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Abstract. We present our augmented reality system for image com-

position. We have worked with a view to avoiding strong and tedious

interactions with the user. In this paper, we especially stress on the ro-

bust temporal registration method we have devised. An original method

for resolving occlusions is also presented.

1 Introduction

In the past few years, virtual reality has attracted a great deal of media attention.

The idea is to immerse a user into a completely computer-generated virtual

world. Unfortunately, these environments often lack realism and the user is cut

o� from any view of the real world outside. Moreover, the numerical simulation

of virtual environments is most of the time cost expensive.

On the contrary, augmented reality (AR) allows the user to interact with the

real world in a natural way. Augmented reality systems aim at enhancing the

user's vision with computer generated imagery but does not attempt to replace

the real world. This explain why interest in AR has substantially increased in

the past few years and medical, manufacturing or urban planning applications

have been developed [11,5,3].

We focus in this paper on the problem of image composition for video se-

quences, which is one of the key point for numerous AR applications. Indeed,

to make AR systems more e�ective, the computer generated objects must be

blended convincingly with the real images.

Requirements for a realistic composition

The �rst challenge to be solved is to correctly retain up-to -date the scene-camera

pose relationships over relative motion. This temporal registration allows the

image of the computer generated objects to be computed for each frame of the

video sequence. The registration task must be achieved with special care because

the human visual system is very good at detecting even small misregistrations.

Unfortunately, ensuring temporal registration is not su�cient to perform re-

alistic composition. Other signi�cant visual cues to the human perceptual system

must be considered: for instance, proper occlusion resolution between real and

virtual objects is highly desirable in composition systems. Other photometric in-

teractions between real and virtual objects (continuity of lighting, shadowing. . . )

should also be considered.



Instrumenting the scene?

Augmented reality problems can often be solved by using either algorithmic so-

lutions or sensor based solutions. For instance, the registration problem can be

solved using position sensors (as Polhemus sensors). Easily detectable landmarks

placed in the scene can also be used to make the registration process easier [5].

However, instrumenting the real world world is not always possible, especially

for vast or outdoor environments. Thus, vision based object registration is an in-

teresting and cheaper approach that leaves the environment unmodi�ed. Hence,

a wide variety of applications can be considered with such methods.

We focus in this paper on image composition methods which do not involve

neither landmarks nor sensors. We only assume that the 3D model of some

parts of the scene is known; it will be used for object based registration. This

hypothesis is generally not restrictive for practical applications because the main

structures of the scene are often known (ground, main objects in the scene . . . ).

We describe in the next section an overview of our augmented reality system.

We then present the robust solutions we have devised for resolving the temporal

registration problem (section 3) and the occlusion problem (section 4).

2 Overview of our Augmented Reality System

Before giving the overview of our system, we discuss the methods able to solve

the temporal registration problem and the occlusion problem.

Camera calibration: If a large number of 2D/3D point or line correspon-

dences are available, the registration reduces to a classical calibration process

which allows the intrinsic parameters as well as the pose to be computed. Oth-

erwise, a straightforward process is to calibrate the camera before shooting the

video sequence. The underlying assumption is that the intrinsic parameters re-

main constant as the camera moves; we then have only to compute the camera

pose for each frame. We use this latter solution because in practice, a small

number of points can be extracted with su�cient accuracy, especially for out-

door scenes.

Viewpoint computation: Pose recovery has been extensively studied in

the past few years. Two broad classes of methods can be distinguished: the

most classical one uses object based registration; this means that 3D knowledge

is needed to compute the pose from image/model correspondences. The other

alternative is basically 2D: if the projection of a su�cient number of points

are observed from di�erent positions, the camera pose can be recovered up to

a scale factor [10]. Unfortunately, these approaches turn out to be sensitive to

inaccuracies in 2D feature measurements. For sake of e�ciency, we therefore use

object based registration.

Matching: Object based registration is a matching process between mod-

els and images. For video sequences, a reasonable assumption is that the user

can locate objects in the �rst image frame. The matching process in the subse-

quent frames is then often achieved by using template matching (correlation).

Since a single outlier can have a large e�ect on the resulting pose, special care



is often taken to reduce possible false matches. For instance [11] uses geometric

invariants to check and select only successfully tracked points. Other methods

[6] use a velocity model and a Kalman �lter to better predict the position of the

image feature. Unfortunately the use of a velocity model imposes regularity con-

straints on the camera motion; this can be inappropriate for augmented reality

applications for which the scene is often shot by a moving observer.

We therefore advocate a less constraining approach. Instead of attempting to

re�ne the matching process, we prefer to use a robust statistical method to com-

pute the pose from the matching induced by the tracking process. Unlike most

existing systems, registration is achieved from points, lines or free form curves.

