Articulatory synthesis of continuous speech:

Global approach and copy synthesis

Benjamin Elie^{1,2}

¹LORIA, INRIA/CNRS, Nancy ²IADI, INSERM/CHU-Nancy

December 9, 2015

Résumé

Master 2

- Master ATIAM (Acoustics, Signal Processing and Computer Science Applied to Music), UPMC-Paris VI, 2009.
- Research internship at the Music Acoustics Lab of Sydney : *Characterization of Vocal Tract Acoustics in the Case of Oronasal Coupling*

Résumé

Master 2

- Master ATIAM (Acoustics, Signal Processing and Computer Science Applied to Music), UPMC-Paris VI, 2009.
- Research internship at the Music Acoustics Lab of Sydney : *Characterization of Vocal Tract Acoustics in the Case of Oronasal Coupling*

PhD thesis

PhD in **Acoustics** (LAUM and Télécom ParisTech, 2012): *Acoustic and vibratory characterization of stringed musical instruments – Application to lutherie assistance.* Supervised by François Gautier and Bertrand David

Résumé

Master 2

- Master ATIAM (Acoustics, Signal Processing and Computer Science Applied to Music), UPMC-Paris VI, 2009.
- Research internship at the Music Acoustics Lab of Sydney : *Characterization of Vocal Tract Acoustics in the Case of Oronasal Coupling*

PhD thesis

PhD in **Acoustics** (LAUM and Télécom ParisTech, 2012): *Acoustic and vibratory characterization of stringed musical instruments – Application to lutherie assistance.* Supervised by François Gautier and Bertrand David

Postdoctoral experience

- ATER mechanics/acoustics (Université du Maine, 2012-2013)
- Postdoctoral fellowship Inria at LORIA. Articulatory synthesis: forward and inverse problem, (MULTISPEECH group), oct. 2013-2015.
- Postdoctoral fellowship CNRS at LORIA and IADI. Real-time acquisition of articulatory data by MRI techniques, 2015

Articulatory synthesis: why?

Classification of techniques for speech synthesis

- Speech synthesis based on physical/acoustical models
- continuous time-domain, word/phrase level utterances
- simulation of acoustic and articulatory phenomena
- 1) http://www.phon.ucl.ac.uk/
- http://www.vocaltractlab.de/
- 3) http://www.magic.ubc.ca/

Principle

Speech synthesis (utterances), **complete** and **realistic**, based on purely acoustical model

Example of an articulatory synthesizer

Phonatory source

Vocal tract deformation

Applications: Medicine, audiovisual, language learning, text-to-speech...

Phonatory source

Articulatory model

Vocal tract deformation

- Articulatory model
- Olottis model

Phonatory source

Vocal tract deformation

- Articulatory model
- Olottis model
- Acoustic propagation

- Articulatory model
- Olottis model
- Acoustic propagation
- O Hybrid Synthesis

Articulations	Glottis 0000	Acoustics 000000000	Copy synthesis	Conclusions
Plan				

Articulatory model

- Source model
- Speech synthesis based on acoustical model
 - 4 Copy and hybrid syntheses

Conclusions

2 categories :

- Vocal tract geometry (resonator)
- Glottal parameters (source)

Resonator :

Source :

- Vocal folds partial abduction
- Fundamental frequency
- Laryngeal mechanisms
- Vocal folds asymmetry
- Sub-glottal pressure

• . . .

Conclusions

Articulations	Glottis 0000	Acoustics	Copy synthesis	Conclusions
Articulatory of	data			

Making the articulatory model

- Large database
- Factorial analysis to reduce the number of components (PCA)
- Geometry of the vocal tract reduced to a few number of parameters

Which data ?

Articu	lations
00000	0000

Glottis 0000 Acoustics

Copy synthesis

Conclusions

Tongue modes

Fist mandible mode and 5 first tongue modes

Articulations	Glottis 0000	Acoustics 00000000	Copy synthesis	Conclusions
Velum modes				

VPO for a few French utterances (Laprie and Elie, ICPhS, 2015)

Acqusitions by MRI techniques: principles

Reconstruction of midsagittal slices

Full k-space sampling
 → bad temporal resolution

Sparse transform

- x f space : Temporal Fourier transform of the image space
- w f space : Temporal Fourier transform of the wavelet transform of the image space

Suitable probability density

- full sampling of the central lines
- pdf $\propto 1/r^2$
- Partial phase line encoding for partial Fourier reconstruction

Suitable probability density

- full sampling of the central lines
- pdf $\propto 1/r^2$
- Partial phase line encoding for partial Fourier reconstruction

 Articulations
 Glottis
 Acoustics
 Copy synthesis
 Conclusions

 A few videos...

