This case 
also arises when a curve stabilizes on several edges a t  the same 
time. Some curves C,, ..C, which are parts of the contour can 
then be extracted from C. We will see in section 4 how those 
ext,racted curves can be used. 

2.2 Numerical study 

The Euler equations (3) are solved iteratively in the following 
way: 

The problem is discretized and the curve C is represented 
a the set, of equidistant points (vi = (z;,yi))o<i<,v). Approx- 
imating the derivatives with finit,c differences gives rke to the 

equation 

This can be written in matrix form as 

(5) 

where A is a pentadiagonal matrix whose band is 
W2-1;  -0, -2PZ - (%+~~+1)+p~-- l+4P:+Pt+l;  -Q't+l-  

2Pl - 2P1+1; Pt+lI 

This system is solved iteratively using 

X' = ( A  +yl)- ' (yX'- '  - fZ(X'-',Y'-')) 
Y' = ( A  +yl)- ' (yX'- '  - fy(X'- ' ,Y"l))  (6) 

The parameter y determines in fact the rate of convergence of 
the proress. When y is small, the snake moves quickly whereas 
the process converges more slowly when y is great. A good de- 
termination of y is essential in order to  avoid oscillations of the 
sequence (X', Y ' ) .  

Intuitively, it is advised to  choose a little value of y when the 
process starts (because the curve is far from the solution) and a 
great value when the snake is close to  the contour. 

In [Fua 891, P. Fua and Y. Leclerc proposed an adaptive pro- 
cedure for computing y. 7 is chosen so that the average displace- 
ment of the points (Xf ,Y' )  remains equal to  a given value A. 
We then obtain 

1 aE 
7 = (7) 

But this value is global. I t  is well adapted when all the curve 
points have a similar behavior but not in the case where parts of 
the curve are close to a contour whereas the remainder is very 
f ~ r ,  as in figure 1. 

It's the reason why we propose to  split up the curves into 
several parts on which points have a similar behavior. We can 
then use adaptive determination of y on each part. 

For instance, in figure 1, we cut C in two parts on which 
different evolutions of y are used. 

A 

Figure 1: A non homogeneous behavior. 
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3 Estimation of the result 

We have seen previously that numerical solutions may be a sta- 
tionary point of E or even a point where the sequence (X’, Yf) 
doesn’t move any more. In the first case, ( X ,  Y )  is a solution of 
the Euler equations but is not a minimum of E whereas, in the 
second case, the numerical algorithm is stopped while the limit 
is not reached yet. In this case, only parts of the curve can be 
considered as contours. The quality of the numerical solution 
must then be estimated. 

We can use the general definition of an edge [Fua 891: an 
edge is a curve C whose points have a gradient magnitude that  is 
maximal in the direction normal to  the curve. Points along the 
curve then satisfy 

where T L ( ~ ~ ( s ) )  is the normal vector a t  the point having the arc 
length s. We can then compnte a set of curves C; extracted from 
C which can be considered as contours within some tolerance. 
Only curves whose length is great enough are retained. 

Such a criterion is not easy to calculate because we only know 
the gradient at points whose coordinates are integer. Moreover, 
it is not really necessary to  know if C is exactly a contour but 
only to determine if C is close enoiigh to  a contour. Actually, 
when using an adaptive value of 7, we use as initialization the 
curve which had been determined a t  the precedent stage. The 
contour position becomes finer when 7 increases. Therefore, we 
only have to know if C lies in the vicinity of a contour in order 
to adapt ru and we can use the following criterion: compare the 
average M,,, of the gradient on the curve C with the average 
Mnr,gh of gradient in a neighborhood of C. If M,,, > Mne.,h 
within some tolerance. a contour certainly lies in the considered 
neighborhood. The snake assessment gives rise to  a sequence of 
contourR Cont l ,  ..., C(~nt,, extracted from C whose lengths are 
soinctinies small. We will see in the next section a method to  
infer longer contours from Cont l ,  ..., Cont,. 

4 Snake growing 

We propose in this section a method to  get rid of initialization and 
convergence problems based on a local study. We first propose 
a method called “snake growing” which permits to build a snake 
incrementally. We then suggest ~ a m e  improvements to  take into 
account contours which present great curvature variations. 

Figure 2: Lengthening in tangent direction. 

4.1 Initialization problems 

Given numerical and convergence problems described previously, 
it seems important to dispose of a correct initialization SO. The 
following conditions must generally be satisfied : 

SO must cut the contour in a t  least one point, because the 
convergence process starts with the sections of initialization 
and contour. 

SO must have a direction close enough to  the contour which 
will be detected. 

SO must lie in the influence area of a t  most one contour. 

In the particular case of closed snakes, the elastic line tends to  
retract itself. Thus, an exterior initialization permits t,o detect 
contours even when the initialization is far from the contour. 

4.2 Snake growing 

The “Snake growing” method is based on the following remark: 
when SO lies in the vicinity of the contour, the iterative method 
will converge quickly, especially if SO is short. We therefore 
build a sequence S I ,  .., S, of snakes which will yield contours 
Cont l ,  .., Cont ,  whose lengths are increasing. Since only smoothed 
edges are searched, it seems natural to  take as Si+1 the curve in- 
ferred from Conti  by lengthening its extremities in the direction 
of the tangents as shown in (Fig.2). 

We can then solve iteratively the Euler equations with Si+l 
which is a good initialization by construction. We then have 
to estimate t,he quality of the resulting curve Ci+l. Nothing 
can ensure that  the entire curve Ci+l is a contour, particularly 
when a great curvature variation occurs a t  the extremities. The 
estimation procedure, described below, allows us to  determine 
Cont;+l from C;+1. 