Another original aspect of our system lies in its ability to handle occlusions

between the real scene and the computer generated objects.

The system is initialized with known camera parameters and a user speci�ed

set of four 3D-2D corresponding points pointed out by the user. This allows the

initial pose to be computed (with the method of Dementhon and Davis). Then,

the 2D features corresponding to the visible model features are automatically

determined. Once initialized, the system follows a three step loop:

� Tracking: The set of features is tracked in the current image using a curve-

based tracker that we have previously developed [2]. Among the set of tracked

curves, a small number may be misdetected or completely erroneous (outlier).

See for instance the primitives 4 and 5 in Fig. 2.d.

� Robust temporal registration:Correspondences are generally maintained

during tracking. Unfortunately, even a single tracking error can have a large

e�ect on the resulting pose. For point features, robust approaches allow the

point to be categorized as outlier or not [7].When curved features are consid-

ered, the problem is not so simple. We have then devised a robust algorithm

capable of extracting the parts of the features that match the 3D model and

to compute the pose in a robust manner (see section 3).

� Resolving occlusion and image composition: We propose in section 4

a contour based method that allows the occlusions to be solved without 3D

reconstruction of the scene (see section 4).

3 Robust Statistical Methods for Temporal Registration

3.1 Robust Estimation

Pose recovery amounts to compute the rotation R and the translation t which

map the world coordinate system on the camera coordinate system. [R; t] is

represented by 6 parameters p = [p
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]. For 2D/3D point correspondences, a

classical way to compute the pose is to minimize the reprojection error
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It is well known that the least square estimation is not robust to noise because

the larger the residual r

i

is, the larger is its in�uence on the estimate. To tackle



this issue, statisticians have suggested many robust estimators. Among them,

the two most popular are the M estimator and the Least Median Square method

(LMS) [8]. The LMS method consists in minimizing the median of the squared

residuals min

p

med

i

r

2

i

. This method is able to handle data sets which contain

less than 50% outliers but is not very accurate. But the main drawback is that

the minimum has to be searched in the space of possible estimates, that can be

very large!

Since the rate of outliers is generally less than 50% for practical applications,

we prefer to use M-estimators which can be reduced to a weighted least square

problem. The M estimators try to reduce the e�ect of outliers by minimizing a

function of the residuals
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p
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where � is a continuous, symmetric function with minimum value at zero. Such

estimators prove to be well suited to cases where the rate of outliers is approxi-

mately less than 20%. Table 1 lists three commonly used � functions and their

derivative. Among these estimators, some are more restrictive than others: when

Tukey's in�uence function is null for residuals larger than a threshold c, Cauchy's

in�uence remains larger than zero while decreasing, whereas Huber's in�uence

remains constant.

Table 1. Three commonly used M-estimators.

Type �(x)  (x)

Huber

n

if jxj � c

if jxj > c

n

x

2

=2

c(jxj � c=2)

n

x

c � sgn(x)

Cauchy

c

2

2

log

�

1 +

�

x

c

�

2

�

x

1+

�

x

c

�

2

Tukey

n

if jxj � c

if jxj > c

(

c

2

6

h

1�

�

1�

�

x

c

�

2

�

3

i

c

2

=6

(

x

�

1�

�

x

c

�

2

�

2

0

3.2 A Robust Two Stage Statistical Method for Pose Computation

In our system, features of various types are considered: point, lines and curves.

De�ning outliers for curved features is not so simple, as some parts of the 2D

curves can perfectly match the 3D model whereas other parts can be erroneously

matched. Let us de�ne

� C

i
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be the projection of C

i
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be the detected curve (tracked curve) corresponding to C

i
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the chain of 2D points fm
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A simple solution would be to perform a one stage minimization

min
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0
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and the curve c
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Unfortunately, this method is unsatisfactory because it merges all the features

into a set of points, and makes no distinction between local errors (when a feature

is only partially well localized), and gross errors (when the position of a feature

is completely erroneous). However, these two kinds of errors are not identical,

and not treating them separately induces a great loss of robustness and accuracy.

By contrast, we propose to perform a robust estimation in a two-stage pro-

cess: a local stage, which computes a robust residual for each feature, and a global

stage which minimizes a robust function of these residuals. The local stage re-

duces the in�uence of erroneous sections of the contours (features 1 and 4 on

Figure 2.d), whereas the global stage discards the feature outliers, i.e. contours

which are completely erroneous, or which contain too large a portion of erroneous

points (feature 5 on Figure 2.d).

