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Abstract

We present a new approach for resolving occlusions in

augmented reality. The main interest is that it does

not require 3D reconstruction of the considered scene.

Our idea is to use a contour based approach and to la-

bel each contour point as being \behind" or \in front

of", depending on whether it is in front of or behind the

virtual object. This labeling step only requires that the

contours can be tracked from frame to frame. A prox-

imity graph is then built in order to group the contours

that belong to the same occluding object. Finally, we

use some kind of active contours to accurately recover

the mask of the occluding object. Signi�cant results

prove the e�ectiveness of our approach.

1 Introduction

Augmented reality systems aim at enhancing the user's

vision with computer generated images [7, 6, 2]. Most

of the time, such systems simply overlay computer gen-

erated images and only attempt to minimize object reg-

istration errors. However, such methods are e�ective

only when there are no occlusions between real objects

and computer generated objects.

If a real object occludes a virtual object V , we must

compute the occluding mask m

V

, that is the region of

the image plane to which the visible part of V corre-

sponds. The virtual object is then only displayed on

this mask. Most of the time, occlusions are resolved in-

teractively [3, 2] by allowing the user to delineate the

occluding mask. Hence, solving automatically the oc-

clusion problem for augmented reality is a challenge,

especially when little is known about the world to be

augmented.

Context:

We are only concerned with static scenes. Satisfying

image composition requires a good temporal registra-

tion between the real scene and the virtual objects, as

the camera (or the user) moves. This can basically be

achieved using two approaches. The �rst solution is to

use position sensors; but instrumenting the real world

is not always possible. The other solution is to use

modeled objects to perform registration.

As we do not want to modify or to instrument the

environment with which we interact (especially be-

cause we often work with outdoor environments), we

use model based registration. This implies that the

3D model of some features in the scene is known. In

fact, this is not too restrictive: for numerous applica-

tions, the main structures of the scene are often known

(ground, main objects. . . ). The transformation be-

tween the camera and the scene frame can then be

computed using these features.

Let us now get back to the occlusion problem itself.

Related works

While several augmented reality systems are described

in the literature, few of them address the occlusion

problem. If the model of the 3D scene is known, as

in [3], the problem can easily be solved. Otherwise,

the problem is very di�cult. Theoretically, resolving

occlusion could be achieved by inferring a dense map

from a stereo pair (or from two consecutive images)

so as to compare the depth of the virtual and that of

the real object. Some people [9] have tried to develop

a real-time stereo algorithm to be used for resolving

occlusions in augmented reality. But their results are

visually unsatisfactory. In fact, despite new advances

in 3D reconstruction, the depth map lacks accuracy

and cannot be used as is.

Instead of performing 3D reconstruction, we advo-

cate a contour-based approach that allows us to recover

the boundaries of the mask. Before describing our ap-

proach, we focus on some speci�c problems that may

arise when the user want to add a virtual object in a

scene.

2 The link between the occlu-

sion mask and the occluding

contours

2.1 Adding a virtual object

Adding a virtual object in the scene requires that the

user speci�es the relationship of this object with the
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Figure 1: If the new object (the mushroom) is not con-

sistently positioned (b), the occluding mask contains

contours that belong neither to the image contour nor

to the virtual object contours.

scene. The user can either give the geometric position

of the object in the scene frame, or place visually the

object in the image through an interface: the user can

then rotate or translate the object in the scene frame

until a satisfying position has been reached. In this

case, the user does not have at his disposal the 3D

map of the scene but only a 2D image (or a sequence),

and he can only visually assess the result. Hence, he

may sometimes make mistakes while adding an object

in the scene. For instance, he may put an object lower

than the level ground and unrealistic situations may

arise. Consider for instance the problem of adding a

virtual mushroom on a real cube (Fig.1). If the posi-

tion of the mushroom is realistic (Fig.1.a ) the occlud-

ing mask is only composed of contours present in the

scene and of contours belonging to the virtual object.

