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Abstract—Wertheimer’s theory suggests a general perception law according to

which objects having a quality in common get perceptually grouped. The Helmholtz

principle is a quantitative version of this general grouping law. It states that a

grouping is perceptually “meaningful” if its number of occurrences would be very

small in a random situation: Geometric structures are then characterized as large

deviations from randomness. In two previous works, we have applied this principle

to the detection of orientation alignments and boundaries in a digital image. In this

paper, we show that the method is fully general and can be extended to a grouping

by any quality. We treat as an illustration the alignments of objects, their grouping by

color and by size, and the vicinity gestalt (clusters). Collaboration of the gestalt

grouping laws and their pyramidal structure are illustrated in a case study.

Index Terms—Gestalt grouping laws, a contrario probabilistic model, binomial

law, number of false alarms, histogram modes, clusters, alignments.

æ

1 WHAT IS A PARTIAL GESTALT?

ACCORDING to Gestalt theory, “grouping” is the main process in
our visual perception [9], [16]. Whenever points (or previously
formed visual objects) have one or several characteristics in
common, they get grouped and form a new, larger visual object,
a “Gestalt.” Some of the main grouping characteristics are
proximity (clustering), color constancy (connectedness), “good
continuation” (differentiability of boundaries), alignment (pre-
sence of straight lines or objects of a same kind aligned),
parallelism (between lines, oriented objects, etc.), similarity of
shape (between objects), common orientation (between points or
oriented objects), convexity (of boundaries, of a group), closure (for
a curve), constant width, . . . In addition, the grouping principle is
recursive. For example, if points have been grouped into lines, then
these lines may again be grouped according (e.g.,) to parallelism,
etc. A square whose boundary has been drawn in black with a
pencil on a white sheet is perceived by connectedness (the
boundary is a black line), constant width (of the stroke), convexity
and closure (of the black pencil stroke), parallelism (between
opposite sides), orthogonality (between adjacent sides), finally,
equidistance (of both pairs of opposite sides).

The square is a global gestalt, and the result of concurring
geometric qualities that we shall call partial gestalts. Many
Computer Vision methods attempt to compute the (very diverse
in nature) partial gestalts. To take an instance, the snakes method
[10] attempts to capture the closed smooth curves, a combination
of the “closure” and “good continuation” gestalts. Some more
recent works try to define grouping rules for combining local
information into organized contours [8], [13]. In [2], we have
treated alignments (straight edges) and in [3] general boundaries
and edges. In this paper, we treat four more examples of partial
gestalts, namely, the object alignments, the clusters, and quality
grouping by color, orientation or size. In [1], a vanishing point
detector is treated by a clever extension of the same method. As a
first evidence of the recursive character of gestalt laws, we shall

push one of the experiments to prove that the partial gestalt
recursive building up can be led up to the third level (gestalts built
by three successive partial gestalt grouping principles).

1.1 Helmholtz Principle

In [2], we outlined a computational method to decide whether a
given partial gestalt (computed by any segmentation or grouping
method) is reliable or not. We treated the detection of straight
segments, as one of the most basic gestalts (see [16]). The method’s
main delivery are absolute thresholds, depending only on the image
size, permitting to decide when a peak in the Hough transform is
significant or not.

We applied a general perception law, the Helmholtz principle.
This principle yields computational grouping thresholds associated
with each gestalt quality. Assume that objectsO1; . . . ; On are present
in an image. Assume that k of them, say O1; . . . ; Ok, have a common
feature, say, same color, same orientation, etc. We are then facing the
dilemma: Is this common feature happening by chance or is it
significant and enough to group O1; . . . ; Ok? In order to answer this
question, we make the following mental experiment: we assume a
contrario that the considered quality has been randomly and
uniformly distributed on all objects, i.e., O1; . . . ; On. Notice that this
quality may be spatial (like position, orientation). Then, we
(mentally) assume that the observed position of objects in the image
is a random realization of this uniform process. We finally ask the
question: Is the observed repartition probable or not? The
Helmholtz principle states that, if the expectation in the image of
the observed configuration O1; . . . ; Ok is very small, then the
grouping of these object makes sense, is a Gestalt.

