~

Typing Total Recursive Functions in Coq

Dominique Larchey-Wendling
TYPES team, ANR TICAMORE

LORIA — CNRS

Nancy, France
https://github.com/DmxLarchey/Coq-is-total

Interactive Theorem Proving
ITP 2017, Brazilia, Sept. 2017

~

/ Turing completeness for (axiom-free) Coq' \

Does Coq contain any p-recursive function as a term nat® —nat?

N

Axiom free Coq defines only total functions

— meta-level (strong/weak) normalization

The Kleene T predicate method (Bove&Capretta 2005):
— T is cumbersome = small-step semantics

— primitive recursive schemes hard to program with

Lambda calculus method (LW 2017, big dev. of 25k lines):
— left-most and head normalization (so also small-step sem.)

— intersection type systems (solvability)

How avoid small-step semantics?

/

/ The content of the function type nat — nat' \

e What is contained in the type nat — nat 7

— it depends on axioms (even if only of sort Prop)

— without axioms, only total recursive functions (normalization)

— but are every total and recursive functions present 7

e What are (total) recursive functions 7

— recursive functions are an inductive class of relations

— but

totality

depends on meta-theory:

* Goodstein sequence (Kirby&Paris)

* Finite Ramsey theorem (Paris&Harrington)

o Turing completeness for Coqg-provably total recursive functions

\ — with (short 7) Cog-implementation of this claim /

3

/ Our method: avoid small-step semantics' \

e Bove&Capretta’s hint (Kleene’s normal form theorem):
— p-recursive fun. = minimization of primitive recursive fun.
— Kleene’s T pred. relates prog. and computations (prim. rec.)
— primitive rec. fun. are (trivially) Coq-definable terms

— unbounded minimization of these terms (mutual recursion ?)

e Kleene’s T predicate = small-step semantics
— implement as primitive recursive = awfully complicated

— a provably correct compiler with prim. rec. schemes

e We avoid small-step semantics

— unbounded minimization of decidable (& inhabited) predicates

\ — cost-aware big-step semantics as Coq decidable predicate /

4

/ Coqg-provably total & computable relations' \

e To shorten notations, N denotes the type nat

o p-recursive function N¥ — N = func. relation N'* — N — Prop
— an inductive class of functional /deterministic relations

— constants, successor, zero, projections, composition, primitive

recursion and unbounded minimization
— each p-recursive function is described by an algorithm

— algorithm must be given, it cannot be extracted
o s-recursive R : N¥ — N — Prop is total if V& : N*,In : N, R ¥ n
e R is Cog-computable if V' : N*, {n: N | R ¥ n}

\o Transforming (In, R ¥ n) into {n | R ¥ n} called reification /

5)

/ Specificity of Coq existential quantiﬁers' \

e Three type of existential quantifiers (X-types)
— for P : X — Prop, non-informative dx : X, P x of type Prop
— for P : X — Prop, partially info. {z : X | P x} of type Type
— for P : X — Type, fully info. {x : X & P z} of type Type

e Reificationisamap (Jz: X, Px) —>{x: X | P x}
— axiom called Constructive Indefinite Description

— alternativelly, it is a map inhabited X — X

e Reification can be implemented without axioms:
— when X is an enumerable type (like)
— when P : X — {Prop, Type} is decidable

\ — implementation by unbounded minimaization /

6

/Inductive definitions of Coq existential quantiﬁers'

Inductive inhabited (P : Type) :|Prop|:=

| inhabits : P — inhabited P

Inductive ex {X : Type} (P : X — Prop):

Prop

| ex_intro:Vx: X, P x — ex P (also denoted dz : X, P x)
Inductive sig {X : Type} (P : X — Prop):
| exist:Vz: X, Pz — sig P (also denoted {x : X | P =})
Inductive sigT {X : Type} (P : X — Type) :
| existT:Vx: X, P x — sigT P (also denoted {z : X & P z})

N

Type | :

Type | :

Jr : X, P ¢ equivalent to inhabited{z: X | P z}

~

/

gc

e Minimization of Boolean function f : int — bool

—try £ 0, f1, f 2, ... until f n outputs true

T

nbounded minimization (sample OCaml code

— if e.g. f 0 does not terminate, then minimization loops as well

e Implemented by this sample code:

let rec minimize_rec f n =
match f n with
| true —n

| false — minimize rec f (1 +n)

let minimize f = minimize_rec f O

\o This codes does not always terminate, but Coq code must... /

8

/Terminating unbounded minimization (OCaml) I\

e How to ensure termination: decorate with a decreasing argument

let rec minimize rec f n|H, |=

match f n with

| true —n

| false — minimize rec f (1 +n)

let minimize f = minimize rec f O

e Problems:

Hy

— Termination input: non-informative proof H¢ : dn, f n = true

— How to obtain Hy.,, from H, s.t. Hi,, is stmpler than H,, 7
— How to build Hy from Hy : dn, f n = true ?