- "Des abat-jours" (/dezabaʒuʁ/), 36 Hz, 128×128 pixels
 /ara/, 45 Hz, 256×256 pixels
- \rightarrow More data to be acquired

Articulations 00000000	Glottis 0000	Acoustics	Copy synthesis	Conclusions
Plan				

Articulatory model

2 Source model

3 Speech synthesis based on acoustical model

4 Copy and hybrid syntheses

Conclusions

Articulations

Copy synthesis

Conclusions

Self-oscillating model of the vocal folds

Articulations 00000000	Glottis ○●○○	Acoustics 000000000	Copy synthesis	Conclusio
Glottis partial	closure			

Glottal chink^a

^aElie and Laprie, Speech Commnication, submitted

Exemple : /i/

Voiced sibilant fricative modeling : glottal partial closure

Voicing degree as a function of the glottal chink opening : /z/

No chink

Chink opening

 \rightarrow Glottal chink acts on voicing degree

Articulations G

Glottis

Acoustics

Copy synthesis

Conclusions

Example with sibilants

Conditions for producing voiced fricatives

/z/ more likely devoiced than /3/?

Articulations	
00000000	

Glottis 0000 Acoustics

Copy synthesis

Conclusions

Plan

Articulatory model

2 Source model

3 Speech synthesis based on acoustical model

4 Copy and hybrid syntheses

Conclusions

Articulations

Glottis 0000 Acoustics

Copy synthesis

Conclusions

Simplification of the vocal tract geometry

A complicated acoustic resonator

- Complex geometry
- Numerous side cavities

A complicated acoustic resonator

- Complex geometry
- Numerous side cavities

 \rightarrow segmentation of the vocal tract into a series of tubelets

Articulations	Glottis 0000	Acoustics	Copy synthesis	

Conclusions

Vocal tract sampling

Definition of the area function

Vocal tract geometry defined by two vectors a and I.

Articulations 00000000	Glottis 0000	Acoustics	Copy synthesis	Conclusio
From the area	function to	o speech:	electric analogy	

Equivalent lumped circuit elements of a tubelet¹:

Acoustic
Volume velocity <i>u</i>
Pressure p
Energy loss
Air compliance
Air inertance
Wall resistance
Wall compliance
Wall inertance
Flow source
Friction noise source

Propagation equations

$$P_{i-1} - P_i = \frac{\partial}{\partial t} \left[(L_{i-1} + L_i) U_i \right] + (R_{i-1} + R_i + R_{n_{i-1}}) U_i + P_{n_{i-1}}$$

$$U_i - U_{i+1} = u_1 + u_2 + u_3$$

¹S. Maeda, Speech Commication, 1982

Articulations	Glottis 0000	Acoustics	Copy synthesis	Conclusion
Matrix form of	f the propag	gation equation	ons	

Solution for the sampled system

 $b_{i-1}(n)U_{i-1}(n) + Z_i(n)U_i(n) + b_i(n)U_{i+1}(n) = F_i(n)$

 Articulations
 Glottis
 Acoustics
 Copy synthesis
 Conclusions

 Generalization to a waveguide network

Simultaneous consideration of several side branches

Nasal tract

Articulations	Glottis	Acoustics	Copy synthesis
0000000	0000	000000000	0000000000

Conclusions

Waveguide network: matrix form

$$\begin{bmatrix} \mathbf{f}^{(1)} \\ \mathbf{f}^{(2)} \\ \vdots \\ \mathbf{f}^{(\mathcal{N})} \end{bmatrix} = \begin{bmatrix} \mathbf{Z}^{(1)} & \mathbf{C}^{\mathcal{T}}_{(1,2)} & \dots & \mathbf{C}^{\mathcal{T}}_{(1,\mathcal{N})} \\ \mathbf{C}_{(1,2)} & \mathbf{Z}^{(2)} & & \\ \vdots & & \ddots & \\ \mathbf{C}_{(1,\mathcal{N})} & & \mathbf{Z}^{(\mathcal{N})} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u}^{(1)} \\ \mathbf{u}^{(2)} \\ \vdots \\ \mathbf{u}^{(\mathcal{N})} \end{bmatrix}$$

