High spatiotemporal resolution cineMRI films of the vocal tract using Compressed Sensing for acquiring articulatory data

Benjamin Elie^{1,2}, Yves Laprie¹, Pierre-André Vuissoz², Freddy Odille²

¹LORIA, INRIA/CNRS/Université de Lorraine Nancy, France benjamin.elie@inria.fr www.loria.fr/~belie/ ²IADI, INSERM/CHU-Nancy,CIC-IT Nancy, France

July 20, 2016

Context : Articulatory synthesis

Classification of techniques for speech synthesis

- Speech synthesis based on physical/acoustical models
- Continuous time-domain, word/phrase level utterances
- Simulation of acoustic and articulatory phenomena
- 1) http://www.phon.ucl.ac.uk/
- http://www.vocaltractlab.de/
- 3) http://www.magic.ubc.ca/

Principle

Speech synthesis (utterances), **complete** and **realistic**, based on purely acoustical model

Example of an articulatory synthesizer

Phonatory source

Vocal tract deformation

Applications: Medicine, audiovisual, language learning, text-to-speech...

From MRI to speech

Articulatory data

Making the articulatory model

- Large database
- Factorial analysis to reduce the number of components (PCA)
- Geometry of the vocal tract reduced to a few number of parameters

Which data ?

MRI Acquisitions

Results

From MRI to speech

Conclusions

Tongue modes

Velum modes

VPO for a few French utterances (Laprie and Elie, ICPhS, 2015)

Acquisitions by MRI techniques: principles

Reconstruction of midsagittal slices

Full k-space sampling
 → bad temporal resolution

Sparse reconstruction (Compressed Sensing)

Using the sparsity for better temporal resolution

Compressed Sensing : definition

- $\rho \in \mathbb{C}^n$ is the set images to be recovered
- Ψ is the sparse transform, so that $\Psi \rho$ is K-sparse, with K < n
- $\mathbf{q} \in \mathbb{C}^m$, with n > m > K, is the observation vector (the subsampled version of the *k*-spaces $\mathcal{F}\rho$)
- $\Phi \in \mathbb{R}^{m imes n}$ is a CS encoding matrix that contains only 0 and 1

Then, in the presence of noise, and a tolerance $\epsilon,\,\rho$ is the solution of the convex problem

$$\rho = \underset{\hat{\rho}}{\operatorname{argmin}} ||\Psi \hat{\rho}||_1 \quad \text{s.t.} \quad ||\Phi \mathcal{F} \hat{\rho} - \mathbf{q}||_2^2 \leq \epsilon$$

From MRI to speech

Conclusions

Acceleration techniques in MRI

Multi-measurement vector compressed sensing

Antenna is a l = 16 multi-coil receiver $\rightarrow 16$ versions of **q** Using the fact that non-zero coefficients share the same locations

$$egin{aligned} \mathbf{X} = & rgmin ||\Psi \hat{\mathbf{X}}||_{1,2} \quad ext{s.t.} \quad ||\Phi \mathcal{F} \hat{\mathbf{X}} - \mathbf{Q}||_{2,2} \leq \epsilon, \ \hat{\mathbf{X}} & \mathbf{X} = \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} = \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} = \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X} = \mathbf{X} \quad \mathbf{X}$$

where $\mathbf{X} \in \mathbb{C}^{n \times l}$ is the l versions of the images to be recovered, and $||\mathbf{X}||_{1,2} = \sum_{i=1}^{n} ||\mathbf{X}_i||_2$

Sparse transform

- x f space : Temporal Fourier transform of the image space
- *w f* space : Temporal Fourier transform of the wavelet transform of the image space

Sparsity

Row sparsity

From MRI to speech

Conclusions

Sampling trajectory

For one image, several possibilities

Sampling trajectory used in speech MRI

Pseudorandom Cartesian: an alternative to be used with CS and homodyne reconstruction

Suitable probability density

- full sampling of the central lines
- pdf $\propto 1/r^2$
- Partial phase line encoding for partial Fourier reconstruction

Sampling trajectory used in speech MRI

Pseudorandom Cartesian: an alternative to be used with CS and homodyne reconstruction

Suitable probability density

- full sampling of the central lines
- pdf $\propto 1/r^2$
- Partial phase line encoding for partial Fourier reconstruction

Validation

From MRI to speech

Conclusions

14/18

Results, fast acquisition

Alveolar trill, /ara/, 48 fps, 1×1 mm, GE 3T Signa HDxt

From MRI to speech

Conclusions

14/18

Results, fast acquisition

Alveolar trill, /ara/, 48 fps, 1×1 mm, GE 3T Signa HDxt

Introduction

Results

From MRI to speech

Conclusions

Results: moderate acquisition

"J'ai pigé la phrase" /ʒe.pi.ʒe.la.fʁɑ.zə/, 29 fps, $1{ imes}1$ mm, GE 3T Signa HDxt

15/18

Introduction

Results

From MRI to speech

Conclusions

Results: moderate acquisition

"J'ai pigé la phrase" /ʒe.pi.ʒe.la.fʁɑ.zə/, 29 fps, 1×1 mm, GE 3T Signa HDxt

15/18

From MRI to speech

Conclusions

Contours

Video with contours of articulators:

• "Des abat-jours" (/dezabaʒuʁ/), 36.5 Hz, 2×2 mm

From MRI to speech

Conclusions

Acoustic synthesis

Acoustic synthesis

Conclusions

Speech MRI

- Method for visualization of articulatory movements of natural speech
- Good spatiotemporal resolution
- Choice of the trade-off speed/image quality
- More acquisitions planned for the next future (ANR ArtSpeech)

Extracting the articulatory parameters

- Time-tracking the contours of the articulators
- Acquisition of the time evolution of the VT deformations for building an articulatory model of the VT
- Acoustic synthesis reproducing the acoustic features of natural speech

Further works

- 3D+t compressed sensing
- Towards a 3D articulatory model