\o Solution: H,, is |Acc R n |for some rel. R : N'— N — Prop

/

9

/ Non-informative existence as accessibility' \

Inductive Acc {X :Type} (R:X — X —Prop) (z:X):=
| Acc_intro: (Vy: X, Ry x—Acc Ry) > Acc Rx

e Accessibility Acc R is the least R-hereditary predicate

| o [eteg. |Pxifft=2o0rxz =25
| e, e Let Rnmiff(n=8Sm)A-Pm
° e Then Acc R 5 because 5 has no R-antecedent
- % R54 e Acc R 4 as Acc R 5 (5 only antecedent of 4)
fras e Acc R 3 as Acc R 4 (4 only antecedent of 3)
Po e Acc R 2 because 2 has no antecedent
%321 e Then Acc R1 and Acc R0
\ o e But —Acc R fori>6 /

10

Well-founded unbounded minimization (1)'

Variables (P : N —Prop) (Hp:Vn:N, {P n}+ {=P n})

Let R(nm:N) = (n=1+m)A-Pm

Let P_AccR . Vn:N,Pn—Acc Rn

Let Acc_R._dec . Vn:N,Acc R(1+n)—Acc Rn

Let Acc_R_zero . Vn:N,Acc Rn—Acc RO

Let ex P AccRzero : (In:N,Pn)—Acc RO

Let Acc_R_eq . Vn:N,Acc Rn<= Ji: N.n<iANPi

N /

11

/ Well-founded unbounded minimization (2)' \

Let Rnm:=n=1+m)A-Pm

Let Acc_inv (n:N) (H, :Acc Rn) (F:—-Pn):Acc R(1+n):=
let [’ := conj eq_refl F
in match H,, with Acc_intro _. H +— H _ F’ end

Fixpoint AccP (n:N) (H,:Acc Rn):{x: N |P z}:=
match Hp n with

| left T — exist . n T
| right F' +— Acc P (1 +n) (Acc_inv _ H, F)

\ end. /

12

/ Reification of decidable predicates' \

e For P: N — Prop and Hp : Vn,{Pn} + {—~Pn}
Theorem nat_reify: (In:N,Pn)— {n: N | P n}
e Proof:
— intros H : 3n, P n, goal is now {n: N | P n}
— apply Acc P with (n :=0), goal is now Acc R 0 : Prop

— apply ex_P_Acc R_zero, goal is now dn : N, P n
— assumption, goal solved by hypothesis H

e We also get the fully specified:

Theorem minimize: (3n,P n)— {n|P n AVm,P m—n < m}

N /

13

/ Reification of dec. and informative predicates I \

e Decidability for informative predicates | P : Type

decidable t P := P + (P — False)

e For P: N — Type and Hp : Vn, (P n) + (P n — False)

Theorem nat_reify t: (3n:N, inhabited(P n)) = {n: N & P n}

e Hypothesis In : A/, inhabited(P n) has no informative content

e It computes:
— n (minimal) such that P n is inhabited

— but it also computes an inhabitant of (that) P n

\0 The proof is very similar to that of nat _reify /

14

~

An inductive type for recursive algorithms'

e X™ is the type of vectors on X : Type of dimension n : N/
e A; is a notation for recalg (k : N)

e recalg: N — Set dependently defined by inductive rules:

n: N p:posk
cst, : Ao zero : A; succ : A; proj, : A
f A §:A,]f f: Ay ¢g:Asig f A
comp f g : A, rec fg: Aiik min f : Ag

~

e Working with dependent types might involve some difficulties...

15

‘5

Variable (P : forall k, recalg k —> Type)
(Pcst : forall n, P (cst n)) (Pzero

eware fixpoint definitions are not compositional\

Fixpoint recalg_rect k f { struct £ } : P k f :=
match f with

| cst n => Pcst n
Zero => Pzero
succ => Psucc
proj p => Pproj p

rec f g =>Prec [Ifl] [lgl]
min f => Pmin [|f]]

\\\?nd where "[| £ []" := (recalg_rect _ f). J///

16

|
|
|
| comp £ gj => Pcomp [|f|] (fun p => [|vec_pos gj pll)
|
|

Dependencies might involve type castings'

e eq rect maps a term of type P ¢ into P j using a proof e : 7 =3

e Alternatively, use heterogeneous equality JMeq (John Major’s eq.)

e Injection lemmas involve type castings:

Fact ra_comp_inj k k' i (f: Ax) (f : Aw) (7: A) (7 : A¥)

eqrect __f_e=f
comp fg=comp f'§g —Je: k=K, 6N 1 d !
eqrect __g_e=¢g

e These difficulties might be frightening for casual Coq users

N /

17

/ Relational semantics for recursive algorithms' \

e We denote [f] for rarel k (f: Ay) : N¥ =+ N — Prop

e [f] ¥ z: the computation of f on input ¢ halts and outputs x

n=ux [zero] .z <—= 0=z

!

