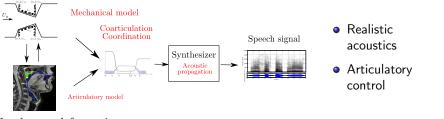
Synthesis of running speech for studying the mechanisms of speech production : the case of fricatives

Benjamin Elie and Yves Laprie

LORIA, INRIA/CNRS, Nancy https://members.loria.fr/BElie/


December, 2017

# Principle of articulatory synthesis

Speech synthesis (utterances), **complete** and **realistic**, based on purely acoustical model

Example of an articulatory synthesizer

Phonatory source



Vocal tract deformation

Applications: Medicine, audiovisual, language learning, text-to-speech...

Speech synthesis

Production of fricatives

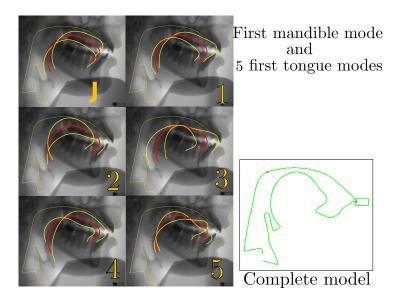
General conclusion

# Plan





3 Production of fricatives

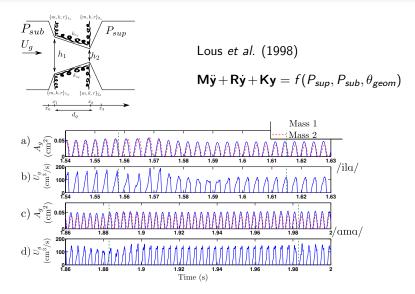



Speech synthesis

Production of fricatives

General conclusion

# Tongue modes



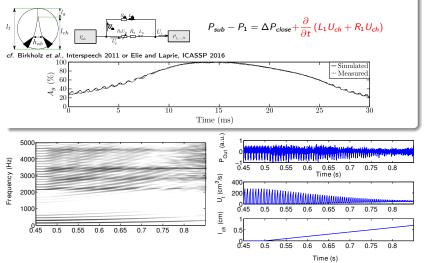

Speech synthesis

Production of fricatives

General conclusion

# Self-oscillating model of the vocal folds




# Speech synthesis

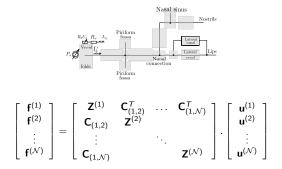
Production of fricatives

#### General conclusion

# Modified glottis model

#### Partial glottal closure




# Speech synthesis

Production of fricatives

General conclusion

# Waveguide network paradigm for speech synthesis

#### Modeling the vocal tract as a waveguide network<sup>1</sup>

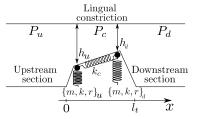


#### Frication noise generation

Pressure source is activated when the Reynolds number Re is above the threshold Rec:

$$P_{n_i} = \max\left\{0, \xi w \left(Re^2 - Re_c^2\right) \frac{U_{DC}^3}{a_{i-1}^{3/2}}\right\}, \ Re \propto \frac{U_{DC}}{a_c}$$

<sup>1</sup>Elie and Laprie, *Speech Comm.*, 2016


Speech synthesis

Production of fricatives

General conclusion

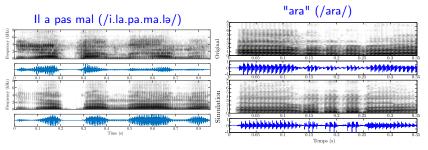
# Other oscillator: the alveolar trill

Self-oscillation model of the tongue  $\ensuremath{\mathsf{tip}}^2$ 



#### Alveolar trills

- Two-mass model, similar to the VF
- Included in the waveguide network, can be used with realistic VT geometries
- Possibility to consider the incomplete occlusion during contacts


<sup>&</sup>lt;sup>2</sup>Elie and Laprie, JASA, nov. 2017

#### Speech synthesis

Production of fricatives

#### General conclusion

# A few examples



- Reproduction of acoustic features
- Access to quantities not accessible experimentally
- Control of the input articulatory/phonatory parameters