For an unrealistic position (see Fig.1.b, the mushroom

should penetrate the cube), the occluding mask of the

mushroom contains a new contour and cannot be re-

covered from the image and from the virtual object.

These contours can only be computed if the model of

the real scene is known. As mentioned previously, the

bad quality of the depth map stemming from a stereo

reconstruction does not generally allow the contours to

be computed with an acceptable accuracy.

Our conclusion is as follows: if the position of the

virtual object is realistic, the occluding mask can be

computed using only image data (the edge map) and

the occluding contours of the virtual objects. Oth-

erwise, the mask contains some contours that can be

recovered only if the 3D model of the scene is known.

Nevertheless, we think that most of the time, the

user can consistently specify the position of the object

he wants to add in the scene, possibly with small errors.

Indeed, visual assessment generally enables collisions

between virtual and real objects to be avoided.

We thus assume that the occluding mask is only com-

posed with some parts of occluding contours stemming

from objects standing in front of V and parts of the

occluding contours of the virtual object.

2.2 Identifying the occluding contours?

Thus, the identi�cation of the occluding contours can

be of great help for the computation of the occluding

mask. But, it is not an easy problem. Vaillant [8]

was the �rst to propose an identi�cation method: as-

suming that the surface of the object along the rim

is locally a cylinder, he can compute the radius of the

cylinder using three consecutive images. The classi�ca-

tion between occluding and regular contours

1

is then

performed by testing the radius (the radius for a reg-

ular edge is theoretically 0). Nevertheless we did not

manage to successfully identify the occluding contours

for our images with this kind of method. Another al-

ternative for the identi�cation makes use of purposive

vision [5]. Unfortunately, this approach is untractable

because the observer's motion cannot be controlled for

most augmented reality applications.

Due to the inaccuracy of the reconstruction process

and to the di�culty of the identi�cation task of the

occluding contours, we resorted to an alternative solu-

tion, which does not require 3D reconstruction. Using

the edge map of the image, we attempt to identify all

the contours (regular contours as well as occluding con-

tours) which stand in front of the virtual object. By

grouping the contours according to a proximity crite-

rion, we produce a �rst rough approximation of the

occluding mask. This �rst estimation can possibly be

somehow erroneous, as all the contours of the occluding

objects are not necessarily extracted by the edge detec-

tor. Conversely, some edge parts can be mis-identi�ed

and can be labeled as in front of although they are be-

hind the virtual object. To cope with these problems,

we resort to regularization. More precisely, strategies

inspired from the active contours paradigm allow us to

accurately de�ne the occluding mask.

3 Overview

In this section, we describe the outlines of our algo-

rithm for resolving occlusions using two successive im-

ages. Let V be the virtual object to be added in the

real scene. We assume that both the motion between

the two frames and the camera parameters are known.

In our case, the motion is computed using object based

registration.

The main steps of our algorithm are summarized be-

low. For each step, we refer the reader to Fig. 5, which

1

Unlike occluding contours that are viewpoint dependant,

regular contours correspond to the same physical event in the

3D scene
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illustrates the key points of the algorithm. In the ex-

ample shown, we attempt to add a virtual rectangle

parallel to the frontal plane of the calibration grid. The

motion has been computed using the small circles on

the calibration grid.

Step 1: Computation of the initial mask

We compute what we call the initial mask m

I

, that is

the region in the image to which the object V corre-

sponds, assuming that the whole object is visible. We

thus compute the occluding contours of the virtual ob-

ject (Fig. 5.b).

Step 2: Tracking the contours

The contour chains are extracted in the region of the

image corresponding to m

I

(Fig.5.c) (in fact, we con-

sider all the chains that cross the initial mask; we ex-

plain why in section 6). Then these chains are tracked

(Fig.5.d) in the next image using a curved- based

tracker which we have developed previously (for further

details, see [1])

2

. Finally, the matching of the contours

points between the two images is performed by using

the epipolar constraint: for each contour point m be-

longing to a given chain C, the corresponding point

is computed as the intersection between the epipolar

lines and the corresponding tracked chain C

0

(as usual,

heuristic considerations or constraints are used if sev-

eral intersections are available).

