STRIP: Structural sharing for efficient
proof-search

D. Larchey-Wendling and D. Méry and D. Galmiche

LORIA UMR 7503 - Université Henri Poincaré
Campus Scientifique, BP 239 Vandceuvre-les-Nancy, France

Abstract. The STRIP system is a theorem prover for intuitionistic
propositional logic with two main characteristics: it deals with the du-
plication of formulae during proof-search from a fine and explicit man-
agement of formulae (as resources) based on a structural sharing and it
builds, for a given formula, either a proof or a countermodel.

1 Introduction

In recent years there was a renewed interest in proof-search for constructive log-
ics like intuitionistic logic (IL), mainly because of research in intuitionistic type
theories and their relationships with programming through proof-search. Dif-
ferents methods (based on resolution, connections, translation in classical logic,
constraints calculus) and implementations have been already designed for IL but
our aim in this work is to focus on two main problems: to avoid the duplication
of formulae during proof-search and to efficiently build countermodels in case of
non-provability. Firstly, we consider the propositional fragment of IL (IPL) but
our main goal is to define structural solutions general enough to be applicable
to other substructural or intermediate logics [1]. A good and efficient explicit
management of formulae (as resources), both in the logical system and in the
implementation, is important to have reliable and efficient implementation tech-
niques of logical calculi (and connected proof-search methods), for instance in
imperative programming languages like C or Java. We have already studied this
point in [3] for the contraction-free sequent calculus LJT [2] for which there are
refinements in order to solve the duplication problem [1,2,5]. The STRIP system,
available at http://www.loria.fr/"larchey/STRIP decides the provability of
a given IPL sequent and then builds a proof or a countermodel (as a Kripke
tree). It is based on a new logical system, named SLJ [4] and on a structural
solution of the duplication problem (without the introduction of new formulae
and variables like in [2,5]). In order to illustrate and emphasize the interest and
the results of structural sharing and its implementation we have compared, from
various IPL formulae, the STRIP system with Porgi', a similar prover for IPL
written in SML, and then with the ft? system that is not based on LJT but is
written in C like our system.

! available at http://www.cis.ksu.edu/ allen/porgi.html
2 available at http://www.sics.se/isl/ft.html

rA[Bl-cr[B] .. rA-[clB—[c]ra
- [(—=)—] [(V)=]
(A= B)—-CFG I''(AvB)—-CFG

Fig. 1. Rules and duplication

2 Formulae duplication and sharing

In LJT [2], two kinds of formulae duplication appear even though the system
is contraction-free: these are illustrated in the rules of figure 1. Let us give a
brief overview of the results and techniques presented in [4]. The duplication on
the lhs is treated as in [5], introducing a mark and a so-called bozed sequent:
I A, B* — C B with the intended meaning of I'; A, B — C + B.

The duplication on the rhs is addressed on a struc-

tural way. Whereas the lhs part of a sequent is usu- (AvB)—C|A—-C B—C
ally considered to be a flat list a formulae, we use

a list of trees, i.e. a formulae-indexed forest. Thus, A \I/ B 1{}
the sequents are represented by specific trees in
which formulae are paths from roots to leaves and Fig. 2. Logical rule

logical operations are operations on the tree leaves.

The problem of duplication is then a problem of structural sharing in such trees.
Similar ideas can be applied to a refutability system in order to generate counter-
models in case of non-provability [6]. By such an approach, there is no formulae
duplication anymore: each subformula is used at most once in a proof-search
branch. During proof-search the structure of the forest changes but not its size.
The STRIP system, that provides proofs or countermodels for IPL formulae, is
based on structural sharing techniques with the following results: no dynamic
memory allocation, a finer control on the resources and a O(nlogn)-space algo-
rithm for provability [4].

3 Structures and strategies

The formulae-indexed forest data structure has to be implemented in such a way
that the administrative, logical operations, and those related to strategies take
the less time possible. The leaves are chained into a list to provide fast access to
active formulae (which are those indexing leaves). The STRIP system includes
two different implementations of this structure depending on the way to deal with
the operations of cutting or pasting subtrees. In the first one, called lrmost, one
memorizes for each node the indexes of the leftmost and rightmost leaves under
this node. In the second one, called index-scope, one computes for each node
its scope that is the greatest index among the indexes that could potentially be
under the current node. Moreover the system proposes two proof-search methods
(or strategies for the choice of the leaf to develop at each step). The strategy,
called first-leaf, chooses the first active leaf from a left-to-right search in the set
of leaves. The strategy, called rule-prec, also considers such a left-to-right search