Sparse coupling matrices

- 4 cases for $C_{(m,n)}$
 - *m* and *n* independent $\rightarrow C_{(m,n)} = 0$
 - *m* parent of $n \to C_{(m,n)} = 0$, except $c_{1,K} = b_K^{(m)}$ and $c_{1,K+1} = Z_C^{(m,n)}$
 - *m* and *n* twins, from parent $p \to C_{(m,n)} = 0$, except $c_{1,1} = Z_C^{(p,n)}$
 - *n* anabranch of $m \to \mathbf{C}_{(m,n)} = \mathbf{0}$, except $c_{1,K_u} = b_{K_u}^{(m)}$, $c_{1,K_u+1} = Z_{C_u}^{(m,n)}$, $c_{N+1,K_d+2} = b_{K_d+1}^{(m)}$ and $c_{N+1,K_d+1} = Z_{C_d+1}^{(m,n)}$

Articulations	Glottis 0000	Acoustics	Copy synthesis	Conclusion

Bilateral consonants

Anastomoses :²

Validation : effect of the bilateralization on the VT transfer functions

²Elie and Laprie, Speech Commnication, submitted

Bernoulli term: introduction of non-linearity at the glottis

 $\mathsf{Small}\ \mathsf{constriction}\ \rightarrow\ \mathsf{Bernoulli}\ \mathsf{non}\ \mathsf{negligible}$

$$\Delta P = \frac{1}{2}\rho v^2 = \frac{\rho}{2}\frac{U_1^2}{a_g^2}$$

$$P_{sub} - P_1 = R_b U_1^2 + R_v U_g + \frac{\partial}{\partial t} [L_g U_1]$$

$$F_1 = Z_1 U_1 + b_1 U_2 + R_b U_1^2$$

$$\downarrow$$

Bernoulli term: introduction of non-linearity at the glottis

Small constriction \rightarrow Bernoulli non negligible

$$\Delta P = \frac{1}{2}\rho v^2 = \frac{\rho}{2}\frac{U_1^2}{a_g^2}$$

$$P_{sub} - P_1 = R_b U_1^2 + R_v U_g + \frac{\partial}{\partial t} [L_g U_1]$$

$$F_1 = Z_1 U_1 + b_1 U_2 + R_b U_1^2$$

$$\downarrow$$

$$\mathbf{f} = \mathbf{Z}\mathbf{u}_Z + \mathbf{Q}\mathbf{u}_Q$$

$$\mathbf{u}_{Z} = [U_{1}, \dots, U_{N+1}]^{T}, \quad \mathbf{u}_{Q} = [U_{1}^{2}, 0, \dots, 0]^{T}$$

Non linear system, more delicate to solve

$$\begin{bmatrix} \mathbf{f}^{(1)} \\ \mathbf{f}^{(2)} \\ \vdots \\ \mathbf{f}^{(\mathcal{N})} \end{bmatrix} = \begin{bmatrix} \mathbf{Z}^{(1)} & \mathbf{C}_1^{(2)\,\mathcal{T}} & \dots & \mathbf{C}_1^{(\mathcal{N})\,\mathcal{T}} \\ \mathbf{C}_1^{(2)} & \mathbf{Z}^{(2)} & & & \\ \vdots & & \ddots & & \\ \mathbf{C}_1^{(\mathcal{N})} & & & \mathbf{Z}^{(\mathcal{N})} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u}^{(1)} \\ \mathbf{u}^{(2)} \\ \vdots \\ \mathbf{u}^{(\mathcal{N})} \end{bmatrix}$$