It must be noticed that a chain can be composed of

contours belonging to two (or more) objects (see Fig.

5.c: the side of the book and the occluding contour of

the pot are linked by the same chain). It does not mat-

ter as the next step allows us to discriminate between

the parts of the chain through the labeling stage.

Step 3: Labeling the contour points with be-

hind or in front of

This important step is detailed in section 4 and is based

on the comparison for each image point m between (i)

the optic ow of the real point in the scene that projects

onto m and (ii) the optic ow of the 3D point belong-

ing to the virtual object that projects onto m (Fig 5.e

and f). The originality of this method is that it does

not require 3D reconstruction of the scene.

Step 4: Computation of the occluding mask

This step is detailed in sections 5 and 6. The problem

is to recover the occluding mask from the contours la-

beled in front of. Using the force �eld created by these

contours, the active contours allow us to detect a �rst

estimation of the mask. This estimation is then re�ned

using the initial image (Fig. 5.g,h,i and j).

2

Too small chains are not tracked, as the tracking process is

not reliable in this case

4 Discriminating between \be-

hind" and \in front of" points

4.1 The criterion

Fig 2 illustrates the basic geometry of the camera

model; for each camera position we consider the co-

ordinate system R

1

(resp R

2

) where the z axis is the

optical axis and the (x; y) axis are parallel to the image

axis.

Let I

1

and I

2

be two consecutive frames. Letm

1

2 I

1

and m

2

2 I

2

be two corresponding points given by the

tracking process. We note Z

real

the z coordinate of the

real point corresponding to (m

1

;m

2

). Now let M

obj

be the 3D point belonging to the virtual object,whose

projection in I

1

is m

1

. This virtual point occludes the

real one only if Z

obj

< Z

real

. We show in the following

how to solve that without computing Z

real

.

Since the calibration is known the projection m

obj

of

M

obj

in I

2

can be computed. Fig. 2 shows intuitively

that the points lying in front of or behind the object

can be inferred from the relative position of m

2

and

m

obj

on the epipolar line.

More precisely, let us de�ne f

m

1

(Fig. 2):

f

m

1

: Z ! proj

I

2

(m1

x

;m1

y

; Z)

where m

1

= (m1

x

;m1

y

) and proj

I

2

is the projection

in image I

2

.

We will show that f

m

1

is an homography of Z whose

coe�cients only depend on m

1

and of the relative po-

sition of the camera between the two frames.

Let u

1

; v

1

; k

u1

; k

v1

(resp u

2

; v

2

; k

u2

; k

v2

) be the in-

trinsic parameters of the cameras used for the �rst two

frames. The euclidian displacement mapping R

1

onto

R

2

is called [R; T ] =

h

r
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r
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t
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r
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23

t

y
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r

32

r
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t
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.

Hence, the coordinates inR

1

of the 3D pointM that

projects onto m

1

are

M =

 

X

Y

Z

!

=

0

@

m1

x

�u

1

k

u1

Z

m1

y

�v

1

k

v1

Z

Z

1

A

(1)

Hence

f

m

1

(Z) =

�

u

2

+ k

u

2

r

11

X+r

12

Y +r

13

Z+T

x

r

31

X+r

32

Y+r

33

Z+T

z

v

2

+ k

v

2

r

21

X+r

22

Y +r

23

Z+T

y

r

31

X+r

32

Y+r

33

Z+T

z

�

(2)

Substituting (1) into (2) allows then f

m

1

(Z) to be expressed

as an homographic function of Z whose coe�cients depend

on the calibration process and on the image point m

1

.

Let us return to the occlusion problem. We have

m

2

= f

m

1

(Z

real

) and m

obj

= f

m

1

(Z

obj

)
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Figure 2: The relative positions of the real and the virtual objects.