Definition 1 ("-meaningful event) [2]. We say that an event of type

“such configuration of points has such property” is "-meaningful, if

the expectation of the number of occurrences of this event is less than "

under the uniform random assumption.

As an example of generic computation we can do with this
definition, let us assume that the probability that a given object Oi

has the considered quality is equal to p. Then, under the
independence assumption, the probability that at least k objects
out of the observed n have this quality is

Bðp; n; kÞ ¼
Xn
i¼k

n

i

� �
pið1ÿ pÞnÿi;

i.e., the tail of the binomial distribution. In order to get an upper
bound of the number of false alarms, i.e., the expectation of the
geometric event happening by pure chance, we can simply
multiply the above probability by the number of tests we perform
on the image. Let us call NT the number of tests. Then, in most
cases, we shall consider in the next sections, a considered event
will be defined as "-meaningful if

NTBðp; n; kÞ � ":

We call in the following the left-hand member of this inequality the
“number of false alarms” (NFA). When " � 1, we talk about
meaningful events. This seems to contradict the necessary notion
of a parameter-less theory. Now, it does not since the �-dependency
of meaningfulness is in fact a log �-dependency. We refer to [2] for a
complete discussion of this definition.

The general method we have just outlined can be viewed as a
systematization of Stewart’s “MINPRAN” method [15]. It was also
proposed in the early Lowe work [12], but, to the best of our
knowledge, not systematically developed.

2 OBJECT ALIGNMENTS

The first partial gestalt we shall consider is a direct application of the
above definition. We consider the case of objects whose barycenters
are aligned. Assume that we observe M objects of a certain kind in
an image. Our a contrario assumption for the application of
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Helmholtz principle is that the M barycenters ðxi; yiÞ are i.i.d.
uniformly on a domain 
. A meaningful alignment of points must be
a meaningful peak in the Hough Transform (see [11], [14] for a very
similar approach). Now, the accuracy matter must be addressed.
Points are supposed to be aligned if they all fall into a strip thin
enough, in sufficient number. Let S be a strip of width a. Let pðSÞ
denote the prior probability for a point to fall in S, and let kðSÞ
denote the number of points (among the M) which are in S.

Definition 2. A strip S is �-meaningful if

NFAðSÞ ¼ Ns � BðpðSÞ;M; kðSÞÞ � �;

where Ns is the number of considered strips.

2.1 The Number of Tests

We now have to discuss what the considered strips will be. In [2], we
considered the relatively close problem of orientation alignments
(straight edges) in a digital image. In that case, we tested all possible
segments in the image, that is, aboutN2 tests ifN denotes the image
number of pixels. A similar technique can be applied here to the
strips and yields Ns ’ 2�ðR=aÞ2, where R is the diameter of the
image domain 
 and a the minimal width of a strip. One is led to
sample all possible strip widths in a logarithmic scale and to sample
accordingly the angles between tested strips in order to get a good
covering of all directions. Thus, the number of strips Ns only
depends on the size of the image and this yields a parameterless
detection method. This is the first way to compute (and test) the
possible strips.

2.2 Second Testing Method

Another way, which speeds up a lot the detection and makes it
perceptually realistic, is to only consider strips whose endpoints
are observed dots. In that case, we obtain

Ns ¼ �
MðM ÿ 1Þ

2
;

where � denotes the number of considered widths (about 10) and
MðMÿ1Þ

2 simply is the number of pairs of points. Both methods for
computing Ns are valid, but they do not give the same result!
Clearly, the first method is preferable in the case of a very dense set
of points, assimilable to a texture, and the second method when the
set of points is sparse. This second definition ofNs fits in the general
Definition 2. Notice, however, the slight obvious change in the
computation of kðSÞ. It denotes the number of dots that fell into the
strip, with the exception, of course, of the two endpoints defining
the strip.