Speech synthesis

Production of fricatives

General conclusion

# Plan

Introduction

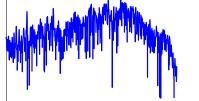
2 Speech synthesis

Operation of fricatives

4) General conclusion

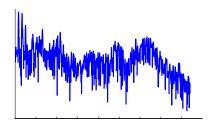
Speech synthesis

Production of fricatives


General conclusion

# Different sources

# Voiceless

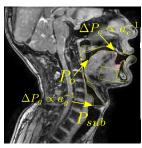

# Fricative





# Voiced Fricative






Speech synthesis

Production of fricatives

General conclusion

# Condition of noise source generation

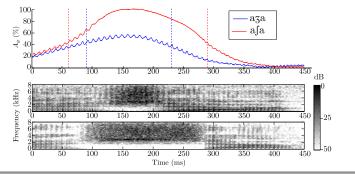


#### At the glottal level

- $\bullet\,$  sufficiently high airflow  $\to\,$  the glottis should be open
- if voiced fricatives, glottis not totally abducted

## At the supraglottal level

- narrow constriction
- high  $\Delta P_c \rightarrow$  high  $P_o \rightarrow$  open glottis
- $P_{sub} \simeq \Delta P_g + \Delta P_c$  $P_o \simeq P_{sub} - \Delta P_g$


Speech synthesis

Production of fricatives

General conclusion

# Continuous coordination





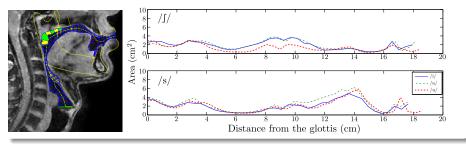
- a low-frequency component (partial abduction of the glottis)
- a high-frequency component (oscillation of the vocal folds)

 $\rightarrow$  What is the acoustic impact of the partial abduction of the vocal folds ?


Speech synthesis

Production of fricatives

General conclusion


# Acoustic model of fricative production

#### Incomplete closure of the glottis



cf. Birkholz et al., Interspeech 2011 or Elie and Laprie, ICASSP 2016

#### A set of area functions extracted from static MRI



 $\rightarrow$  Simulation of fricatives for different degrees of glottal abduction  $D_{ab}$ 

Speech synthesis

# Acoustic features

# Voicing quotient (VQ)

Quantify the amount of voicing

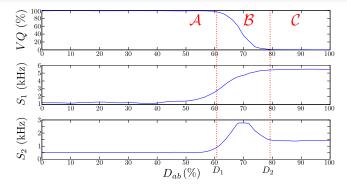
# $VQ = rac{\text{Energy of the periodic component}}{\text{Energy of the mix signal}}$

VQ = 0 
ightarrow voiceless signal, VQ = 100% 
ightarrow purely voiced signal

# Spectral centroid $(S_1)$

Balance between low and high frequency components low  $S_1 \rightarrow$  mainly low frequency, high  $S_2 \rightarrow$  mainly high frequency

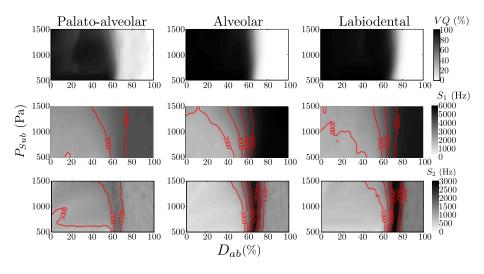
# Spectral spread $(S_2)$


Variance of the spectral distribution low  $S_2 \rightarrow$  narrow band spectrum, high  $S_2 \rightarrow$  broad band spectrum

Speech synthesis

Production of fricatives

General conclusion

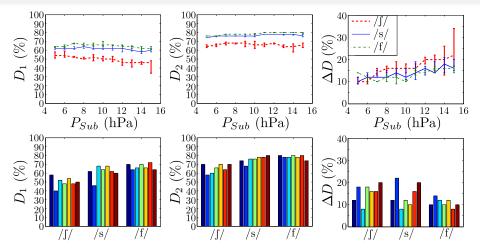

# Typical examples



#### 3 regimes of production:

- $\mathcal{A}$  ( $D_{ab} < D_1$ ): low frication noise
- $\mathcal{B}$   $(D_1 < D_{ab} < D_2)$ : frication noise and voice have similar energy
- C ( $D_{ab} > D_2$ ): voiceless signal

Acoustic features as a function of  $P_{sub}$  (vowel context: /a/)