Due to the monotony of the homography, it is therefore easy

to compare Z

real

and Z

obj

: let a; b; c; d be the coe�cients

of f

x

m

, that is f

x

m

(Z) =

aZ+b

cZ+d

.

If (ad� bc > 0), then

if m

2

>

a

c

and m

obj

<

a

c

, then Z

real

< Z

obj

else if m

2

<

a

c

and m

obj

>

a

c

, then Z

real

> Z

obj

else if m

2

< m

obj

then Z

real

< Z

obj

else if m

2

> m

obj

then Z

real

> Z

obj

Thus, the two homographies f

x

m

and f

y

m

can be used to

decide whether the point is in front of or behind the virtual

object. Each point m can therefore be labeled with behind

or in front of only if the test on the two coordinates give

the same result. Otherwise, the label is doubtful.

4.2 The occluding contours

The preceding criterion has been established for points be-

longing to regular contours. In fact, we also use it for points

belonging to occluding contours. We explain why in Fig. 3:

for an occluding contour,the corresponding points m

1

and

m

2

belongs to the tangent lines �

1

and �

2

. Hence m

2

is the

projection of the intersection P of the two tangent lines.

Then, using the above criterion with (m

1

;m

2

) leads us to

compare the positions of P and V instead of comparing the

position of V and P

1

. If V does not lie between P and P

1

,

the result given by the criterion is correct (outside this in-

terval P and P

1

are on the same side of V , i.e. both before

or both in front of V , and the criterion succeeds).

Problems may obviously arise if the virtual object could

be added between P and P

1

. We claim that this is not

practically possible for most cases. To prove that, let us

compute PP

1

. Let R be the radius of the real object. We

have

PP

1

<

^

P

1

P

2

= R�

where � is the angle between the tangents; it is usually

small as the motion between two frames is small. We can

approximate � with � � arctg(C

1

C

2

=d) where d is the dis-

tance between the camera and the object. For our practical

case, the distance camera/object is around 2 meters, the

m1

m2

P

τ2

τ1

P1

V

P2

α

α

C1 C2

real object

Figure 3: The case of occluding contours

distance C

1

C

2

< 5cm and the radius of the object in the

scene are less than 8cm. Hence PP

1

< 8� arctg(5=200) =

0:2cm = 2mm. Thus the distance where the criterion fails

is small. Moreover, because of visual assessment, the user

can hardly attempt to add an object in so small an area.

5 Identi�cation of the occluding

objects

After the previous step, each contour point is labeled with

behind, in front of or doubtful. We now consider the new

connected chains C

i

f1�i�Ng

that are only made up of in

front of points. Our aim is to group the chains that corre-

spond to the same occluding object (Fig. 5.e).

Our algorithm is based on a proximity criterion. As

usual, we de�ne the distance of two curves C

i

and

C

j

by distance(C

i

; C

j

) = inf

fx2C

i

;y2C

j

g

d(x; y). Given

a threshold s, we consider that two chains such that

distance(C

i

; C

j

) < s belong to the same object (in prac-

tice s is equal to a few pixels).

We can therefore build a proximity graph G : the nodes

represent the chains C

i

f1�i�Ng

; two nodes are connected

only if the distance between the corresponding chains is

less than s.

Then, detecting the occluding objects amounts to com-

4



pute the cliques in the proximity graph, that is the

sets of curves H � G such that: 8C 2 H;9C

0

2

HjC and C

0

are connected.

6 Computing the occluding

masks

Inferring the occluding mask from a set H of contours is an

arduous task for several reasons:

� H may contain some chains that do not belong to the

real occluding mask. This may for instance be due to a

threshold s which has been chosen too large. Problems

can also originate in tracking errors.

� We have to build what we call the envelop of a set of

contours. But all the contours that composed the oc-

cluding mask are of course not necessarily detected in

the initial contour map and are of course not tracked.

