Counter-model search in Godel-Dummett logics

Dominique Larchey-Wendling

LORIA — CNRS
Campus Scientifique, BP 239
Vandceuvre-les-Nancy, France

Abstract. We present a new method for deciding Gédel-Dummett logic
LC. We first characterize the validity of irreducible sequents of LC by the
existence of r-cycles in bi-colored graphs and we propose a linear algo-
rithm to detect r-cycles and build counter-models. Then we characterize
the validity of formulae by the existence of r-cycles in boolean constrained
graphs. We also give a parallel method to detect r-cycles under boolean
constraints. Similar results are given for the finitary versions LC,,.

1 Introduction

Godel-Dummett logic LC and its finitary versions (LC,,),~¢ are the intermediate
logics (between classical and intuitionistic logics) characterized by linear Kripke
models. LC was introduced by Godel in [10] and later axiomatized by Dum-
mett in [6]. It is now one of the most studied intermediate logics and has been
recognized recently as one of the fundamental ¢-norm based fuzzy logics [11].
Proof-search in LC has benefited from the development of proof-search in in-
tuitionistic logic IL with two important seeds: the contraction-free calculus of
Dyckhoff [1,7,8] and the hyper-sequent calculus of Avron [2,13]. Two of the
most recent contributions propose a similar approach based on a set of local
and strongly invertible proof rules (for either sequent [12] or hyper-sequent [2]
calculus,) and a semantic criterion to decide irreducible (hyper)-sequents and
eventually build a counter-model.

We are interested in studying combination of proof-search and counter-model
construction to provide decision procedures for intermediate logics. We have al-
ready proposed such a combination for LC [12], but here we investigate deeper
counter-model search to obtain a new system with the following fundamental
property: all the irreducible sequents arising from a proof-search can be rep-
resented in a shared semantic structure. The semantic criterion that decides
irreducible sequents can be computed in parallel on this shared structure. In-
stead of simply combining proof-search and counter-model construction, we are
now at the frontier of these two techniques and so provide a calculus of parallel
counter-model search.

In section 3, we recall the indexation technique of [12] and introduce a new
proof-system with the property that irreducible sequents are now composed only
of atomic implications. In section 4 we associate a bi-colored graph to each irre-
ducible sequent. We show that irreducible sequents validity in LC can be decided

from the existence of r-cycles in the graph. We propose a linear time algorithm to
detect r-cycles and eventually build counter-models. We prove similar results for
LC,,. In section 5, we show that proof-search can be viewed as a non-deterministic
choice of arrows in a bi-colored graph corresponding to left or right premises of
proof-rules. We postpone non-deterministic choices by introducing boolean se-
lectors and represent proof-search by a conditional bi-colored graph. We prove
that validity is characterized by the existence of r-cycles in every instance of this
graph and discuss r-cycle detection combined with boolean constraint solving.
Moreover, we characterize the smallest n for which a given formula is invalid in
LC,,. In section 6, we detail some implementation techniques for a constrained
r-cycle detection algorithm based on matrices of binary decision diagrams and
briefly present our parallel counter-model search system both for LC and for its
finitary versions LC,.

2 Introduction to Godel-Dummett logics LC,,

In this section, we present the algebraic semantics of the family of propositional
Gédel-Dummett logics LC,,. The value n belongs to the set N” = {1,2,...}U{oo}
of strictly positive natural numbers with its natural order <, augmented with a
greatest element co. In the case n = oo, the logic LC is also denoted by LC:
this is the usual Gédel-Dummett logic.

The set of propositional formulae, denoted Form is defined inductively, start-
ing from a set of propositional wvariables denoted by Var with an additional
bottom constant | denoting absurdity and using the connectives A, V and D.
A substitution denoted by o is any function that associates a formula to every
propositional variable. We denote by A, the result of the application of o to the
variables in A. IL will denote the set of formulae that are provable in any intu-
itionistic propositional calculus (see [7]) and CL will denote the classically valid
formulae. As usual an intermediate propositional logic [1] is a set of formulae £
satisfying IL C £ C CL and closed under the rule of modus ponens (if A € £ and
AD B € L then B € £) and under arbitrary substitution (if A € £ and o is any
substitution then A, € L.)

For any n € N*, the Goédel-Dummett logic LC,, is an intermediate logic.
On the semantic side, it is characterized by the linear Kripke models of size n
(see [6].) The following strictly increasing sequence holds:

LclLC=LCoC---CLC, C---CLCG =CL

In the particular case of LC, the logic has a simple Hilbert axiomatic system:
(XDY)V (Y DX) added to the axioms of IL.

In this paper, we will use the algebraic semantics characterization of LC,, [2]
rather than Kripke semantics. Let us fix a particular n € N". The algebraic model
is the set [0,n) = [0, ...,n[U{oo} composed of n+1 elements.! An interpretation

' With the convention [0,00) = N U {oo}. With our particular representation, the
algebraic models [0, n) form a strictly increasing sequence of subsets of N.

of propositional variables [-] : Var — [0,n) is inductively extended to formulae:
L interpreted by 0, the conjunction A is interpreted by the minimum function
denoted A, the disjunction V by the mazimum function V and the implication
D by the operator — defined by a — b = if @ < b then oo else b. A formula D is
valid for the interpretation [[-] if the equality [D] = oo holds. This interpretation
is complete for LC. A counter-model of a formula D is an interpretation [-] such
that [D] < oo. A sequent is a pair I't A where I" and A are multisets of formulae.
I', A denotes the sum of the two multisets and if I" is the empty multiset, we
write - A. Given a sequent I' - A and an interpretation [[-] of variables, we
interpret I' = A;,..., A, by |I'] = [Ai] A--- A [AL] and A = By,...,B, by
[A] = [Bi] V- - V[Bp]. This sequent is valid with respect to the interpretation
[[Tif | I'] < [A] holds. On the other hand, a counter-model to this sequent is
an interpretation [[-]] such that [AT < | I']|, i.e. for any pair (i, j), the inequality
[[Bj]] < [[Alﬂ holds.

