
PhD thesis proposal: Polycube-dominant meshing

I. Proposal’s context
Numerical simulations solve physical equations to better understand complex phenomena. It is a key aspect in
both industry and science: the idea is to replace costly physical experiments (e.g. wind tunnel in fluid dynamics)
with computer simulation. This dramatically reduces the overall cost of product development, because it allows
to prune hypotheses before undertaking expensive real actions such as the realization of a mechanical part, on
site  investments  such as drilling of  oil  wells,  and then submitting it  to tests.  One of  the central  points  in
numerical  simulations is  the ability  to represent the functions (temperature,  pressure,  speed,  etc.)  on the
studied objects. The most versatile way to do so is to discretize the domain of the interest into the cells of a
mesh. 

Today, a majority of pure or highly dominant hexahedral meshes is still hand-made, because no method has
proven yet to be versatile and largely applicable enough with an acceptable accuracy, thus inducing large costs
and time overheads. The image below shows an example of a hand-made mesh; it took more than one month
of engineer time to build it. Our ambition is to reduce this time.

Figure 1: Industrial assembly model: geometry (left), expected mesh (right), so as to be able to simulate contact
areas accurately.

A new and original approach to generate hexahedral meshes was proposed recently by the team [Sokolov2016,
Ray2018]. It comes from the observation that good quality hexahedral meshes look like a deformed grid almost
everywhere. The idea is to define a deformation of the object such that if the final hexahedral mesh (the result)
undergoes this deformation, it will match a unit, axis aligned grid. The direct application of this idea computes
this deformation, applies its inverse to the unit grid, and obtains a hexahedral mesh. In practice, we introduce
more degrees of freedom by considering global parameterizations instead of deformation. In this case, the
deformation functions have some discontinuities that make it possible to represent a much larger family of
hexahedral meshes: the deformed grid can be cut and glued to itself in a non-trivial way (refer to the Figure 2).

Figure 2: Global parameterization example: the input is cut open along the red plane (left), then it is deformed 
(middle), and the pre-image of the orange grid produces a hexahedral mesh (right).



Global parameterizations are constructed in two steps: the Frame Field (FF) step defines the orientation of the
grid at each point of the domain, and the Cube Covering (CC) step generates a global parameterization that will
align the final mesh with the orientation (FF) defined in the first step. When both steps succeed, the result is a
very  regular  full  hexahedral  mesh.  Unfortunately,  the  FF  step  may  generate  an  orientation  field  with  a
topological structure (its singularity graph) that is not valid for the second step, and the CC step often generates
invalid mappings with (locally) negative Jacobians.

II. Organisation of the project
The project will be split into four main parts:

 Months  1-6:  Design a  GP-based hexahedral-dominant  prototype.   The  first  task  will  be  to set  up a
software that generates conforming hexahedral dominant meshes. The developed prototype will be an
adaptation of the current Inria implementation of [Ray2018].

 Months 6-20: Improve global parameterization algorithms  . With the robustness technical barrier being
lifted by the first task, we can attack the mesh quality criteria. For this task we are mainly interested by
the case where all the meshing is handled through global parameterizations.

To narrow down this vast research domain, for this project we will consider a particular case of global
parameterizations without discontinuities, polycubes (Figure 3) i.e. a union of unit, axis aligned, cubes
[Gregson2011]. In these settings, the orientation field does not constrain the hexahedral mesh by a
complex singularity graph, but only by the function that maps each point of the domain boundary to its
normal  in  the deformed domain,  that  is  necessary aligned with  one axis  (x,  -x,  y,  -y,  z  or  -z).  The
interests  of  this  specific  case  are  two-fold:  results  are  often good enough to generate  hexahedral
meshes, and it gives a simpler context to study the robustness issues of the CC step.

Figure 3: A domain, its polycube, and the final mesh. 