(A= (BV(B—) —C)—C

(((AANB)vVC)—(CV(CAD))—(-AV((AV B)—C(C))

(A BVA—CVB~C)—-(AANBAC))—(AANBAC)

13 —-—=((wnA— B)— (~A— -B)— A)

14 (=(A—(BVC) = (BVC)— A

15 —-—AV (A — BV (B — a=C VvV (C — (‘V‘!D — D) VDV ‘!‘\D)))

20 ((G—=A)—J)—-D—E)—(((H—-B)—I1)—C—1J)
—((F—-A)—B)—1I)—E

21 (A B) s O) s (A s (B o> O))

22 ((‘!‘\(‘\A \% “B) — (ﬁA \% “B)) — (‘\ﬁ(‘!A VvV aB) Vv ‘!(‘\A \% ‘\B)))
—>(ﬁ‘\(‘|A\/‘|B)\/‘|(‘\A\/‘\B))

24 Pigeonhole 2-3

25 Pigeonhole 3-4

00~ Ok

Time in 10~ T seconds Number of operations

p/u[Tporgi | T Th Tp, Te [SSa SS.p[SCh SCE SCT, SCH

4| p 0.220| 0.280 0.170 0.290 0.210 9 9 71 41 76 46

6| u 0.480| 0.390 0.270 0.290 0.230| 14 9| 104 76 87 71

7l u 0.540| 0.280 0.170 0.310 0.240f 11 11 82 48 93 59

8| u 1.240| 1.180 0.840 0.780 0.570| 42 24| 253 155 191 131

13| p 0.600| 0.570 0.460 0.470 0.340| 20 15| 133 81 124 75
14| p 0.420| 0.390 0.300 0.260 0.200| 13 9 99 55 69 44
15| u 0.910| 0.560 0.440 0.630 0.510f 26 26/ 158 117 190 149
20| p || 10.500(16.880 13.700 2.720 2.220| 573 69| 4253 3129 900 757
21| p |/ 10.910| 3.680 2.820 3.500 2.650| 126 97| 723 463 918 680
22| u 3.500/15.980 12.660 8.930 7.130| 479 220| 4104 2935 2677 2157
24| p |[[21.570| 1.390 1.380 1.520 1.450| 100 99| 452 424 586 560
25| p [|225300(26.310 25.550 32.860 31.850(2248 223810432 10180 15488 15256

Fig. 3. Comparison : STRIP vs Porgi

but the set of leaves is split in different groups having different priorities and
then it selects the first active leaf in the group with the highest priority. With the
rule-prec strategy one always builds a countermodel in case of non-provability
because the invertible rules are applied before the non-invertible rules.

4 Results and comparisons

For a given sequent, STRIP can decide its provability and then build a proof
or a countermodel (as a Kripke tree). The user can select the forest implemen-
tation (1rmost or index-scope) and the strategy (first-leaf or rule-prec).
The system provides various statistics about the search like the number of rules
applications (in order to evaluate the efficiency of strategies) or the number
of performed operations (in order to determine if the forest implementation in-
duces a huge overhead). We have compared the STRIP system with two provers,
namely Porgi [8] and ft [7].

Porgi is a proof-or-refutation generator, written in SML, that is based on LJT
with a strategy closed to the rule-prec strategy. It has a very simple lexical
analyzer and thus we have only been able to test it with small formulae.

Some comparisons between Porgi and STRIP are given in figure 3 with formulae
that are provable (p) or unprovable (u). The left part of the table presents exe-
cution times for both systems (T3 in seconds for 10% loops CPU time only). The

[Dom.[Size] __STRIP | ft [fi/STRIP |
l ~—Va(p(x) V ~p()) l

7| 257 1.5ms 0.41s 270
8| 291 3.1ms 2.64s 850
9| 325 6.4 ms 26.50s 4100
10| 359 12.8 ms 6m28s 30000
21| 733 31s
22| 767 62s
23| 801 1mb50s

A =3z(p(x) AVy(q(y) — r(z,v))
—=(AA B — C) where B = —3z(q(z) AVy(p(y) — r(z,y)))
C = Ja(p(z) A ~q(x))