3 Proof-search and sequent calculus for LC,,

In this section we present a refinement of the decision procedure described in [12].
As before, we have the three following steps: first a linear reduction of a formula
D into a flat sequent 6~ (D) D Xp, then a sequent based proof-search that
reduces this flat sequent into a set of implicational sequents I'; = Ay and finally
a semantic algorithm that builds counter-models of I F Ay.

In [12], the proof-search process produced what we called pseudo-atomic
sequents, which are sequents composed only of formulae of the form X and
X DY where X and Y are propositional variables. In our new system, we further
constraint our proof-search procedure to only produce atomic implications X DY
We do not integrate the L constant but it can be treated as in [12]. So atomic
formulae are variables. We introduce a new special variable { ¢ Var. From now,
(propositional) variables are elements of Varg, = Var U {$} but we require that
¢ does not occur in the formulae we are trying to decide, so it has a special
meaning during proof-search:

Definition 1 (B-contexts). A b-context denoted A, is a non-empty multiset
of implications such that if AD B € Ay then { D B € Ay.

3.1 Linear reduction through indexation
We refine our indexation technique and the notion of flat sequent.

Definition 2 (Flat formula and sequent). A flat formula is of one of the
following forms: X DY or Z2> (X QYY) or (X ®Y) D Z where X, Y and Z
are propositional variables and @ € {A,V,D}. I'+ Ay is a flat sequent if all
formulae of I' are flat and Ay is a b-context of atomic implications.

Let us fix a particular formula D (not containing {.) We introduce a new
variable X4 (not occurring in D and different from <) for every occurrence A of

I'ADCEFA I'BOCFA I'ADB,ADCHEFA

D By

[(AAB)DCFA 1] [LAS(BAC)F A [52]
INA>DC,BO>CFA 53] INADBFA INA>CFA ,
D) D
I(AvB)>CraA ° [LAS(BVCO)F A 53]

IASCHFA T,BOCFA
IA>(BD>C)FA

[>4]
Fig. 1. Proof rules for implications in LC,,.

subformula of D. So the variables X4 represent the nodes of the decomposition
tree of D. Then, we define the multisets 7 (K) and §~(K) by induction on the
occurence of the subformula K (the comma represents the sum of multisets.)
These two multisets are composed of only flat formulae with variables of the
form X4 or V (where V is a variable of D):

V) =Xy DV when V is a variable

A® B)=0%(A),0"(B), Xagr D (X4 ® Xp) when ® € {A,V}
AD B) =07(A),6%(B), Xasp O (Xa D Xp)

V)=V D Xy when V is a variable
A®B)=0"(A),07(B),(Xa ® Xp) D Xagp when ® € {A,V}
AD B) =6"(A),67(B),(Xa D Xp) D Xasn

We just recall the proposition 1 already proved in [12]. We also introduce the
proposition 2 which is the semantic counterpart of the substitution property of
intermediate logics.

Proposition 1. Both §t(D),Xpt D and 6~ (D), D+ Xp are valid in LC,.

Proposition 2. If [-] is such that [Xk] = [K] holds for any occurrence K of
subformula of D, then equation |6~ (D)] = |[6T(D)] = oo holds.

Both proofs are left to the reader (trivial induction on K, see [12]). Then we
are able to propose our linear reduction of a formula into a flat sequent. The
proof of the following result can be found in appendix A.

Theorem 1. In LC,,, D is valid if and only if 6= (D)F & D Xp is valid.

We recall that < is just another variable but is required not to occur elsewhere
in the sequent, and so does not occur in D or as one of the X introduced during
the computation of § (D).

3.2 Reducing flat sequents by proof search

In figure 1, we recall proof rules for LC,, [12]. All of them are sound and strongly
invertible. We replace the “old” rule [D4] (not included in the figure) with a new

version:

I'BODCHFADB,DB,A, rooCkH A,
I''(ADB)DCFE A,

[D4] Ay is a b-context

Theorem 2. In LC,, rule [D4] is sound and strongly invertible.

This theorem is proved in appendix A. The aim for such a new rule is that ap-
plied backward, all proof rules only introduce implications. Applying rules [Ds],
[D3], [D4] and [D5], [D%], [D}] bottom-up, it is easy to see that the proof-search
process applied to the flat sequent § (D) D Xp terminates and produces a
set of irreducible sequents, meaning that no more rules can be applied to them.

Definition 3 (Implicational sequent). A implicational sequent is of the form
X0V, . Xy DY -A1 DBy,...,A; DBy, dall the X;,Y;, A;, B; are variables.

As there is one rule for each case of (X ® YY)D Z or ZD (X ®Y) and as
the corresponding rule transforms the compound formula into one, two or three
atomic implications in each premise, these irreducible sequents are implicational
sequents. Moreover, if I'+ A is any of those irreducible sequents then A is also
a b-context. Indeed, applied backward, all proof-rules preserve flat sequents and
the starting sequent is itself flat. We point out that there is no more a distinction
between <) and other variables in the notion of implicational sequent: the notion
of b-context is only used during proof-search. Section 5.1 discusses the proof-
search process in further details.

4 Counter-models of implicational sequents

In this section, we present a new and visual criterion to decide implicational se-
quents. In particular, the sequents that arise as irreducible during the previously
described proof-search process are implicational.