Thus, we have to compute the curve that approximates

the set H as well as possible (Fig 5)

To cope with these problems, we resort to the regular-

ization theory and especially to the active contours mod-

els [4].The underlying idea is to add regularity constraints

(smoothing constraints) on the solution that will produce

a unique solution, and overcome the problems stemming

from lacking or erroneous contours.

Active contours are curves minimizing an energy term:

Z

�jv

0

(s)j

2

+ �jv

00

(s)j

2

ds�

Z

jrI(v(s))jds

Starting from an initializing curve, the snake will converge

towards the nearest edge and produces the regular curve

compatible at best with the image.

It is well known that the snakes naturally tend to shrink

if the image gradient is null. We take advantage of this

property in our application by initializing a snake with a

closed curve outside the setH (In practice, we use the small-

est rectangle that contains H Fig. 5.g). Then, we let the

snake evolve under the inuence of the �eld created by the

contours in the following way: Let I

0

be the contour image:

I

0

(x; y) = 255 if (x; y) belongs to one

of the chains 2 H

= 0 otherwise

Then let F = I

0

� Gauss(�) be the convolution of the

contour image with a gaussian kernel with a su�ciently

large standard deviation (� = 2 for instance), in order to

create the inuence �eld.

As the initializing curve contains H, the snake will shrink

itself until it reaches the contours of H. This will produce

the most regular curve resting on H. In fact, the curve does

not always contain all the chains belonging to H. This is

quite normal as bumps or spurious contours can be removed

by the regularization process.

The advantage of such a method is twofold:

� spurious contours that have been erroneously grouped

with the mask are not taken into account most of the

time. In fact, they often appear as bumps on the mask

boundary and are removed by the regularization pro-

cess.

� this algorithm prevents us from using tricky geometric

algorithms allowing some kind of envelop to be com-

puted.

Remark: We now explain why we use all the points of

the chains that cross the mask instead of using only the

part of the chain that lies inside the mask region. This

is due to the behavior of active contour models in some

speci�c situations: consider the simple scene shown in Fig.

4 and suppose we want to add a rectangle behind the black

triangle. The expected result is shown in Fig. 4.b. If

we only use the part of the contours which belongs to the

initial mask, then the position reached by the snake is the

one shown in 4.d and the computed mask (4.e) is not really

satisfactory. This behavior is quite normal as the gradient

is null on the horizontal part of the mask (Fig. 4.c). Hence

the snake is only submitted to the smoothness constraints

and it tends to retract itself. This behavior is all the more

perceptible as the angle is sharp. This explains why the

lower part of the mask is badly detected whereas the upper

part is satisfactory

This problem is mainly due to the fact that we only take

into account the part of region surrounded by the contour

that is contained into the mask of the virtual object. If we

consider instead the whole contour (Fig. 4.f), we recover

a greater part of the occluding object which allows us to

overcome the problem stemming from contours broken by

the mask. The �nal mask is then obtained by keeping the

part of the mask that belongs to the initial mask of the

virtual object. For instance, in the case of Fig. 4, we will

recover the whole occluding object. In the case of Fig. 5,

we recover the base of the clown, and this yields a good

estimation of the mask.

7 Results

Our algorithm has been extensively explained on the ex-

ample shown in Fig. 5. Another more complex example is

shown in Fig. 6, where the virtual object is occluded by

two objects of the scene. For the sake of simplicity, the

virtual object is a rectangle that is near both the pot and

the clown (the distance is around 1 cm, whereas the size of

the scene is around 40 cm). Fig. 6.a shows the result of

the classi�cation criterion: the points labeled in front of are

plotted in red, whereas the points labeled behind are plot-

ted in green (a small number of points are labeled doubtful

and are plotted in yellow). The results are visually correct

except for the contours that correspond to letters written

on the book: these contours are very jagged and are of

course di�cult to track with su�cient accuracy. This ex-

plains the small errors in the classi�cation. Four objects

are found after the grouping step (Fig. 6.b ). The blue and

the red ones are discarded because the area surrounded by

these contours is too small. Using the snake strategies on

5
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Figure 4: The whole contours are needed to detect the mask properly

(a) the original scene (b) the expected result (c) the gradient �eld created by the contours (d) the occluding

mask reached by the snake (e) the result.(f) the result if we use the whole contour.

the yellow and green objects allows then the two occluding

objects to be detected (Fig. 6.c). The �nal result is quite

convincing.