4[1254 8.4 ms 130 ms 15
5[1870 90.0 ms 4.62s 50
62610 1.53s 4m19s 170
7(3474 29.5s + 1h20m
8|4462 11m26s
[ﬂ—\[ﬂﬂszflzp(x,y,z) — VxIyVz ﬂp(w,y,z)}]
2| 495 0.42ms 10 ms 24
3|1597 13.6 ms + 9h + 108
413743 1.07s
[Pigeonhole z-y]
5-6[1788 2.23s 0.33s 0.14
6-72918 64s 16s 0.25
7-8(4446 32md4s 19m27s 0.60

Fig. 4. Comparison : STRIP vs ft

exponent ‘I’ (resp. ‘is’) corresponds to the lrmost (resp. index-scope) imple-
mentation of the forest. The suffix ‘flI’ (resp ‘rp’) corresponds to the first-leaf
(resp. rule-prec) strategy. The right part presents measures of the space size
and search costs for STRIP proof-search. The expressions SS, and SCj respec-
tively represent the number of logical rules applications and the total number of
operations during the proof-search.

The STRIP system is always more efficient with the rule-prec strategy, which
is almost the same as the one implemented in Porgi. Moreover, the difference is
significant for the pigeon-hole formulae. We can also compare the strategies.
In examples 20 and 22, we see that first-leaf is much less efficient than
rule-prec because of the size of the proof-search space and thus in this case
STRIP is slower than Porgi. The pigeon-hole examples illustrate the actual im-
pact of sharing techniques and that some tasks, like forest management, are
implemented much more efficiently in our system. From the SC statistics, i.e.
measures of the search cost, we observe that the index-scope implementation
of the forest is always better than the 1rmost one but that the difference does
not grow over factor 2, whichever strategy is chosen. However it is clear that
efficient management of formulae becomes crucial on larger scales.

The ft system is suited for first-order logic but has a propositional subsystem for
IPL. This system is not based on LJT and does not build countermodels but it
is written in C like STRIP. Some comparisons between STRIP and ft are given
in figure 4. In order to analyze the impact of sharing techniques on proof-search,

we have considered instances on finite domains of provable first-order formulae
and also pigeonhole examples. The Dom. column represents the size of the do-
main or the number of pigeons and the Size column represents the size of the
generated formulae®. We observe that, in general, STRIP is much faster than ft
for the first kind of examples. But for the pigeonhole examples both systems are
on par with a slight but decreasing advantage to ft. In fact they include very few
implications (—) and the structural sharing is such that left implication rules
may cut down the problems by large amounts. In this case, the choice of a light
strategy is important. We observe that with the rule-prec strategy, STRIP
spends 85 % of its computation time looking for the active formulae. With some
cyclic variants of first-leaf, we can cut-down this time to 65 % which is not
optimum but nevertheless better, thus being close to ft and even better on the
larger case (7-8). Anyway, we see that the greater the pigeon problem is, the
better STRIP behaves, compared to ft.

Further work will be devoted to other tests and comparisons but regarding our
positive results, our main goal is to apply or extend these implementation tech-
niques (forest representation, structural sharing, forest implementation) to other
substructural or intermediate logics [1] and thus to provide efficient provers that
build proofs or countermodels for such logics.

References

1. A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and related
cut-free sequent calculi for the interpolable propositional intermediate logics. Logic
Journal of the IGPL, 7(4):447-480, 1999.

2. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic, 57:795-807, 1992.

3. D. Galmiche and D. Larchey-Wendling. Formulae-as-resources management for an
intuitionistic theorem prover. In 5th Workshop on Logic, Language, Information
and Computation, WoLLIC’98, Sao Paulo, Brazil, July 1998.

4. D. Galmiche and D. Larchey-Wendling. Structural sharing and efficient proof-
search in propositional intuitionistic logic. In Asian Computing Science Conference,
ASIAN’99, LNCS 1742, pages 101-112, Phuket, Thailand, December 1999.

5. J. Hudelmaier. An O(n log n)-space decision procedure for intuitionistic proposi-
tional logic. Journal of Logic and Computation, 3(1):63-75, 1993.

6. L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic
propositional logic. In Behara and al., editors, Symposia Gaussiana, pages 225—232,
1995.

7. D. Sahlin, T. Franzén, and S. Haridi. An intuitionistic predicate logic theorem
prover. Journal of Logic and Computation, 2(5):619-656, 1993.

8. A. Stoughton. Porgi: a proof-or-refutation generator for intuitionistic propositional
logic. In CADE Workshop on Proof-search in Type-theoretic Languages, pages 109—
116, Rutgers University, New Brunswick, USA, 1996.

3 The Size grows in n? where p is the number of variables and n the size of the domain.
For the pigeonhole, the size grows in n®.