4.1 Bi-colored graph of an implicational sequent

Let S=X:D0Yy,..., Xy DYr+A1 DBy,...,A; D B; be an implicational sequent.
We build a bi-colored graph Gs which has nodes in the set {X; }U{Y; }U{A; }U{B;}
and has two kinds of arrows, green (denoted by —) and red (denoted by =-.)
The set of arrows is {X; —Y1,..., X =Y} U{B1=A41,...,B;= A4;}. The red
arrow B; = A; is in the direction opposite to that in the implication A; D B;.

We will often use the symbols — and = to denote the corresponding incidence
relation in the graph. So for example, —=- denotes the composition of the two
relations and X —=-Y means there exists a chain X - Z=Y in Gs. Also —* is
the reflexive and transitive closure of —, i.e. the accessibility for the — relation,
And — + = is the union of relations.

4.2 Heights in bi-colored graphs

We define a notion of bi-height in bi-colored graphs. The idea is very simple. A
green arrow — weighs 0 and a red arrow = weighs at least 1.

Definition 4 (Bi-height in a bi-colored graph). Let G be a bi-colored graph.
A bi-height is a function h : G — N such that for any x,y € G, if t —y € G then
h(z) < h(y) and if x =y € G then h(x) < h(y).

As we will see, bi-height can be used to compute counter-models. We char-
acterize graphs that admit bi-heights by the notion of r-cycle. This notion is
similar to the notion of G-cycle in [3] but here we give a simple and efficient
algorithm to find cycles and compute counter-models.

Definition 5 (R-cycle). A r-cycle is a chain of the form x(— + =)* = z.

It is clear that if a graph has a r-cycle, then there is no bi-height. We give a
linear? algorithm to compute a bi-height when there is no r-cycle.

Theorem 3. Let G be a bi-colored graph. It is possible to decide if G has r-
cycles in linear time and if not, it is possible to compute a bi-height h for G in
linear time.

Proof. Even if it has no r-cycle, G may still contain green (—) cycles. To remove
all cycles, we introduce the contracted graph G’ of G: let C be the set of strongly
connected components for the “green” sub-graph of G (i.e. G_,),C = {[z] | z € G}
and [z] is the strongly connected component of z. G’ has C as set of nodes, and
the set of arrows is described by:

[x] = [y] iff [2] # [y] and Fa',y" s.t. [2] = [2'],[y] = [y'] and 2’ — ' € G
[z] = [y] iff ',y st [z] = [2],[y] =[] and 2’ =y € G

G’ is computed in linear time by standard depth first search algorithms. G’ has
no green (—) cycle (because they collapse into a strongly connected component)
and so G’ has a cycle (with either — or = arrows) if and only if G has a r-cycle.
Finding a cycle in G’ takes linear time in the size of G’ (which is smaller than
the size of G.)

Now suppose that G" has no cycle (i.e. no r-cycle in G). The relation (—+=-)*
is a finite partial order and we can define b’ : G’ — N inductively by:

/ _ R ([z]) for [z] — [y] € G’
h ([yD = max{h/([xb +1 for [:L'] = [y] c g/}

We can compute the whole function 4’ in linear time by sorting the nodes of G’
along (— +=-)*, again by depth first search. We define h(x) = h’([z]) and prove
that h is a bi-height in G. If z —y € G: first case [x] = [y] and then h(z) = h(y),
second case [x] # [y] and then [x] — [y] € G’ thus h'([z]) < A'([y]) by definition
of A/, so h(z) < h(y). f x = y € G then [x] = [y] € G’ and W' ([z]) + 1 < 1'([y])
so h(z) < h(y).

2 Linearity is measured w.r.t. the number of vertexes and arrows in the graph.

Theorem 4. If G has no chain of type (—*=>)" then the height h of theorem 3
satisfies Vo € G, h(z) < n.

Proof. In G’, if W' ([y]) = n then there exists a chain [z](=—*)"[y] in G’. This
result is straightforwardly proved by induction on n. Then suppose that there
exists y such that h(y) = m > n. We obtain a chain of type (=—*)" in G’
Expanding the “green” strongly connected components of G, we obtain a chain
of type (—=*(=—")—*)" in G. It contains a subchain of type (—*=")".

Theorem 5. Let G be a bi-colored graph with no r-cycle. Then, for n greater
than the number of nodes of G, the graph G has no chain of the form (—*=)".

Proof. Let s be the number of nodes of G. Let n be greater or equal to s, n > s.
Suppose that G has a chain of the form zy -* =2y -* = -+ =" =z, If all the
x; are different then the set {z¢,z1,...,z,} contains n+1 > s nodes of G. This
is not possible. So let 7 < j be such that x; = ;. The chain z; =*=--- =" =x;
is a r-cycle.

4.3 Counter-models vs. chains in bi-colored graphs

Lemma 1. Let S be an implicational sequent and Gs its associated bi-colored
graph. Let [] : Varg — [0,n) be a counter-model of S in LC,, and X1 — -+ —
Xk =Y a chain in Gs. Then [X;1] < --- < [Xi] < [Y] holds.