At this point, we must answer an objection: Aren’t we cheating
and choosing the theory that gives the better result? We have two

possible values for Ns and the smallest Ns will give the largest
number of detections. When two testing methods are available,
perception must obviously choose the one giving the smaller test
number. Indeed, there is perceptual evidence that grouping
processes may depend on density, and that different methods could
be relevant for dense and for sparse patterns [17]. Hence, the second
testing method we present here should be preferred for sparse
distributions of points, whereas the initial model based on density
would give a smaller number of tests when the number of points is
large. This economy principle in the number of tests is being
developed in recent works of Geman et al. [5], [6].

We compared both definitions of object alignments in the
examples of Fig. 1. When we use the larger Ns corresponding to
all widths (from 3 to 12 pixels) and all segments of the image, we
simply do not detect any alignment. This is due to the testing overdose:
by doing so, we have tested many times the same alignments, and
have also tested many strips which contained no dots at all. The
second definition ofNs happens to give a perceptually correct result.
This result is displayed in Fig. 1b where we see the only detected
strip. This same alignment is no more detectable on the right. The
tested widths range from 2 to 16: strips thinner than 2 pixels are
nonrealistic in natural (nonsynthetic) images and strips larger than
16 give no more the appearance of alignments in a 512� 512 image.

3 HISTOGRAM MODES AND GROUPS

As we mentioned in Section 1, points or objects having one or several
features in common are grouped because they have this feature in
common. Assume k objects O1; . . . ; Ok, among a longer list
O1; . . . ; On, have some quality Q in common. Assume that this
quality is actually measured as a real number. Then, our decision of
whether the grouping ofO1; . . . ; Ok is relevant must be based on the
fact that the values QðO1Þ; . . . ; QðOkÞmake a meaningful mode of the
histogram of P . Thus, the single quality grouping is led back to the
question of an automatic, parameterless, histogram mode detector.
This mode detector depends upon the kind of feature under
consideration. We shall consider two paradigmatic cases, namely,
the case of orientations, where the histogram can be assumed by
Helmholtz principle to be flat, and the case of the objects sizes (areas)
where the null assumption is that the size histogram is decreasing.

3.1 Meaningful Groups of Objects According to Their
Orientation and to Their Gray Level

In the sequel, we quantize the possible orientations and gray levels
in the usual way and we take the a contrario assumption that the
M values of orientation (or gray level) are i.i.d. uniformly on
f1; 2; . . . ; Lg. Consider an interval ½a; b� � ½1; L� and let kða; bÞ
denote the number of objects with gestalt quality value in ½a; b�.
We define pða; bÞ ¼ ðbÿ aþ 1Þ=L as the prior probability that an
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Fig. 1. An illustration of Helmholtz principle: Noncasual alignments are automatically detected by Helmholtz principle as a large deviation from randomness. (a) Shows

20 uniformly randomly distributed dots and seven aligned added. (b) This meaningful (and seeable) alignment is detected as a large deviation. (c) Same alignment added to

80 random dots. The alignment is no more meaningful (and no more seeable). In order to be meaningful, it would need to contain at least 11 points.
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object’s quality QðOÞ falls in ½a; b�. With the same generic argument
as in Section 1, we have Definition 3.

Definition 3. An interval ½a; b� is �-meaningful if

NFAð½a; b�Þ ¼ Ni � Bðpða; bÞ;M; kða; bÞÞ � �;

where Ni is the number of considered intervals (Ni ¼ LðLþ 1Þ=2).
An interval ½a; b� is said to be maximal meaningful if it is meaningful
and if it does not contain, or is not contained in, a more meaningful
interval.

It can be proven in the same way as for orientation alignments
[2], [4] that maximal meaningful intervals do not intersect. Thus,
we get an operational definition of meaningful modes as disjoint
subintervals of ½1; L�.

3.2 Size of Objects

The preceding arguments are easily adapted to Helmholtz type
assumptions on nonuniform histograms. A very generic way to
group objects in an image is their similarity of size. Now, it would be
a total nonsense to assume any uniform law on the objects sizes.
There are several powerful arguments in favor of a statistical
decreasing law for size. These arguments derive from perspective
laws, or from the occlusion dead leaves model, or directly from
statistical observations of natural images [7]. Our Helmholtz
qualitative hypothesis is then: the prior distribution of the size of
objects is decreasing.