The local stage

The aim of this stage is to reduce the in�uence of erroneous sections of the

features: to perform this task, the residual error r

i

of curve C

i

is computed by a

robust function of the distances fd

i;j

g

1�j�l
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. We use the M-estimation technique

by taking r
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). Since this estimate must not be too restrictive,

we have hence chosen Huber's function for the local stage , which has proved to

be a good choice in our experiments [9].

The global stage

This stage �ts the tracked 2D features to the projection of the 3D features,

by minimizing the residuals r

i

which are computed for each couple of 3D/2D

features.We use Tukey's function, which is restrictive enough to suppress the

in�uence of outliers, but which takes all the data into consideration.

3.3 Results

We present in this section an application of our method to an augmented reality

application: the illumination of the bridges of Paris [3]. The aim was to test

several candidate illumination projects for a number of bridges of the Seine. We

therefore want to replace the bridge in the sequence with its lighting simulation.

A 300-image panoramic sequence of the Pont Neuf was shot at dusk time from

another bridge. Because the images are dark and noisy, only 6-8 curves can be

tracked in each frame (Figure 2.b). The solid lines correspond to the tracked

2D features, whereas the dashed lines correspond to the projection of the cor-

responding model features (black is used for the features which are not - yet -

used). The result of the tracking in the 12

th

image is shown in Figure 2.c. The



reader may notice that the tracking process fails for feature 5. Figure 2.d shows

the re-projection of the model features after the robust pose computation. De-

spite the bad accuracy of the model, the result is visually convincing. In order

the reader to be aware of the parts of the curve which are less taken into account

in the computation, we have drawn in black the points for which the residual is

greater than c (c is de�ned in Table 1. Roughly speaking, these points are the

ones for which the weight in the computation is decreased because their residual

is too large. It must also be noticed that feature 5 is considered as an outlier

and is removed from the set of tracked features (discarded features are drawn in

black).

Since new features may appear while old ones disappear, the set of model

features that are tracked in the sequence must be dynamically updated. The

method we use to achieve this task is described in [9].
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Fig. 1. (a)The complete wire-frame model of the bridge; (b)Final composition.

a. b.

c. d.

Fig. 2. Temporal registration for the 12

th

image. (a) Edge map. (b) 2D features before

tracking (image 10). (c) Tracking in image 12 (projections of the 3D features are those

of image 10). (d) Robust pose computation.



4 Resolving Occlusions

Most of the time, augmented reality systems simply overlay computer generated

images and only attempt to minimize object registration errors. However, such

methods are e�ective only when there are no occlusions between the real and

the computer generated objects.If the model of the 3D scene is known, as in

[4], the problem can easily be solved. Otherwise, resolving occlusion could the-

oretically be achieved by inferring a dense map from two consecutive images.

Unfortunately, despite new advances in 3D reconstruction, the depth map lacks

accuracy and cannot be used as is. Instead of performing 3D reconstruction, we

propose to use a contour based approach. Our aim is to �nd, among the con-

tours in the scene, those belonging to the boundary of the occlusion mask. Our

approach stems from the fact that for a real scene containing only rigid objects,

the boundary of the mask is only composed of contours present in the image and

of occluding contours of the virtual object. This is obviously not true anymore

if the objects are deformable or can penetrate each other [1].

The main steps of our algorithm are summarized below [1].

The contour chains are extracted in the region to which the computer gener-

ated object V corresponds. These contours are tracked in the next image. Finally,

the matching of the contours points between the two images is performed by us-

ing the epipolar constraint. Two corresponding points are denoted by (m

1

;m

2

)

in the sequel.

The heart of our system is the labeling stage which allows each contour point

m

1

to be labeled with in front of or behind depending on the relative position of

the corresponding point of the scene and of the computer generated object. To

this aim, let us de�ne f

m

1

(Fig. 3):
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Due to the monotony of the homography, it is therefore easy to compare Z

real

and Z

obj

.

The last step is to recover the occluding mask from the set H of contour

points labeled in front of. Because some labeling errors may occur, we resort to

a regularization approach. The underlying idea is to add regularity constraints

which will produce the most regular curve resting on H. Starting from a closed

curve outside H, we use active contour models to obtain such a result. An ex-

ample is shown in Fig 3.b.

5 Conclusion

This paper has presented an image composition system capable of ensuring tem-

poral registration in a robust and autonomous way. Signi�cant results on video
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Fig. 3. (a)The relative positions of the real and the virtual objects; (b-c) An example

of image composition.

image sequences can be seen at URL http://www.loria.fr/isa. For architectural

applications, the size of the database which describes the objects is sometimes

huge. Thus, further investigations concern the way to infer the more pertinent

3D features to be tracked.
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