Proof. Let S = I' = A. As [-] is a counter-model, the relation [A] < |I']
holds. As X = Y € Gg, the formula Y D X}, is an element of A. So we deduce
[Y D Xi] < [A] < oo. Thus we obtain [Y] > [Xk] and [Xx] = [Y D Xi] <
[AT. Also X;—1 — Xi € Gs, s0 Xi_1 D Xj, belongs to I'. Thus [X;] < [A] <
| < [Xk—1 D Xi] holds. So it is necessary that [Xi_1] < [Xi] (because
otherwise, [X;_1 D Xi] = [X«] holds) and we deduce [Xy—1] < [X&] < [AT].
By descending induction on i for k — 1,k —2,...,2, we can prove that [X;_1] <
[X:] < TA]

Theorem 6. For n < oo, the implicational sequent S has a counter-model in
LC,, if and only if its associated graph Gs contains no chain of type (—*=>)"*1,

Proof. Let S = I' F A. First we prove the if part. We suppose that Gs contains
no chain of the form (—*=>)"*1. Then by theorem 4, there exists a bi-height
function h : Gs — [0,n]. We define the semantic function [-] : Vare — [0,n) by
[X] = (X) if h(X) < n and [X] = o0 if h(X) = n if X occurs in S (i.e. is
a node of Gg,) and [X] = oo (or any other value) when X does not occur in
S. Now, let us prove that [-] is a counter-model of S. Indeed, if X DY € I
then X —Y € Gs and then h(X) < h(Y). It follows that [X] < [Y] and so
[XDY] = co. We have |[I'| = co. f X DY € A then Y = X € Gs. Thus
h(Y) < h(X) and [X D Y] = [Y] = h(Y) < h(X) < n. [X D Y] < n—1
holds and so [A] < n —1 holds. Finally, [A] < n—1< oo = |I] so []is a
counter-model of S.

Now we prove the only if part of the theorem. Let [-] : Vare — [0,n) be
a counter-model of S. Suppose there is a chain of the form (—*=)""! in Gs:
Xo ==X " =X, w5 = ==X, = =X, 4. So for any 4, there is a
chain X; —* =X, and by lemma 1, we obtain [X;] < [X;11]. Then, [Xo] <
[X:1] < -+ < [Xn41] is a strictly increasing sequence of n 4+ 2 elements in [0, n).
As this set has n + 1 elements, we get a contradiction.

Theorem 7. An implicational sequent S has a counter-model in LC if and only
if its associated graph Gs has no r-cycle.

Proof. For the if part, if Gs has no r-cycle, by theorem 3, there is a height
h : Gs—N. We define [X] € NU{oo} by [X] = h(X) and obtain a counter-model
of § in LC. For the only if part, the existence of a chain X »*=—*=...>*=X
would lead to [X] < [X] by the same argument as before.

4.4 Algebraic criteria and the limit counter-model

We have seen that the existence of counter-models of implicational sequents is
equivalent to the lack of r-cycles in the associated bi-colored graphs. Now we
present an algebraic formula that expresses the existence of r-cycles. Let G be a
bi-colored graph of k£ nodes with its incidence relations — and =-. The relation
— (or =) can be viewed as an incidence k x k-matriz whose rows and columns
are indexed by the nodes of G. The cells of these matrices take their value in the
boolean algebra {0,1}. So there is a 1 at cell (x,y) in the matrix of — if and
only if x — y € G. We define + as the disjunction (or logical “or”) and - as the
conjunction (or logical “and”) in the boolean algebra {0,1}. These operations
extend naturally to sum and multiplication of square boolean matrices.

Now if we identify the relations — and = with their respective matrices,
the composed relation —=- has a corresponding matrix — - = and the union
of relations — and = has a corresponding matrix — + =>. The relation —*
corresponds to a matrix Y50 —". So ((— + =)*=)s. = 1 means that there
exists a chain of the form z(— 4+ =)* = x in the graph G. Let tr(-) denote the
trace of matrices defined by tr(M) =" M, ,.

Proposition 3. G has a r-cycle if and only if tr((— + =)*=) = 1.

In section 6, we will explain how to compute this trace efficiently. We conclude
this section by a criterion to determine the minimal n for which a given sequent
S has a counter-model in LC,. Let Y M denote the sum of all the elements of
the matrix M defined by > M =37, M.,

Proposition 4. Let S be an implicational sequent not valid in LC. There exists
a minimal n such that S has a counter-model in LC,, and it is the first n s.t.

S(—r=)m =0,

Proof. By theorem 6, S has a counter-model in LC,,, iff Gs has no chain of the
form (—*=)"*L1. Having no chain of the form (—*=)""! means the matrix of

Table 1. Proof rules and bi-colored graph construction

DX DX sFAw X5 DXiph A A~ A

Pad| 7 \

(X NXG) DX 5 F A

XL D XE Xh o XF A, At

[D4] VARN
F,XXABD(XX/\XE)}_AI) A+ B+

T,X5 DXy Xy D X5 pt A v
— [>s] /N
I (X5 V) D Xiypt A

A~ B~
DXL, s DXIF A DLXT, 5 DX A o4 ‘/w v+\/
3
XD (X vah) A, Pra— PR
NXg DX gt XD X5, 0D X5, 4 N I
: DODX 5k A - Wi
34 + — + —
I (X DX5) DXt A ATEB AT B
IXI 5 DXEEA DXL DXL A, - 3+\l ot
— 4
F’XZDBD(XA DX;)}_AIJ A~ Bt A-— Bt

this relation is the zero matrix, i.e. > (—*=)""! = 0. As S is not valid in LC, by
theorem 7, its bi-colored graph Gs has no r-cycle. Then, there is an n such that
Gs has no chain of the form (—*=-)" by theorem 5. So there exists a minimal
one.

5 Parallel counter-model search

Combining the results of the preceding sections provides an algorithm to decide
LC,, by indexation followed by proof-search to obtain a set of irreducible sequents
(which are implicational sequents in our setting) and then counter-model con-
struction for these irreducible sequents. This combination of proof-search and
counter-model construction can now be viewed in a common graph-theoretic
setting that will lead us to efficient parallel counter-model construction. First
we present a graph-theoretic approach for proof-search. Then we combine proof-
search and counter-model construction into a r-cycle search problem on a con-
ditional bi-colored graph, i.e. a bi-colored graph where arrows might be indexed
with boolean selectors. In section 6, we present a global technique which effi-
ciently solves the conditional r-cycle search problem.