Definition 4. An interval ½a; b� is �-meaningful (for the decreasing

assumption) if

NFAð½a; b�Þ ¼ Ni �max
p2D

Bðpða; bÞ;M; kða; bÞÞ � �;

where Pd is the set of decreasing probability distributions ðpiÞ on
f1; 2; . . . ; Lg, and pða; bÞ ¼

Pb
i¼a pi.

In the same way as in the flat histogram assumption, one can
define maximal meaningful intervals and prove that maximal
meaningful intervals do not intersect.

4 MEANINGFUL GROUPS OR CLUSTERS

4.1 Model

The cluster example is the seminal one in Gestalt theory where it is
called “proximity” gestalt [9]. Assume that we see a set of dots on a
white sheet and those dots happen to be grouped in one or several
clusters, separated by desert regions. In order to characterize each
cluster as an event with very low probability, we shall make all
computations with the a contrario or background model that the dots
have been uniformly distributed over the white sheet. This amounts
to considering the dots as distributed over the sheet by a binomial
process. We then callA the simply connected region, with area � (the
area of the sheet is normalized to 1, containing a given observed
cluster of dots. Assume that we observe k points in A and M ÿ k
outside. Then, the “cluster probability” of observing at least k points
among the M inside A is given by Bð�;M; kÞ. It is easily checked by
large deviations estimates that if k=M exceeds �, this probability can
become very small. Now, the event is not a generic event in that we
have fixed a posteriori the domain A. The real a priori event we can
define is “there is a simply connected domain A, with area �,
containing at least k points.” The associated number of false alarms
is the expected number of such domains A, that is, NDBð�;M; kÞ,
where D is the set of all possible domains A and ND its cardinality.

In order to allow the number of false alarms to be small, we need
to consider a small setDof admissible domains. To that aim, we have
to sample the set of simply connected domains by encoding their
boundaries as “low resolution” Jordan curves. We consider a low-
resolution grid in the image, which for a sake of low complexity we
take to be hexagonal, with mesh step m. The number of curves with

length lm starting from a point and supported by the grid is bounded

from above by 2l. The overall number of low resolution curves with

length lm is bounded by N2
m2l, where Nm ¼ 4

3
ffiffi
3
p

m2 is the (approx-

imate) number of mesh points lying on the sheet. Thus, we can

consider several resolutions m1 < m2 < . . . < mq, for example in

logarithmic scale, with m1 larger than the pixel size and mq lower

than the image size, so that q is actually a small number. Our set of

domains will be the set of all Jordan curves at all given resolutions,

with discrete length—measured in the corresponding mesh—

strictly smaller than a fixed length L (so that
P

l<L 2l � 2L). Thus,

the overall number of possible low-resolution curves (that is, ND) is

bounded byN2q2L, whereN ¼ Nm1
. Notice that all numbers here are

relatively small since the phenomenology excludes very intrincated

clusters to be perceived. Thus, L is always taken to be smaller than,

say, 30.
It can also happen that a cluster is not overcrowded, but only

fairly isolated from the other dots. To take this into account, we
consider “thick” low-resolution curves, obtained by dilating the
low-resolution curves defined above. The events we now look for
include the fact that no point should fall inside the “thick” low-
resolution curve defining the cluster domain A. If r is the number
of allowed values for �0, the area of the “thick” curve, we can
define meaningful clusters as follows.

Definition 5. We say that a group of k dots (among M) is an
"-meaningful cluster if there exists an empty thick low-resolution
curve (with discrete length L and area �0) enclosing the k points in a
domain with area � such that

NFAð�;M; k; �0; LÞ :¼ N2qr2L
XM
i¼k

M

i

� �
�ið1ÿ �ÿ �0ÞMÿi � ": ð1Þ

4.2 Algorithm

Since the cluster detection algorithm is not obviously fast, we shall
give some implementation details. Let Pi, i ¼ 1::M be the points
observed. We assume thatM is reasonably small, sayM � 1; 000. We
write dðPi; PjÞ for the usual Euclidean distance between Pi and Pj.