[cstyn] -z

[succ] vx 14 Vst = @ [proj, |7z < ¥, ==

8

[comp f g] T
[rec [g] (0#7) x 1oz
[rec fg] (1 + n#v) x Jy, [rec f g] (n#V) y A [g] (n#ty#7) x
[min f] vz <= 3, [f] (x4#70) 0 A Vp : pos z, [f] (p#7) (1 + W)

<
S
<

e A simple exercise (given a good recursion principle for Ay ;-)

\o But z — [f] ¥ x is not a decidable relation. /

18

/ Big-step semantics for recursive algorithms' \

e We denote [f; 9] ~» x for rabs k f ¥ x : Prop (or Type...)

e Same meaning as [f] ¥ x but defined as an inductive predicate

[csty; U] ~n [zero; U] ~~ 0 [succ; U] ~ 1 + Usst [proj,;v] ~ Up

[rec fgin#tv] v~y lgin#y#i] ~x [f;0] ~x Vp,[gp; 0] v wp

[rec f g; 1 + n#v] ~ x [comp f g; V] ~ x
;0] ~ [f; x#0] ~ 0 Vp:posaz, |f; p#U] ~ 1+ Wy
[rec f g; 0#U] ~ x [min f; 9] ~ x

e Kasy (intuitive ?) definition
— rabs : Vk, Ay = N* = N — Prop, [f] Tz < [f;7] ~ z
— rabs: Yk, A, =+ N* — N — Type is a type of computations

\o Let us transform ra_bs into a decidable predicate

/

19

/ Cost aware big-step semantics' \

e We denote [f; 9] Ha) = for raca k f U a x: Prop

e « represents the cost (or size) of the computation

[cstn; 0] 1) n [zero;d] H1) 0 [succ;d] {1) 1+ 0ese [proj,; v] H1) Up

rec fg;n#d] o)y [g;n#ty#d] 1B« [f;d] o)z Vp, [Gp; 8] 1Bp) Wy

[rec fg;1+n#0] {1+ a+8) x [comp f ;7] 1+ a+ Z8) z
[f59) Ha) « [f;2#0) {a) 0 Vp:posw, [f; p#0] {Bp) 1+
[rec fg;0#0] {1+ a) @ min f; 7] 41 + o+ 26) =

e for ra ca, we have [f] ¥ z < Ja: N, [f; 7] Ha) =
e r+— |f;vU] Ha) x is a decidable predicate:
\ — from «, recover comp. [f; U] ~ x : Type by prim. rec. means/

20

~

e Inversion lemmas:

Lemma ra_carec.S_inv (k:

rec f i1+ n#td] 7))

e Functionality:

Theorem ra ca fun (k :

/0] Ha) x — [f;
e Decidability:

Theorem ra_ca_decidable

_ {o]1f

U] Ha)) x}+{az’

Properties of cost aware semantics'

N)(f: Ax) (g: Aogr) Uny x:
(y=1+a+0
— Jy a B, N\«

| g n#y#0] HB) @

N) (f 2 Ag) (T:NF) (aBay: N):
4Bl y—a=Frz=y

N) (f: Ax) (T: N*) (a
U] Ha)) x} — False

t (k:

[rec f g;n#0] o) y

N

~

21

/ Typing total recursive functions'

e For f: Aj and ¥ : N* fixed, f terminates on ¥ iff:
— dx, [f] UV x
— Jeda, [f; 0] o) @
— Jodz, [f; 7] Ha) @
— da, inhabited {x | [f;v] o) =}
e For any «, the type {z | [f;v] Ha)) x} is decidable:
— nat_reify_t computes {a: N & {x : N'| [f; 7] Ha) z}}

— from which we extract x s.t. [f] ¥

Theorem Coq_is_total (k: N) (f: Ag):
(VT N% 3z N, [f]) = {t : NP > N | VT : N¥ [f] 7 (¢t 0)}

~

22

/Other applications: reifying undecidable predicates\ I

e Normal forms (typically A-calculus)

— for T": Type, R:T"— T'— Prop
— finitary: Vt:T,{l:1list X |Vz,Rt z <= In x [}
— with normal form ¢t n:= (Vz,~-Rnz) AR"tn

— we have: Vt, (dn,normal form ¢t n) — {n | normal form ¢ n}
e From cut-admissibility to cut-elimination
Vs (p : proof s),(dq : proof s, cut_free q)—{q : proof s | cut_free ¢}

e Recursively enumerable predicates (of the form v+ [f] ¢ 0)

V(k:N) (f: Ap), B0 NP [f] 70)—{7:N*|[f] 70}

N

23

~

Conclusion ' \

e Mechanization of the Turing completeness of Coq

— without using any (extra) axiom

— by implementing reification of decidable predicates over nat

e Coq has a kind of unbounded minimization

— provided the predicate can be informatively decided

— and there is a non-informative inhabitation proof

e Kleene’s T predicate replaced with cost aware big-step semantics

— avoid small-step semantics and encodings
— avoid compiler correctedness

— show decidability of cost aware big-step semantics

\o Reification extended to some undecidable predicates as well /

24