5.1 Proof-search as bi-colored graph construction

Let us fix a particular formula D. Using the results of section 3.1, D is indexed
into an equivalent flat sequent 6~ (D)F$D X, .3 Then, let us study the formulae
occurring in §~ (D).

From the definition of § (see section 3.1), there is exactly one formula in
0~ (D) for each occurrence of a subformula of D:

— if V is a variable occurring positively (resp. negatively), the formula in 6~ (D)
is X;f DV (resp. V D X,) which is already an atomic implication which will
not be decomposed further during proof search;

— if AA B occurs positively, X5, 5 D (X1 A XZ) will appear in 6~ (D) and
could be decomposed once using rule [D5];

— if A D B occurs negatively, (X D X5) D X, p will appear in 6~ (D) and
could be decomposed once using rule [Dy].

and so on... There is exactly one logical rule for each case: [Do] for A™, [D4] for
AT, [D3] for v, [D4] for VT, [D4] for D7, and [D}] for DT. The left column of
table 1 presents all these cases.

What are the atomic implications occurring in the sequents RN
generated by a full proof-search from starting 6~ (D)F$ D X5 7 / 0

Some appear already at the beginning like the formulae XJ oV

or VDO A&, for V occurrence of a variable of D and are not

changed by proof rules. Also ¢ D X', appears at the beginning

and is not changed by proof rules. So in the corresponding bi- x5 Ay
colored graph, there are arrows X{," =V, V=4, and X = . \, /\
The situation is summarized at the right hand side.

The other atomic implications are generated by the decompositions of formu-
lae Xagp D (X4 ®Xp) and (X4 ® Xp) D Xagp occurring during backward proof
rules application. As an example, we consider the case of a negative occurrence
of AD B. Then (X D X5) DX, occurs in 6~ (D) and the corresponding rule
will be

X DX g F X DX, 0D X, L, OD X gt
(XD X)) DX gk

[D4]

Let us consider a completed proof-search branch ending with an implicational
sequent. Its associated graph either contains Xz — X, 5, Xp :xXX and X5 =<
if we choose the left premise of rule [D4] or & — X, 5 if we choose the right
premise. This could be summarized by the two following arrow introduction
rules:
o~ & DT <O
WA (exclusive) or
At <—=B~ AT B~

The complete set of arrow introduction rules is given in the right column of
table 1. With this set of rules, each internal occurrence of a subformula introduces

3 For the sake of completeness, we recall the polarity of occurrences of subformulae
by suffixing their indexes like in X;F or A, .

arrows in the bi-colored graph, depending on the choice of the left premise or
right premise for the cases A=, V¥, D7, and D7 . Since rules AT and V™ only have
one premise, there is no choice in these cases and proof-search does not branch.
So the end-sequent of a completed proof-search branch and its corresponding
bi-colored graph is characterized by a choice of left or right premise for internal
nodes of the shape A=, VT, D7, and DT. The reader is reminded that the
proof rules implied in proof-search are all strongly invertible and so the order
of application of those rules does not influence the validity of the generated
sequents: all the rules are permutable. Let us illustrate these ideas on a concrete
example.

5.2 An example: the Peirce’s formula

D = ((ADB)D>A)DAis the Peirce’s
formula. We index it:

((Af o5 Bg) of Af) D5 Ay

The decomposition tree of this formula
has three internal nodes Dy, D] and
D5 . The leaves of the decomposition
tree introduce the arrows AT — A, Af —
A, A — A; and B — By in the bi-
colored graph. And of course, there is
also the arrow D; = ¢ corresponding
to...FO DAL,

Then we choose one proof-search
branch: left premise for Dy and D; and
right premise for D7 . We obtain the bi-
colored graph presented on the rhs. We
explain the remaining arrows: the left
premise for Dy (rule [D4]) introduces
Ay — Dy, Ay = D and A; = ¢; the
right premise for D) (rule [D/]) intro-
duces D3 —AJ; the left premise for D3 (rule [D4]) introduces B —D3 , By = AF
and Bg = $.

This graph is the bi-colored graph associated with the implicational end-
sequent of the proof-search branch characterized by the choice: left for D; and
D5 and right for D . To decide if this sequent is valid in LC, we look for r-cycles.
For this, we redesign the graph so that — arrows are horizontal or go up and =
go up strictly. It appears that this graph has a bi-height h defined by h(z) = 0 for
x € {B,6,3,4}, h(z) =1 for z € {5, A4,2,0} and h(z) = 2 for z € {<{,1}. Then
[] defined by [A]] = 1 and [B] = 0 is a counter-model of the Peirce’s formula
since then [((ADB)DA)DA] = ((1—-0)—1)—1 = (0—1)—1 =c0—+1 =1 < .
[[] is a counter-model of Peirce’s formula not only in LC but also in LCy (just
under CL = LC,.)

5.3 Postponing proof-search branch selection

Our system has a very important property that the others lack: proof-search
can be seen as the incremental construction of a semantic graph. The nodes of
this graph do not depend on the proof-search branch; only the choices of arrows
depend on the branch chosen. In section 5.2, we have chosen a “good” proof-
search branch from which we can extract a counter-model. There are many other
branches that lead to other bi-colored graphs which might also lack r-cycles,
leading to other counter-models. Clearly, a proof-search branch lacking r-cycles
corresponds to a counter-model. Is it possible to find all the counter-models and
thus, all such branches? An idea for that is to postpone the choice of premises
characterizing proof-search branches, to detect r-cycles and after that, to select
the branches for which no r-cycle exists.