4.2.1 Computation of the Minimum Spanning Tree

initialization : each point Pi is a tree

while there remains more than one tree

find the 2 nearest trees and fuse them:

When we fuse two trees A and B, they become the two children of a
new node to which we attach a value �, the distance between A and
B (that is, the minimum distance between an leaf of A and a leaf of
B). The complexity of this step is OðM2 logMÞ in the average, since
we sort the distances dðPi; PjÞ (1 � i < j �M) once for all.

4.2.2 Computation of the Meaningfulness of Each Cluster

In the minimum spanning tree, each subtree associated to a root
node A with value � corresponds to a �-cluster (named A0) made of
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Fig. 2. The sets A3 and A4 associated to a cluster A.
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the connected union of the disks with radius �=2 centered on the
points encountered in the subtree. We compute the meaningful-
ness (ÿ log10 NFA) of each cluster with (1).

Now, the point is to estimate l (the length of the low-resolution
curve), � and �0. For each cluster A0, we can compute �, the
distance of A0 to the �=2-dilate of the remaining points. It is given
by � ¼ �0 ÿ �, where �0 is the value associated to the parent of A
(�0 ¼ þ1 if A is the root of the minimum spanning tree). If � 6¼ 0,
we then compute, for � 2�0; 1½ fixed,

A1 ¼ D�ðA0Þ; A2 ¼ A1 ÿ E�ðA1Þ;
A3 ¼ E�ð1ÿ�Þ=2ðA2Þ; A4 ¼ D�ð1ÿ2�Þ=2ðA3Þ;

where Er and Dr represent, respectively, the erosion and dilation
operators associated to a disk with radius r (see Fig. 2). We recall
that A0 ¼ D�=2ð[ifPigÞ, where the Pis are the points encountered in
the subtree defined by the node A.

The domain A3 is a “thick low-resolution curve” of width ��,

defined by the dilate of a low-resolution curve C0 lying on the

hexagonal mesh. As we do not know where C0 should precisely lie

in A3, only the A4 domain will count as “empty domain,” and not

D�ð1ÿ�Þ=2ðA3Þ. We then define

l ¼ C � areaðA3Þ
�2�2

� �
; �0 ¼ areaðA4Þ; � ¼ areaðA2Þ;

where d�e represents the upper integer part, andC is a constant such
that for any continuous curve with length l0, there exists a discrete

curve with length less thanCl0 supported by the unit step hexagonal

mesh . We conjecture that C � 3=2, and use this value in practice.
The areas mentioned can be computed using a bitmapped

image with a convenient size. This computation is done for some

quantized values of �, provided that the associated discrete length

l satisfies l � L. In theory, we cannot choose exactly � but we

should take the nearest smaller value among the resolutions mi. In
practice, this does not affect the computations much, since the

number of resolutions chosen has very little effect on the NFA. An

example of cluster detection is given in Fig. 3.
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Fig. 3. (a) Clusters of dots and (b) their automatic detection: The thick (low resolution) curves indicate roughly the skeleton of the detected region that contains no dots.

The cluster is meaningful when it contains enough points and is surrounded by a thick enough empty region.

Fig. 4. Gestalt grouping principles at work for building an “order 3” gestalt (alignment of blobs of the same size). (a) Original DNA image. (b) Maximal meaningful

boundaries. (c) Barycenters of all meaningful regions whose area is inside the only maximal meaningful mode of the region areas histogram. (d) Meaningful alignments of

these points.
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4.3 Maximal Clusters

Once we have computed the meaningfulness of each cluster, we

can look for maximal meaningful clusters by selecting local

maxima of the meaningfulness with respect to inclusion [2].

Precisely, we shall say that a cluster A is maximal if for any child

(respectively, parent) B of A, one has NFAðBÞ > NFAðAÞ
(respectively, NFAðBÞ � NFAðAÞ). As usual, we have the

property that two maximal meaningful clusters are either equal

or have no common point.