With vocal folds:

$$\mathbf{f} = \mathbf{Z}\mathbf{u}_{Z} + \mathbf{Q}\mathbf{u}_{Q},$$

 $\mathbf{u}_Q = [U_1^2, U_2^2, \dots, U_N^2]^T$, **Q** contains 0, except $Q_{1,1} = Be$ Rearrangement : $\mathbf{Z}^{-1}\mathbf{f} = \mathbf{u}_Z + \mathbf{Z}^{-1}\mathbf{Q}\mathbf{u}_Q$

Articulations	Glottis 0000	Acoustics	Copy synthesis
Plan			

Conclusions

Articulatory model

- Source model
- 3 Speech synthesis based on acoustical model
- Copy and hybrid syntheses

Conclusions

31/45

Observation of acoustics phenomena during speech production

- Vocal folds oscillation
- Pressure wave propagation along the vocal tract and/or the nasal tract

Example for utterance /nupalisõ/ (run video)

Articulations	Glottis 0000	Acoustics 000000000	Copy synthesis	Conclusions
Acoustic inver	sion			

Articulations 00000000	Glottis 0000	Acoustics 000000000	Copy synthesis	Conclusions
Acoustic inver	rsion			

Search input parameters \boldsymbol{p} so that

 $s=\mathcal{L}(\boldsymbol{p})$

- **p**: Vocal Tract (VT) configuration, *e.g.* area function, length function, articulatory parameters...
- s: acoustic vector, *e.g.* formant frequency, cepstral coefficients...
- *L*(**p**): operator giving the acoustic vector for a certain VT configuration **p**.

Chosen parameters

• Input parameter : Area function of the vocal tract

$$\mathbf{p} = [a_1, a_2, \ldots, a_N, l_1, l_2, \ldots, l_N]^T$$

- Output acoustic vector : M first formant frequencies $(\mathbf{s} = \mathbf{f} = [F_1, \dots, F_M]^T)$
- Model \mathcal{L} : Chain matrix paradigm³ \rightarrow VT transfer function (formant frequencies = resonance frequencies)

Articulations 00000000	Glottis 0000	Acoustics 000000000	Copy synthesis	Conclusions
Iterative meth	bol			

Inverse Jacobian technique

- Requires an initial function \boldsymbol{p}_0
- $\Delta \mathbf{p} = \mathbf{J}^T \Delta \mathbf{f}$ is true only for small variations. The process is performed iteratively until $\Delta \mathbf{f}$ vanishes

Articulations 00000000	Glottis 0000	Acoustics 00000000	Copy synthesis	Conclusions
How to comp	ute I			

Fant and Pauli theory of perturbation

$$\begin{bmatrix} \frac{\Delta F_m}{F_m} \end{bmatrix}_{\mathbf{a}} = \sum_{n=1}^{N} S_n^a(F_m) \frac{\Delta a_n}{a_n} \qquad \begin{bmatrix} \frac{\Delta F_m}{F_m} \end{bmatrix}_{\mathbf{l}} = \sum_{n=1}^{N} S_n^l(F_m) \Delta \lambda_n$$
$$\Delta \lambda_n = -\frac{\Delta l_n}{l_n + \Delta l_n}$$
$$S_n^a(F_m) = \frac{\mathcal{T}_n(F_m) - \mathcal{V}_n(F_m)}{\mathcal{H}(F_m)} \qquad S_n^l(F_m) = \frac{\mathcal{T}_n(F_m) + \mathcal{V}_n(F_m)}{\mathcal{H}(F_m)}$$

Sensitivity matrix

$$\mathbf{J}_{\mathbf{a}} = \begin{bmatrix} S_1^a(F_1) & \cdots & S_N^a(F_1) \\ \vdots & \ddots & \vdots \\ S_1^a(F_M) & \cdots & S_N^a(F_M) \end{bmatrix} \qquad \qquad \mathbf{J}_{\mathbf{l}} = \begin{bmatrix} S_1'(F_1) & \cdots & S_N'(F_1) \\ \vdots & \ddots & \vdots \\ S_1'(F_M) & \cdots & S_N'(F_M) \end{bmatrix}$$

 Articulations
 Glottis
 Acoustics
 Copy synthesis
 Conclusions

 00000000
 0000
 00000000
 000000000
 000000000

Area and length iterative deformations

$$\Delta \mathbf{f} = [\mathbf{J}_{\mathbf{a}}|\mathbf{J}_{\mathbf{l}}] \Delta \mathbf{p} \qquad \Delta \mathbf{f} = \left[\frac{F_1 - F_1'}{F_1'}, \dots, \frac{F_M - F_M'}{F_M'}\right]'$$