Speech synthesis

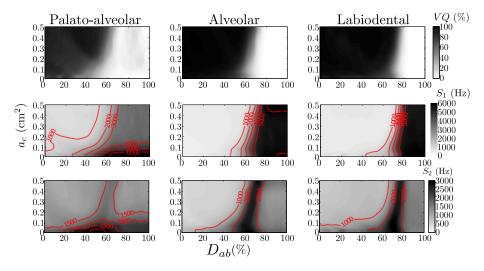
Production of fricatives

General conclusion

# Minimal lengths as a function of $P_{sub}$



•  $P_{sub}$  modifies  $D_1$  and  $D_2$ :  $D \searrow$  when  $P_{sub} \nearrow$ 

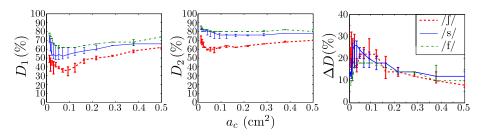

•  $P_{sub}$  modifies  $\Delta D$ :  $\Delta D \nearrow$  when  $P_{sub} \nearrow$ 

# Speech synthesis

Production of fricatives

General conclusion

Acoustic features as a function of  $a_c$  (vowel context: /a/)

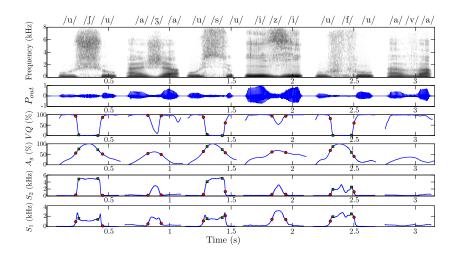



Speech synthesis

Production of fricatives

General conclusion

# Minimal lengths as a function of $a_c$




# Speech synthesis

Production of fricatives

General conclusion

# Experiments confirm the observations



# Possible strategies for fricative production: hypothesis

#### Voiceless fricatives

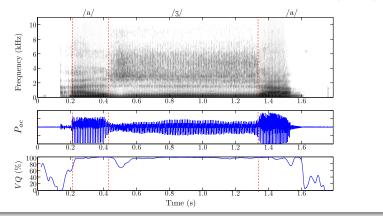
•  $\mathcal{A} \to \mathcal{B} \to \text{sustained } \mathcal{C} \to \mathcal{B} \to \mathcal{A}$ : easy ( $\mathcal{C}$  is stable)

 $\rightarrow$  voiceless fricatives are longer to maximize the ratio  $\mathcal{C}/\mathcal{B}$ 

## Voiced fricatives

- $\mathcal{A} \rightarrow$  sustained  $\mathcal{B} \rightarrow \mathcal{A}$ : risky ( $\mathcal{B}$  too unstable)
- $\mathcal{A} \to \mathcal{A}/\mathcal{B}$  boundary  $\to \mathcal{A}$ : favors voicing
- Very short  $\mathcal{A} \to \mathcal{B} \to \mathcal{A}$  or  $\mathcal{A} \to \mathcal{B} \to \mathcal{C} \to \mathcal{B} \to \mathcal{A}$  sequence: maximize proportion of  $\mathcal{B}$  over the fricative segment
- $\rightarrow$  voiced fricatives are shorter to avoid instability




Speech synthesis

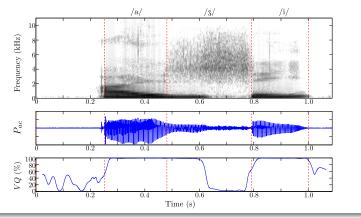
Production of fricatives

General conclusion

# What if voiced fricatives are exaggeratedly longer ?

Speakers usually prefer sustaining regime A for longer fricatives (Ex. 1)




Speech synthesis

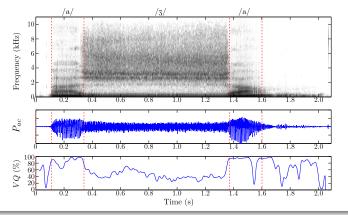
Production of fricatives

General conclusion

# What if voiced fricatives are exaggeratedly longer ?

There may be some "devoicing" incidents (Ex. 2)




Speech synthesis

Production of fricatives

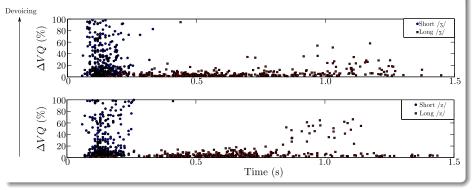
General conclusion

# What if voiced fricatives are exaggeratedly longer ?

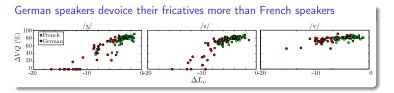
But a (very) few speakers sustains  $\mathcal{B}$  ! (Ex. 3, study in progress)