5 EXPERIMENTS

In Fig. 4, we show the application of several partial gestalt detectors

to a same figure, organized according to the recursive principle we

mentioned in the introduction. In Fig. 4b, we see the maximal

meaningful boundaries obtained by the parameterless method

described in [3]. These boundaries surround regions which we shall

call “objects.” Each object can be attributed several qualities, such as

its barycenter, its average gray level, its orientation, etc. In Fig. 5, we

show the histograms of areas, which has a single maximal mode,

according to the definitions of Section 3.2. This mode corresponds to

the seeable blobs and rules out the very large background regions

and the three small spots detected as objects. We can proceed to look

for subgroups in the group of blobs, according to other gestalt

qualities. Alignments, in the sense of Section 2 can be again

automatically detected. In Fig. 4c, we see the barycenters of all

detected meaningful boundaries that belong to the same area

histogram mode. On the right, the detected alignments are shown.

We actually detect several slightly divergent strips because they all

contain the same aligned points. This experiment has led to compute

an “order 3” gestalt (boundary + size + alignment). As shown in

Fig. 5, the final alignments would be the same if we had grouped the

region by their gray level, or by their orientation. We face here one of

the main challenges of Gestalt theory, namely: how to quantize the

“collaboration” between different gestalt qualities.

6 CONCLUSION

We have shown that the automatic detection of gestalts, which we
previously formalized in two applications, can be extended to
several other cases. The derivation of quantitative thresholds is
systematic and obeys a similar formalism in several very different
cases. However, a specific discussion is required for each partial
gestalt quality since each probabilistic a contrario model is specific
to the partial gestalt. We have also to address sampling issues since
each object space (such as lines or orientations or sizes) must be
given a sampling rate and a reference histogram (see [1]), ibidem.
The collaboration and the recursive use of the grouping principles
have only been illustrated by hand and on a particular example.
Thus, here are some quite open problems: 1) the general principles
by which partial gestalts collaborate, 2) the hierarchy of gestalts
and the solution of conflicts, and 3) the general principle by which
a global final description is obtained. These principles exist as
gestalt principles but, for the time being, do not have computa-
tional counterparts.
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Path-Based Clustering for Grouping of
Smooth Curves and Texture Segmentation
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Abstract—Perceptual Grouping organizes image parts in clusters based on

psychophysically plausible similarity measures. We propose a novel grouping

method in this paper, which stresses connectedness of image elements via

mediating elements rather than favoring high mutual similarity. This grouping

principle yields superior clustering results when objects are distributed on low-

dimensional extended manifolds in a feature space, and not as local point clouds.

In addition to extracting connected structures, objects are singled out as outliers

when they are too far away from any cluster structure. The objective function for

this perceptual organization principle is optimized by a fast agglomerative

algorithm. We report on perceptual organization experiments where small edge

elements are grouped to smooth curves. The generality of the method is

emphasized by results from grouping textured images with texture gradients in an

unsupervised fashion.

Index Terms—Clustering, perceptual grouping, texture segmentation,

resampling.
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1 INTRODUCTION

IMAGE interpretation and recognition of image structure and of
image context is one of the main goals of computer vision. The
information loss between 3D objects and 2D images is compen-
sated to some extent by perceptual organization rules in biological
vision, which generates a holistic percept from local measure-
ments. Perceptual organization helps to provide additional
information about the 3D object and it extracts important
information about a scene. This processing step reduces the size
of the image data significantly. Among the central algorithmic
procedures for perceptual organization are clustering principles
like generalized k-means methods or clustering methods for
proximity data [1], [2]. Features in images like short edge pieces
or local textured image patches, are grouped in such a way that
these objects are mutually very similar and might even be replaced
by a prototypical representative.

This grouping principle, however, is not applicable in situations

where local continuity and similarity of features is used to group

them together, although they might be very different on a global

scale. Image patches with a strong texture gradient or short edge

pieces of smooth but moderately curved boundaries belong to this

class of clustering problems. We propose in this paper, a new

grouping approach referred to as Path-Based Clustering [3], which

measures local homogeneity rather than global similarity of

objects. The objects are small edge elements with a position and

a direction, called edgels. The costs function favors groups of

edgels which form smooth curves and separate those structures

from noisy distractors which are interpreted as random fluctua-

tions in the background.
First, Path-Based Clustering with automatic detection of out-

liers is mathematically described in Section 3. The new Path-Based

Clustering method defines a connectedness criterion, which

groups objects together if they are connected by a sequence of
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