Instead of using either left or right premise, let us use both. Of course this
would not be sound unless we keep track of the fact that these two choices cannot
coexist in the same branch. This is done by introducing boolean selectors (and
its negation T) and indexing arrows with those selectors. For example, we obtain
the following transformation of rules for a positive occurrence of disjunction:

vt vt v+t
/

/ \ — F
B

At Bt At Bt At

Let us reconsider the case of the
Peirce’s formula. We apply all the pos-
sible rules, postponing all the choices
between left or right premises and in-
troducing a new boolean selector for
each potential choice. All three rules
have two premises and we introduce
the selectors zp for D, x; for Df
and 3 for D3 . The corresponding in-
dexed bi-colored graph is represented
at the right. The reader might notice
that the graph of section 5.2 is just
an instance of this graph with z¢ = 1,
r1 =0and z3 = 1.

We want to discover all the pos-
sible valuations of selectors such that
the corresponding instance graph has
no r-cycle. For example, 0= —01is (0= <0 —0 Zo
a r-cycle. To “break” this cycle, the |0= ¢—=3—-4—-A4-2-0 T3 + o1+ To
constraint To = 0 has to be satisfied, 220 -3 _): —A—2 To + s T
i.e. g has to be satisfied. Let us do 2=lodmAm2 o + T
this for all the basic r-cycles, i.e. the r-cycles that do not repeat nodes. It is
sufficient to “break” basic r-cycles for all the r-cycles to be removed because any
r-cycle contains at least one basic r-cycle.

D= <

A \Van o<z O
A K xooA
Foox /\ ,\ &
A~ B~ A~ B~ At <z=p-—
- At vt ot
vt |7
N/ -
\%

\
v
f ~
el

x
s
At Bt At Bt A -z Bt

Fig. 2. Counter-model search system for LC,,

Let us look for basic r-cycles: no r-cycle passes through B so we can remove
it from the graph. Then no r-cycle passes through By . Then no r-cycle passes
through A;r. Then, we obtain four basic r-cycles and their associated constraints
expressing the condition at which the corresponding r-cycle is broken: zq, x3 +
1 + Tg, Tg + T3 + =1 and Tg + T1.

Then we solve these constraints altogether, i.e. we search a valuation satisfy-
ing the conjunction of all these constraints. There is only one solution which is
x9 =1, 21 = 0 and x3 = 1, corresponding to the branch characterized by left for
D, and D3 and right for D . This is the proof-search branch we have chosen in
section 5.2. With any other valuation, one of the four basic r-cycles would exist,
and so, it is the only one for which the instanced bi-colored graph has no r-cycle.

5.4 A parallel counter-model search system for LC,,

We introduce our final counter-model search system which is a combination of
the graphical system of table 1 and the idea of postponing choice of left or right
premise with the help of boolean selectors. The word parallel means that all the
search branches are explored simultaneously with the help of selectors.

The system is presented in figure 2. The principle is to build a conditional
bi-colored graph (where arrows might be indexed by boolean selectors,) notion
which formalizes the concept we sketched in section 5.3. We fix a formula D.
We start from the nodes of the decomposition tree of D composed of internal
nodes (X {5 or X o) and leaves (X} or X},). We add one new node for each
variable V occurring in D.* We also add one node for <». Then, we add the arrow
D~ = { (D™ is the root of the decomposition tree) and arrows V™ — V (resp.
V' — V™) for each positive (resp. negative) occurrence of the variable V. This is
summarized by the left side of figure 2. All these arrows are not annotated: they
are present in every proof-search branch, i.e. for any valuation on selectors.

Then for each internal node, we add arrows according to the schemes of the
right part of figure 2. There is one scheme for each case in {A, Vv, D} x {4, —}. For
the schemes A=, V*, D% and D, we introduce conditional arrows, i.e arrows
indexed with a boolean selector of the form x or Z. This selector has to be

4 For a variable V occurring in D, there are some nodes X} (vesp. Xy,) where V is a
positive (resp. negative) occurrence in D, and one node for the variable V.

new: there is exactly one selector for each instance of a scheme.® Each scheme
introduces two or four arrows so the construction of the conditional bi-colored
graph is a process which take linear time w.r.t. the size of D.

Theorem 8. Let D be a formula and G be the corresponding conditional bi-
colored graph obtained by the previously described process. Then D has a counter
model in LC if and only if there exists a valuation v on the selectors such that
the instance graph G, has no r-cycle.

Proof. Because all the proof rules are strongly invertible, [-] is a counter-model
of D if and only if it is a counter-model of at least one of the irreducible (and
implicational) end-sequent of a completed proof-search branch. This end-sequent
is characterized by a choice of left or right premises and it corresponds to a choice
of a valuation on selectors.

By theorem 7, the end-sequent of a proof-search branch has a counter-model
if and only if its associated bi-colored graph has no r-cycle. But this graph is
exactly the instance G, where v is the valuation on selectors corresponding to
the proof-search branch.

Theorem 9. D has a counter-model in LC,, iff there exists a valuation v on the
selectors such that the instance graph G, has no chain of the form (—*=-)"*1.

Proof. For LC,, with n # oo, we just have to apply theorem 6 instead of theo-
rem 7. The proof rules are common for all the family LC,, (including n = c0.)

Computing the conditional bi-colored graph from a given formula takes a
linear time but finding all the r-cycles in a graph and solving the boolean con-
straints system have both exponential complexity. Indeed, there exists formulae
for which the conditional bi-colored graph has exponentially many cycles. So on
the complexity side, finding cycles and then building a constraint system is not
a good idea.