Another observation can be made from this experiment:

all the contour points do not appear on Fig.6.a (see for

instance the parallel lines on the pot). This is due to the

fact that the contour at these points is almost parallel to the

epipolar line (which are approximately horizontal here) and

the matching fails. In the neighborhood of such points, the

matching is not very accurate; this explains why some parts

of the parallel lines of the pot are labeled behind instead of

in front of. Finally, a funny example merging a real scene

and strip cartoon heros is shown in Fig.6.e.

8 Discussion

We discuss in this section the robustness of our method and

the possible improvements for future works.

8.1 Robustness of the classi�cation cri-

terion

The classi�cation criterion described in section 4 is one of

the key points of our algorithm. The e�ectiveness of this

step depends on:

� the quality of the matching:

if the matching (m

1

;m

2

) is erroneous, the criterion

will obviously fail. The quality of the matching de-

pends on the tracking process and on the accuracy of

the computed motion between the two frames. Hence,

cluttered or textured environments may cause trouble,

as the tracking process is less e�cient in these situa-

tions.

� the distance between the virtual object V and the

scene:

For a given scene and a given image point m, let d

be the 3D distance between V and the corresponding

point in the scene. It is quite obvious that the greater

d is, the easier the classi�cation is.

� the camera motion:

Our experiments show that the approach is more ef-

fective with large motions. Indeed large motions gen-

erally produce more important di�erence between m

2

and m

obj

. Moreover, possible imprecisions on the lo-

cation of m

1

;m

2

then have less inuence on the clas-

si�cation criterion.

8.2 Concluding remarks

We have presented an alternative to the 3D reconstruction

for resolving occlusions in augmented reality. The main

interest of our approach is that it only involves 2D compu-

tation to check the position of the virtual object against the

scene. Resorting to regularization then allows us to com-

pute the mask compatible at best with the classi�cation

stage. Moreover, our algorithm is quick, easy to implement

and robust.

Of course, our approach depends on the quality of the

contour map. Some lacking contours may have no inuence

on the �nal result as the snake process �lls in possible holes

in the contours. Conversely, one missing contour may have

a great inuence on the result. Consider for instance the

case of the pot in Fig. 6. As all the interesting contours

are not always detected by the edge detector, and as the

epipolar matching fails, the pot is almost split into two

parts. Fortunately, the upper contour of the pot ensures

the connection between the two parts of the pot.

Thus, one missing contour may lead the algorithm to de-

tect two occluding objects instead of one object and may

lead us to trouble. Increasing the value of s is not a satis-

factory solution because it will sometimes lead the process

to merge possible close occluding objects. Hence, a pos-

sible improvement could consist in multi scale analysis, in

order to take advantage of some weak contours that do not

appear at high scale.

To conclude, even if our method would probably give less

interesting results for very textured environments, it is well

suited for images where the contour information is relevant.
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Figure 5: Adding a virtual rectangle in a real scene

(a) the original image (b) the mask of the virtual object to be added overlayed on the image (c) the edge map

(d) result of the tracking process (the two corresponding curves are shown), the quadrilateral is the mask of the

virtual object (e) contours that are labeled in front of (f) mis-classi�ed points: contours that are labeled behind

(g) the gradient �eld created by the contours labeled in front of and the initialing snake (h) the mask after the

snake process (i) the mask of the occluding object (j) The result.
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(a): the classi�cation stage: the points in red are in front of the virtual objet, the points in green are behind

the virtual object (b) four objects are obtained after the grouping stage (c) The mask of the occluding objects

(d) The result of the composition (e) a funny composition
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