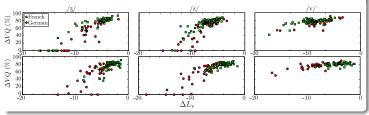
Speech synthesis


Production of fricatives

General conclusion


# First results

Corpus of 15 speakers (/VFV/ pseudowords)


## Short fricatives vs. long fricatives



# Another investigation in progress: Influence of language



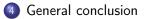
Learners of both German and French include these differences in the learning process



IFCASL Database: Fauth *et al.* Designing a bilingual speech corpus for French and German language learners: a two-step process. In LREC-9th Language Resources and Evaluation Conference, 2014

Speech synthesis

Production of fricatives


General conclusion

# Plan

Introduction

2 Speech synthesis

3 Production of fricatives



# Some conclusions on the production of fricatives

#### Simulations have evidenced the role of the glottal opening in fricatives

- It controls regimes of production
- The simultaneous presence of noise and voicing is unstable
- $\rightarrow$  Several articulatory strategies for producing voiced fricatives

#### Possible reasons for using different strategies

- Only physiological
- Phonological context
- Contextual (sociolinguistic, prosodic...)

#### Future investigations

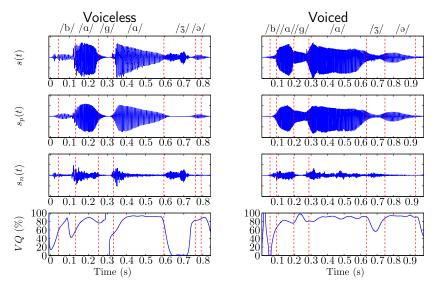
- Check speaker variability
- Influence of language
- Role in prosody

 $\rightarrow$  Integration into running speech synthesis

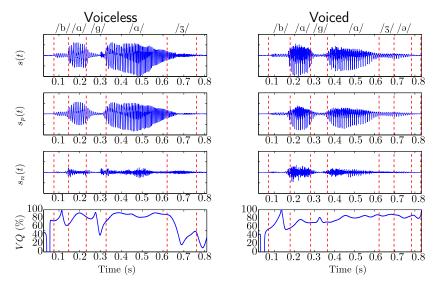
# References of our works

#### Articulatory synthesis

- Elie B., and Laprie Y. "Extension of the single-matrix formulation of the vocal tract: consideration of bilateral channels and connection of self-oscillating models of the vocal folds with a glottal chink". Speech Comm. 82, pp. 85–96 (2016).
- Elie B., and Laprie Y. "Copy-synthesis of phrase-level utterances". EUSIPCO, Budapest, pp 868–872 (2016).
- Elie B., and Laprie Y. "A glottal chink model for the synthesis of voiced fricatives". ICASSP, Shanghai, pp 5240–5244 (2016).

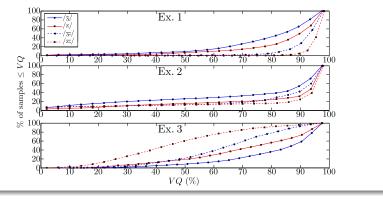

#### Production of fricatives

- Elie B., and Laprie Y. "Acoustic impact of the gradual glottal abduction degree on the production of fricatives: A numerical study ". J. of the Acoustical Society of America 142(3), pp. 1303–1317 (2017).
- Elie B., and Laprie Y. "Glottal opening and strategies of production of fricatives". Interspeech, Stockholm, pp. 206–209 (2017).
- Ghosh, Sucheta, et al. "L1-L2 Interference: The case of final devoicing of French voiced fricatives in final position by German learners." Interspeech (2016).


#### Trill production

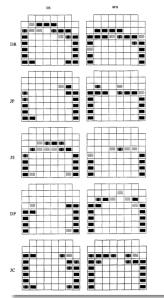
Elie B., and Laprie Y. "Simulating alveolar trills using a two-mass model of the tongue tip". J. of the Acoustical Society of America 142(5), pp. 3245–3256 (2017).