At each iteration k + 1 (Elie and Laprie, EUSIPCO, 2014)

•
$$\mathbf{a}_{k+1} = \mathbf{a}_k + \psi_{\mathbf{a}} \mathbf{A}_k \mathbf{J}_{\mathbf{a}}^T \Delta \mathbf{f}_k$$

• $\mathbf{I}_{k+1} = \text{diag}\left(\frac{1}{1+\delta\lambda_1}, \frac{1}{1+\delta\lambda_2}, \dots, \frac{1}{1+\delta\lambda_N}\right) \mathbf{I}_k$, $\delta\lambda = \psi_{\mathbf{l}} \mathbf{J}_{\mathbf{l}}^T \Delta \mathbf{f}_k$
• Repeat process until $|\Delta \mathbf{f}|_1 < \epsilon ~(\sim 1\%)$

Articu	lations
00000	0000

Glottis 0000 Acoustics

Copy synthesis

Conclusions

Biomechanical constraints

Minimizing the potential energy: avoid unrealistic configurations

$$\mathcal{C}_{\mathcal{V}} = 2\left[\mathbf{p} - \mathbf{p}_0\right] ||\mathbf{p} - \mathbf{p}_0||_2^2$$

p₀ = neutral position, according to the lip opening area (Maeda articulatory model^a)

^aMaeda, 1979

Minimizing the kinetic energy: avoid unrealistic movements

$$\mathcal{C}_{\mathcal{T}}(t) = rac{\partial \mathcal{T}_{art}(t)}{\partial \mathbf{p}(t)} ||\Delta \mathbf{p}(t)||_2^2,$$
 $rac{\partial \mathcal{T}_{art}}{\partial \mathbf{p}}(t) = egin{cases} 2\Delta \mathbf{p}(t), & t = 1 \ 2\left[\Delta \mathbf{p}(t) - \Delta \mathbf{p}(t-1)
ight], & 2 \leq t \leq t_{max} - 1 \ 2\Delta \mathbf{p}(t-1), & t = t_{max} \end{cases}$

Results with the constrained algorithm

Addition of the constraints

$$\tilde{\mathbf{a}}_{k+1} = \tilde{\mathbf{a}}_k + \tilde{\mathbf{A}}_k [\underbrace{(1 - c_{kin} - c_{pot})}_{\text{Weighting coefficients}} \tilde{\mathbf{J}}_{\mathbf{a}}^T \delta \tilde{\mathbf{f}}_k + c_{kin} \tilde{\mathcal{C}}_T + c_{pot} \tilde{\mathcal{C}}_V]$$
Weighting coefficients

Articulations

Glottis 0000 Acoustics

Copy synthesis

Conclusions

Application to singing techniques

Source : http://www.crem-cnrs.fr/clefs-ecoute/
animations/diphonique/hai1.html

Articulations

Glottis 0000 Acoustics

Copy synthesis

Conclusions

Application to singing techniques

Source : http://www.crem-cnrs.fr/clefs-ecoute/
animations/diphonique/hai1.html

Acoustics

Copy synthesis

Conclusions

Application to singing techniques

41/45

Articulations

Glottis

Acoustics

Copy synthesis

Conclusions

Application to bioacoustics

Articulations

Glottis

Acoustics

Copy synthesis

Conclusions

Application to bioacoustics

Conclusions

Application to bioacoustics

Example : Diane monkeys

Articulations 00000000	Glottis 0000	Acoustics 00000000	Copy synthesis	Conclusions
Plan				

Articulatory model

2 Source model

3 Speech synthesis based on acoustical model

4 Copy and hybrid syntheses

Good points

- accurate copies of formant trajectories and phonetic contrasts
- access to aerodynamic quantities
- consideration of the coupling VF/VT
- integration of glottal chink
- simultaneous consideration of several side cavities
- hybrid synthesis

Limitations

- 2D modeling of the VT
- numerous control parameters for the VF
- unrealistic spectral tilt
- stability problems
- frication noise generation