An approach to solve this problem would be to try to mix r-cycle detection
and boolean constraint solving to obtain a kind of conditional r-cycle detection
but this is not an easy task. After reflection, we can observe that we do not need
the list of all the r-cycles to decide a formula: we only need to compute and solve
the boolean condition characterizing the existence of r-cycles.

6 Practical r-cycle detection in conditional graphs

In section 5.4, we have introduced the notion of conditional bi-colored graph
which is a graph in which arrows might be indexed with boolean constraints. To
implement conditional graphs, we have chosen to represent the relations — and
= as generalized incidence matrices. In an incidence matrix, there is a 1 in a
cell if the corresponding arrow exists in the graph. Generalized incidence matrix

5 For example, the selector could be indexed with the root node of the corresponding
scheme instance to ensure uniqueness.

cells might contain not only 0 or 1 (for unconditional arrows) but also arbitrary
boolean expressions built upon atomic boolean selectors. These expressions are
considered up to boolean equivalence.

Definition 6 (Conditional matrix). A conditional matrix on set S of size k
18 a k X k-array with values in the free boolean algebra over the set of selectors.

We point out that boolean expressions are considered up to logical equiv-
alence. So a conditional bi-colored graph is viewed as a pair (—,=) of condi-
tional matrices. The algebraic operations we have defined like — + =, — - =,
—*, tr(-) and > () extend naturally to conditional matrices because they rely
only on the boolean operators - and +. If v is a valuation of boolean variables
in {0,1}, we call an instance graph and denote by G, the bi-colored graph ob-
tained by instantiating boolean expressions in the cells of the matrices — and
= with the valuation v. Instantiation commutes with algebraic operations on
matrices because it commutes with the boolean operators - and +. For example
[= + =] = =0 + =0

Theorem 10. Let G = (—,=) be a conditional bi-colored graph. There exists a
r-cycle in every instance G, of G if and only if tr((—> + :>)*:>) =1 holds.

The proof is straightforward: [tr((—> + :>)*:>)]U = tr((—>v + év)*:m}) and
then theorem 8. The reader is reminded that the equation tr((—+=)*=) = 1 is
an equivalence of boolean expressions. The result for the finitary version LC,, also
holds. To compute the smallest n such that a formula is not valid, we compute
sequentially until > (—*=-)""1 < 1 and then, find a valuation v such that the
instance is refuted: > (—*=,)" ! = 0.

We have implemented a prototype of counter-model search engine for LC
based on these principles in Objective Caml.® We give a brief description of
the practical choices we have made. A k X k conditional matrix is represented
by a sparse matrix of integers. These integers represent nodes of a shared RO-
BDD [5] so they uniquely encode boolean expressions up to equivalence and
algebraic operations may be performed efficiently. How can we compute traces
efficiently? Let « be a k x k conditional matrix. Let I be the identity & X k matrix
(I » = 1 and I, = 0 otherwise.) Then one could check that a* = (I +a)* (this
is because any conditional path of size greater than k41 necessarily has repeating
points and thus contains a sub-path of size smaller than k.) It is even sufficient
to compute the sequence I, I +a, (I +«)?,... until it stabilizes. This happens in
at most k steps. So let A = — + = and B = =. We want to compute tr(A*B).
We compute the trace column by column. Let B; be the i-th column of B and

T be the column with 1 on each cell. Then we compute the sequence t, ..., tg:
to =0and t; = [A*(ti_lT + B7)L fori = 1,...,k by induction and we obtain
ty = tr(A*B). The sequence to,...,t; is increasing and the computation can

be stopped as soon as t; = 1 in which case, the formula is provable. Previously
generated constraints are used to accelerate the computation by adding ¢;,_1 to
each cell of B; (in t;_1T + B;).

5 Tt will be available shortly at http://www.loria.fr/~larchey/LC.

7 Conclusion

Compared to the work initiated by Avron [2,3] that focuses mainly on proof-
search and even logic programming [13], we develop the idea of mixing proof-
search and counter-model construction. Then, we propose a new system for
counter-model search in LC and LC,, mainly based on the notion of r-cycles
in conditional graphs, and thus an efficient algorithm to decide these logics and
provide counter-models. In further work, we will deeper investigate the rela-
tionships between the notion of r-cycle and the G-cycles of [3] and analyze if
our conditional graphs also fit in the hyper-sequent setting. We will also in-
vestigate the relationships between our parallel counter-model search and other
approaches based for example on parallel dialogue games [4,9].

References

[1] Alessendro Avellone, Mauro Ferrari, and Pierangelo Miglioli. Duplication-Free
Tableau Calculi and Related Cut-Free Sequent Calculi for the Interpolable Propo-
sitional Intermediate Logics. Logic Journal of the IGPL, 7(4):447-480, 1999.

[2] Arnon Avron. A Tableau System for Godel-Dummett Logic Based on a Hyper-
sequent Calculus. In TABLEAUX 2000, volume 1847 of LNAI, pages 98-111,
2000.

[3] Arnon Avron and Beata Konikowska. Decomposition Proof Systems for Godel-
Dummett Logics. Studia Logica, 69(2):197-219, 2001.

[4] Matthias Baaz and Christian Fermiiller. Analytic Calculi for Projective Logics.
In TABLEAUX’99, volume 1617 of LNCS, pages 3650, 1999.

[5] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, 1986.

[6] Michael Dummett. A Propositional Calculus with a Denumerable matrix. Journal
of Symbolic Logic, 24:96-107, 1959.

[7] Roy Dyckhoff. Contraction-free Sequent Calculi for Intuitionistic Logic. Journal
of Symbolic Logic, 57(3):795-807, 1992.

[8] Roy Dyckhoff. A Deterministic Terminating Sequent Calculus for Gédel-Dummett
logic. Logical Journal of the IGPL, 7:319-326, 1999.