# Example of French native speakers uttering final voiced fricatives




# Example of French native speakers uttering final voiced fricatives

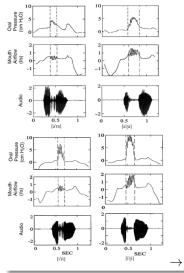



# What if voiced fricatives are exaggeratedly longer ?

#### Cumulative histograms

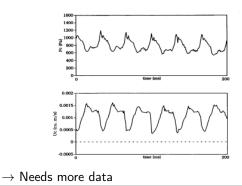


# Occurrence of LP contacts: some answers


#### Data from Recasens and Pallarès

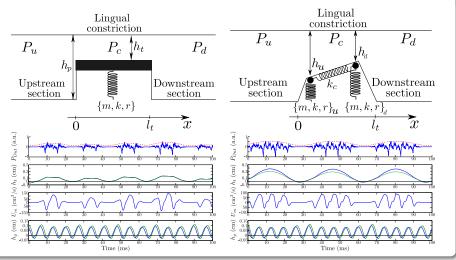


- Variability across speakers: some almost never make LP contacts
- Variability intra-speaker


# Air flow measurements

#### Data from Solé and McGowan

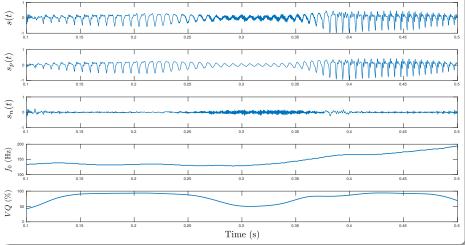



- DC component of the airflow: incomplete closure of the vocal tract ?
- are there LP contacts ?

From McGowan, on voiceless trills:



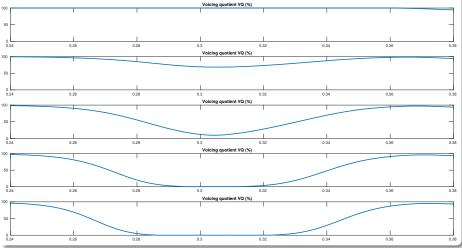
# Modeling with a two-mass model


#### Comparison single mass and two-mass models



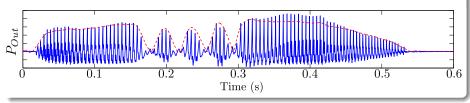
# Effect on perception

## Example of natural utterance





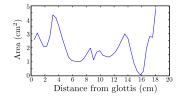

# Effect on perception


## Virtual modification of VQ

/a3a/for decreasing voicing



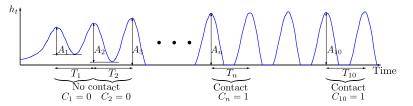
# Example of alveolar trill


# Trills in /ara/ context



#### Questions:

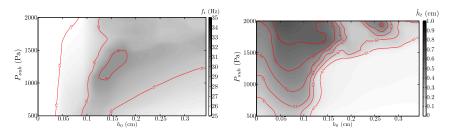
- Can we model LP contacts and incomplete closure of the VT ?
- What are the articulatory/phonatory conditions that favor the self-oscillation of the tongue tip ?


# Data taken from cineMRI acquisitions



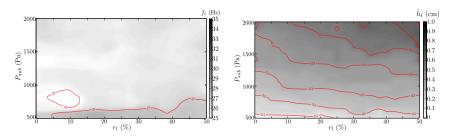
Investigation of the impact of various model parameters

- Mass of the tongue tip  $m_1$
- Equilibrium position *h*<sub>0</sub>
- Lateral ratio  $r_l$  (=  $\frac{\text{open area during contact}}{\text{initial area at rest}}$ )
- Glottal abduction degree  $D_{ab}$


# Studied features

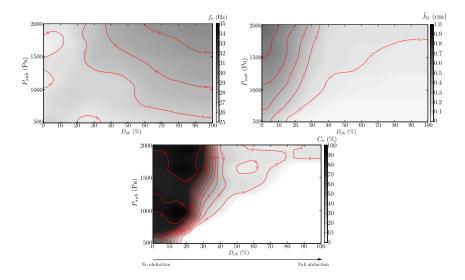


Investigation of the impact of various model parameters


- Trill frequency  $f_t = \frac{1}{\hat{\tau}}$
- Trill amplitude  $\hat{h}_t = \hat{A}$
- Contact ratio  $C_r = 100 imes rac{1}{N_{per}} \sum_{n=1}^{N_{per}} C_n$

# Effect of the equilibrium position




- Max of amplitude for 0.5 mm  $< h_0 < 1$  mm
- ${\, \bullet \,}$  No oscillation for  $h_0 > 1.5$  mm, if  $P_{sub} < 1500$  Pa

# Effect of the lateral ratio



- Slight rise of the trill amplitude with lateralization
- Yet, limited impact of the incomplete closure on the trill properties

# Effect of the glottal abduction degree



Glottal abduction decreases the trill amplitude