Articulations

Glottis

Acoustics

Copy synthesis

Conclusions

Future works

Further works

- 3D modeling of the VT (3D cineMRI)
- large articulatory database (vocal techniques, voice expressions...)
- glottal source parameters (in vivo acquisitions, fluid-structure interactions...)
- tongue, lips and velum oscillations (trill and click consonants)
- acoustic-articulatory inversion for all natural classes
- finer model for frication noise

Modélisation de la cavité nasale

$$\begin{array}{rcl} F_{K}^{(1)} & = & b_{K-1}^{(1)} U_{K-1}^{(1)} + H_{K}^{(1)} U_{K}^{(1)} + b_{K}^{(1)} U_{K+1}^{(1)} + b_{K}^{(1)} U_{1}^{(2)}, \\ F_{K+1}^{(1)} & = & b_{K}^{(1)} U_{K}^{(1)} + H_{K+1}^{(1)} U_{K+1}^{(1)} + b_{K+1}^{(1)} U_{K+2}^{(1)} + H_{C}^{(1,2)} U_{1}^{(2)} \\ F_{1}^{(2)} & = & H_{1}^{(2)} U_{1}^{(2)} + b_{1}^{(2)} U_{2}^{(2)} + b_{K}^{(1)} U_{K}^{(1)} + H_{C}^{(1,2)} U_{K+1}^{(1)}, \end{array}$$

New matrix form

$$\begin{bmatrix} \mathbf{f}^{(1)} \\ \hline \mathbf{f}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{L}^{(1)} & \mathbf{C}^{\mathcal{T}}_{(1,2)} \\ \hline \mathbf{C}_{(1,2)} & \mathbf{L}^{(2)} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u}^{(1)} \\ \hline \mathbf{u}^{(2)} \end{bmatrix}$$

 \downarrow

Particular case: 1. twin side branches (e.g.: piriform fossa)

$$\begin{split} F_{\mathcal{K}}^{(1)} &= b_{\mathcal{K}-1}^{(1)} U_{\mathcal{K}-1}^{(1)} + H_{\mathcal{K}}^{(1)} U_{\mathcal{K}}^{(1)} + b_{\mathcal{K}}^{(1)} U_{\mathcal{K}+1}^{(1)} + b_{\mathcal{K}}^{(1)} U_{1}^{(m)} + b_{\mathcal{K}}^{(1)} U_{1}^{(n)} \\ F_{\mathcal{K}+1}^{(1)} &= b_{\mathcal{K}}^{(1)} U_{\mathcal{K}}^{(1)} + H_{\mathcal{K}+1}^{(1)} U_{\mathcal{K}+1}^{(1)} + b_{\mathcal{K}+1}^{(1)} U_{\mathcal{K}+2}^{(1)} + H_{\mathcal{C}}^{(1,m)} U_{1}^{(m)} + H_{\mathcal{C}}^{(1,n)} U_{1}^{(n)} \\ F_{1}^{(m)} &= H_{1}^{(m)} U_{1}^{(m)} + b_{1}^{(m)} U_{2}^{(m)} + b_{\mathcal{K}}^{(1)} U_{\mathcal{K}}^{(1)} + H_{\mathcal{C}}^{(1,m)} U_{\mathcal{K}+1}^{(1)} + H_{\mathcal{C}}^{(1,m)} U_{1}^{(m)} \\ F_{1}^{(n)} &= H_{1}^{(n)} U_{1}^{(n)} + b_{1}^{(n)} U_{2}^{(n)} + b_{\mathcal{K}}^{(1)} U_{\mathcal{K}}^{(1)} + H_{\mathcal{C}}^{(1,n)} U_{\mathcal{K}+1}^{(1)} + H_{\mathcal{C}}^{(1,n)} U_{1}^{(m)} \end{split}$$

Piriform fossa : matrix form

$$\begin{bmatrix} f^{(1)} \\ f^{(m)} \\ f^{(n)} \end{bmatrix} = \begin{bmatrix} L^{(1)} & C^{\mathcal{T}}_{(1,m)} & C^{\mathcal{T}}_{(1,n)} \\ C_{(1,m)} & L^{(m)} & C^{\mathcal{T}}_{(m,n)} \\ C_{(1,n)} & C_{(m,n)} & L^{(n)} \end{bmatrix} . \begin{bmatrix} u^{(1)} \\ u^{(m)} \\ u^{(n)} \end{bmatrix}$$