We will start this task by implementing a frame field without singularities, then we will improve the
robustness  of  the  CC  step  by  introducing  feasibility  constraints.  We will  try  different  strategies  to
discover these feasibility: by observation of failure cases, or by a general characterization of all possible
ways to  produce  degeneracy  inspired  by  what  was  done  for  the 2D case  [Campen2015].  The last
element of the task will be to inject these constraints into the solver. This task will provide us some
experience to better address the general (non polycube) case. 

 Months 21-28: Combine grid placement with other meshing tools  . While for the previous task we have
supposed that GP handles all the meshing, it is unreasonable to rely on GP only. There are many cases
where it would be better to combine it with other meshing tools.



Placing a (deformed) grid inside a volume gives a very regular hexahedral mesh. However, it is very
difficult to fill the whole volume with such a grid: the boundary alignment constraints may be locally
(fillet, chamfer) or globally (thread on screws) incompatible. In these cases, a global parameterization
algorithm simply fails to mesh the model. To deal with this issue, we will integrate the grid placement
algorithms in a more complete meshing process. To do so, we will analyze the conflicting constraints
and  solve  them  by  pre-processing  and  post-processing.  We  will  also  try  to  better  exploit  the
combinatorial  structure  of  the  grid,  despite  possible  geometric  inversions,  as  it  is  locally  done  in
[Lyon2016].

We can actually generate hexahedral dominant meshes by a post-processing step that remeshes the
part of the model that is not successfully filled by hexahedra. It makes the process robust, but it would
be  much  better  to  detect  conflicting  constraints  earlier,  before  it  deteriorates  the  global
parameterization.  Indeed,  the  hexahedral  meshes  have  a  “very  rigid”  combinatorial  structure  that
makes it possible for a (local) constraint to have an impact on the whole mesh. This new way to think
about the problem leads to interesting theoretical questions: what are the conditions on the boundary
conditions for a valid global parameterization to exist.

Once again, for this project we will address the pre-processing in the particular case of polycubes. In
this  case,  most  existing  polycube  methods  already  have  some  specific  pre-processing  and  post-
processing methods to manage local conflicting constraints.  Their  pre-process changes the function
that determines, for each point of the boundary, what would be the normal after deformation (x, -x, y, -
y, z or -z). Their post-processing is a pillowing step that better distributes the angular distortion due to
the  singularities,  by  pushing  them inside  the  domain.  These  solutions  are  able  to  fix  simple  (and
frequent) conflicting configurations, but always have failure cases that are difficult to predict. Moreover,
they are mostly designed for organic models where difficulties are very different from what we can
observe on our CAD models; we have many conflicting situations that come from configurations of
feature edges that meet on a single point.

We will focus on conflicting configurations of the feature edges. The starting point will be to observe
failure  cases,  define the regions that  will  be  impacted,  and remove them from the domain to  be
remeshed  (the  post-processing  will  deal  with  it).  Then,  we  will  better  manage  these  regions  by
replacing them by local hexahedral mesh patterns, and we will try to get an exhaustive classification of
conflicting cases.

 Months  29-36:  Push polycube  singularities  graph  deep  inside  the  domain.   Meshes  generated  from
polycubes are typically highly distorted near the (degenerated) singularity graph located on the domain
boundary. A common practice is to better distribute this distortion by a pillowing step, that will move
the singularity graph inside the domain. We would like to go further in this direction, by pushing the
singularity  graph  deeper  inside  the  domain.  We  consider  this  option  as  a  way  to  generate  valid
singularity graphs in the general case.

The first step will be to produce a first layer of hexahedra on the object’s boundary, then to move it
inside  the  domain  by  insertion/deletion  of  hexahedron  layers.  A  way  to  determine  layers  to
add/remove will be to move the singularities graph in order to minimize the rotation of the hexahedra
orientation,  then  solve  once  again  a  mixed  integer  problem to  determine  the  optimal  number  of
hexahedron layers to insert/remove according to the new singularity graph position.
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