The growing algorithm can be written as: 
start from a curve SO close to a contour, 
run the snake algorithm with So as 

initialization, which yields CO. 
While lengthening is possible, do: 

(build a sequence C; of contours whose lengths increase) 
- lengthen Ci in the tangent direction to have 
the initialization curve Si. 
- run th,e traditional algorithm which 
converges towards Cli+l 
- assessm.en,t of the curvc Cl;+1 which yields C;+I 
and the result quality. 

The growth of the length can be a given value 1 or can be 
an adaptive value infrrrcd from prcvious results. For instance, 
when the convergence is fast a t  a stage, we can suppose that 
the tangent dircction is close to  the contour direction; 1 is then 
increased. 

4.3 Critical study 

4.3.1 Advan tages  

The major advantage of snake growing is that a t  each step, we 
are in conditions such that the iterative method converges in a 
satisfying manner. More precisely: 

The only time when initialization is far from the contour 
is a t  the beginning of the process. But there are only few 
discretization points (SO is small) and the cost is very weak. 
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0 At the following steps, the snake is quite near a unique 
contour, except a t  the extremities. The numerical solution 
is then stable. 

We can also notice that this method allows to  detect eas- 
ily rectilinear edges and contours which present small curvature 
variations, as lengthening is quite close t o  the contour. 

4.3.2 Drawbacks 

One of the drawbacks of the method is the cost of the algorithm. 
In the initial method, we have to  inverse an N * N matrix where 
N is the number of discretization points. Here, we have to  inverse 
a new matrix a t  each lengthening of the snake. However, as the 
algorithm is more stable, the number of iterations needed is lower. 
Nevertheless, we cannot get theoretical estimation of the cost 
because the number of iterations depends on the initialization 
curve and on the image. 

Figure 3: First step of growing. 

As lengthening is made in the direction of the tangent, it is 
clear that the method is hardly adapted when heavy curvature 
variations occur at the extremities (figure 8). In the following 
section, we propose an improvement of the method to get rid of 
this drawback. 

4.3.3 Results 

Figure 4: Following steps of growing. 

Figure 5: Traditional use of the snake. Figure 6: To illustrate our method, consider the image shown in (Fig.3). 
We want to detect the woman’s hand using snake growing. Figure 
3) shows the initialization curve and the resultinff snake. 
- I  

Different steps of growing and the associated edges are shown 
in (Fig.4). In this example, only 10 iterations at each step are 
sufficient to  ensure convergence. 

Consider now the image of the lamp in figure 5. We voluntar- 
ily took a bad initialization. We can see the numerical solution 
which is almost stabilized. We then use the evaluation criterion 
to determine a curve C which can bc considered as an edge. The 
result is shown in (Fig.6) and the snake is lengthened as in the 
previous case (Fig.7). 

5 Improvement 

5.1 Search for the best prolongation 

When the growing algorithm fails, one of the following cases oc- 
curs Figure 7: Snake growing. 
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Edge termination or hole in the edge: 

High curvature variation in the contour (corner. . . and the 
tangent direction is then far from the contour. 

The zero crossings of the second derivative along the gradient 
tlircction arc used to detect interruptions of contour in the flow 
dircrtioii [Kas 871. But it does not permit to know if the contour 
carries on in another dircction. We solve this problem in a local 
manticr: to determine in which direction the contour lies, we 
study several lengt,henings in different directions and we only 
rrtain the solutions giving rise to  better results. In this way, we 
can find contours which present corners. Several solutions can be 
kept, so that jnnction points ran be detected. 

In o w  implementation, we lengthened the snake in eight di- 
rections and computed the resulting solution. We retain solutions 
which give rise to the best length increase. 

An application of this method is shown in (Fig.8) to  detect 
elevation curves in an image. Traditional methods fail because 
elcvation curves are very close and present a high curvature vari- 
ation in the middle of the bark. The best prolongation method 
detect,s this variation. 

Figure 8: Using the best prolongation method to detect elevation 
curves. 

5.2 Get rid of initialization 

Th(3 method described in sectmion 3 start,s from a local initializa- 
tion. But we can get rid of this drawbark in the following way: 

Given any initialization SO. we can detect the intersection 
points ( I , )  of So with the contours using the gradient curve along 
SO. We can then cut So in rurves S, containing (I,). They are 
the starting points of new snakes which can be lengthened as 
dcsrribed before. 

5.3 Discussion 

Tlir methods wr proposed in this scction are based on a local 
point, of view, whereas the traditional snakes take into account a 
global point of view. This allows us to detect easily local behav- 
iors iii a contour like a corncr or a high riirvature variation. This 
approach can be very effirient if we have knowledge of the geom- 
etry of thc contours and particularly on the presence of angular 
point,s 011 the contour. Other constraints can be used to control 

the edge detection. For instance, in [Fua 891. Fua uses parallelism 
ronstiaints described in term of energy to  detect roads in aerial 
images. 

6 Conclusion 

One of the strengths of the Active Contour Models is to  provide 
a global point of view which permits to get rid of local anomalies 
or holes in the contour and to  get regular and localized shapes. 

One of the drawbacks of the proposed method (cutting and 
searching in several directions) is to lose this globality. Never- 
theless, this is compensated by the ability to detect easily curves 
which are not C2 (C2 is the set of functions for which the second 
derivative is continuous) even in noisy surrounding. 

This kind of method is only efficient if we have sufficient con- 
tour informations to  have knowledge about privileged directions 
or if we integrate a geometric model of the contour. 
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