[9] Christian Fermiiller. Parallel Dialogue Games and Hypersequents for Intermediate
Logics. In TABLEAUX 2003, volume 2796 of LNAI, pages 48-64, 2003.

[10] Kurt Godel. Zum intuitionistischen Aussagenkalkiil. In Anzeiger Akademie des
Wissenschaften Wien, volume 69, pages 65—-66. 1932.

[11] Petr Hajek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998.

[12] Dominique Larchey-Wendling. Combining Proof-Search and Counter-Model Con-
struction for Deciding Gédel-Dummett Logic. In CADE-18, volume 2392 of LNAI,
pages 94-110, 2002.

[13] George Metcalfe, Nicolas Olivetti, and Dov Gabbay. Goal-Directed Calculi for
Godel-Dummett Logics. In CSL, volume 2803 of LNCS, pages 413-426, 2003.

A Proofs of theorems of section 3

Theorem 1. In LC,,, D is valid if and only if 6= (D) & D Xp is valid.

Proof. First of all, it is clear that the sequent 6~ (D) F $ D Xp is flat. Then we
prove that if 6~ (D) F { D Xp is valid then so is D.

Let [-] : Var — [0,n) be an interpretation. As the X are new variables not
occurring in D, we can define [-]' : Varg — [0,n) by [V]' = [V] for V occurring
in D, [Xk] = [K] for K occurrence of a subformula of D and [¢] = oc.
Obviously, [K]" = [K] holds for any subformula K of D (because [-]" and []
match on the variables occurring in D, and thus in K.) Then, as 6~ (D)FODXp is
valid in LC,,, we deduce |6~ (D)|" < [¢DXp]’. By proposition 2, |§~(D)|" = oo
holds. Also [$DXp] = [AXp]’ = [D] holds. We deduce the inequality oo < [D].
As this last inequality holds in any interpretation [-], D is valid in LC,,.

Then we prove that any counter-model of 6~ (D) F { D Xp is also a counter-
model of D. Let [-] be a counter-model of §~ (D) F & D Xp in LC,,. Then [{ D
Xp] < [0 (D)] holds and consequently [¢ D Xp] < oo. So [¢] > [Xp] and
[Xp] = [¢ 2 Xp] < [0~ (D)] holds. By proposition 1, |6~ (D)] A [D] < [Xp]
holds. So if we suppose [D] = co then |6 (D)] < [Xp] holds which is absurd.
Thus, the inequality [D] < oo holds and [-] is a counter-model of D.

Proposition 5. Let Ay be a b-context and [[-] an interpretation of variables in
[0,n) such that [Ap] < oo holds. Then [Ap] < [¢] holds too.

Proof. As Ay is composed of implications and is not empty, there exists AD B €
Ay such that [A,] =[ADB]. Also $ DB € Ay. Thus [¢$ DB < [ADB] < o
holds. We deduce [A D B] = [B] and [{] > [B]- Thus [As]] = [AD B] =
[B] <[] holds.

Theorem 2. The following rule is sound and strongly invertible in LC,,:

I'BODCHFADB, DB, 4, INooCk A
I''(ADB)DCH A4,

[D4] Ay is a b-context

Proof. First of all, with the side condition, it is clear that this rule preserves
b-contexts (on the right hand side of the F sign) bottom-up. We first prove
soundness. So suppose that both premises sequents are valid in LC,,. Let [-] :
Varg — [0,n) be an interpretation of variables. We have to prove

I AT(ADB)DC) < [A] (1)

Let us consider two trivial cases:

— if | I']] < [As], it is clear that property (1) holds.

— if [¢] < [ADB] then [((ADB)DC] < [¢DC] and thus |[I'| A[(ADB)D
Cl< I A[ODC] < [[Ap] holds because the right premise of rule [Dy4] is
valid. So property (1) holds.

So we are left in the case where [A,] < | I'] and [A D B] < [¢] both hold.
We can deduce [A,] < oo and thus [A,] < [¢] by proposition 5. Since the
right premise is valid, we obtain | I'| A [{ D C] < [Ap] from which we deduce
[ODC] <A <0.50 [CT=[CDC] < [A].

From [A D B] < [¢] we deduce [A D> B = [¢ D B] = [B] < [¢]- Since
the first premise is valid, we obtain |I'| A[BDC] < [B] V [[As]. Now suppose
that [B] < [C] then [BDC] =cc and || = [LIA[BDC] < [B]V[A] <
[CIVTALT < [Ab] (because [C] < [[Ap] holds.) This is absurd. So the property
[C] < [B] necessarily holds. Then [(ADB)>C] =[B>C]=[C]=[¢>C].
We conclude by |[I'| A[(ADB)DC] < | A[ODC] < [Ap] since the right
premise of rule [Dy4] is valid. Hence, property (1) holds.

Now we prove that rule [Dy4] is strongly invertible. Let -] be a counter model
of the left premise. It satisfies the inequality

[ADB]V[¢CDB]V[A] < |LIA[BDC]

So [ADB] < oo holds and then [ADB] = [B] < [4]. We deduce [(ADB)DC] =
[BD>C] and then [Ap] < [T A[BDC] = |I,(ADB)D>C| so [-] is a counter-
model of the conclusion of rule [D4]. Finally let [-] be a counter-model of the
right premise. If satisfies the inequality

TAT < [A DC]

so [A,] < oo and thus [A,] < [¢] by proposition 5. Also [A4,] < [¢ D C].
So necessarily, [Ap] < [C]. Finally [Ay]| < [C] <K [(ADB)DC] < |I,(AD
B) D C| and so [-] is a counter-model of the conclusion of rule [Dy4].