Particular case: 2. Anabranch (e.g.: lateral consonants)

$$\begin{split} F_{K+1}^{(1)} &= b_{K}^{(1)} U_{K}^{(1)} + H_{K+1}^{(1)} U_{K+1}^{(1)} + b_{K+1}^{(1)} U_{K+2}^{(1)} + H_{C+1}^{(1,n)} U_{N+1}^{(n)} \\ F_{K+2}^{(1)} &= b_{K+1}^{(1)} U_{K+1}^{(1)} + H_{K+2}^{(1)} U_{K+2}^{(1)} + b_{K+2}^{(1)} U_{K+3}^{(1)} + b_{K+1}^{(1)} U_{N+1}^{(n)} \\ F_{N+1}^{(n)} &= b_{N}^{(n)} U_{N}(n) + H_{N+1}^{(n)} U_{N+1}^{(n)} + b_{K+1}^{(1)} U_{K+2}^{(1)} + H_{C+1}^{(1,n)} U_{K+1}^{(1)}, \end{split}$$

Lateral consonants : matrix form

$$\left[\begin{array}{c} \mathbf{f}^{(1)} \\ \mathbf{f}^{(n)} \end{array}\right] = \left[\begin{array}{cc} \mathbf{L}^{(1)} & \mathbf{C}_{(1,n)}^{\mathcal{T}} \\ \mathbf{C}_{(1,n)} & \mathbf{L}^{(n)} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{u}^{(1)} \\ \mathbf{u}^{(n)} \end{array}\right]$$

Existing methods

Machine learning

- Neural network
- Hidden Markov chains
- Gaussian mixture

Time-consuming, require large database, adapted for only one speaker

Analysis-by-synthesis methods

- Codebook search
- Iterative methods

Require appropriate model of vocal tract

Non-exhaustive review of iterative methods using sensitivity functions

Authors	Yu (1993)	Carré (2004)	Bunton and Story (2013)
Ac. vector	Formants	Formants	Formants
Input vector	Fourier coeff.	а	а
VT length	Arbitrary	Arbitrary	Arbitrary
Regul.	None	None	Lip aperture

Non-exhaustive review of iterative methods using sensitivity functions

			Bunton	Elie
Authors	Yu (1993)	Carré (2004)	and	and
			Story (2013)	Laprie (2014)
Ac. vector	Formants	Formants	Formants	Formants
Input vector	Fourier coeff.	а	а	a and I
VI length	Arbitrary	Arbitrary	Arbitrary	Estimated
VI length Regul.	Arbitrary None	Arbitrary None	Arbitrary Lip aperture	Estimated Lip aperture

Propositions:

- estimate both area (a) and length (I) functions
- add biomechanical constraints for better regularization

Example of ill behavior of the unconstrained algorithm

- Front cavity is well-estimated, but back cavity is unrealistic
- The formant frequency difference is converging but the shape difference is diverging

Static vowels

Results for a french native speaker /i/, /e/, /a/, /u/

Des IRM vers la fonction d'aire

Plan

Des IRM vers la fonction d'aire

Des coupes IRM vers le volume

Exemple d'un /u/

Des IRM vers la fonction d'aire

Ligne médiane

Référence: coupe médio-sagittale

Ligne médiane

Référence: coupe médio-sagittale

 \rightarrow On ajoute la ligne médiane

Plans tangents

On récupère les projections du volume sur les plans tangents

Exploration du conduit vocal: 🔘

Récupération des contours des tranches:

Délimitation de la surface

Délimitation de la surface

Zoom

Délimitation de la surface

Calcul de l'enveloppe convexe:

Plus petit ensemble convexe autour du conduit vocal

Les contours du CV pas forcément convexes

ightarrow Besoin de déformer l'enveloppe

Délimitation de la surface

Déformation de l'enveloppe convexe:

Substitution de chaque point de l'enveloppe par le point du CV le plus proche

Contours bien définis par un polygone

On récupère alors l'aire du polygone

Finalement...

