
Solutions to the practice problems

The MPFR team

September 20, 2005

Note: in the original problems1, it is requested to get 10N digits according to the input
parameter N . To simplify the analysis, we assume here that we ask N digits, so instead of
taking values N = 2, 3, 4, . . ., the parameter N will be 100, 1000, 10000, . . .

Problem P01: Compute the first N decimal digits after the decimal point of
sin(sin(sin 1)), rounded toward zero. We have sin(sin(sin 1)) ≈ 0.678: the first N deci-
mal digits after the decimal point match the first N mantissa digits.

We use a target decimal precision N1 > N , and a binary precision p. We compute
x = ◦(sin 1), y = ◦(sin x), z = ◦(sin y), with all roundings to nearest. It is easy to see that
since p ≥ 3, we have 1/2 ≤ x, y, z < 1, thus all rounding errors are bounded by 2−p−1. We
can thus write x = sin 1 + εx with |εx| ≤ 2−p−1. It follows y = sin(sin 1 + εx) + εy with
|εy| ≤ 2−p−1; we can write sin(sin 1 + εx) = sin(sin 1) + εx cos θ, thus the absolute error on
y is bounded by |εx| + |εy| ≤ 2−p. Similarly, the error on z is bounded by 3 · 2−p−1. With
p ≥ 2 + N1

log 10
log 2

, we have 3 · 2−p−1 < 1/2 · 10−N1 .
Finally, we output the binary value z in decimal to N1 digits, with rounding to nearest.

Since 1/2 ≤ z < 1, the last digit has weight 10−N1 , thus the total error — including that on
z and the output error — is bounded by 10−N1 . Thus, unless the last N1 −N digits of the
output are all zero, we can decide the correct output to N digits, rounded toward zero.

Note: if the function sin(sin(sin x)) was D-finite, i.e. if it would satisfy a linear differential
equation with polynomial coefficients, then it would be possible to compute sin(sin(sin 1)) to
precision n in O(M(n) log n) using the “binary splitting” algorithm. Unfortunately, it does
not seem that sin(sin(sin x)) is D-finite.

Problem P02: Compute the first N decimal digits after the decimal point of
√

π.
We have

√
π ≈ 1.772, so we need to take the N + 1 first digits of the mantissa, and remove

the first digit, namely “1”.
Let x = ◦(π) and y =

√
x, with rounding to nearest and a precision of p bits. If we use

a precision of p bits, we have x = π(1 + u) and y =
√

x(1 + v) with |u|, |v| ≤ 2−p. Thus
y =
√

π
√

1 + u(1 + v). For p ≥ 2, it is easy to see that
√

1 + u(1 + v) can be written 1 + 2w
with |w| ≤ 2−p. Thus y =

√
π(1 + 2w), and the absolute error is bounded by 22−p.

1http://www.cs.ru.nl/~milad/manydigits/sample_questions.php

1

Assume we output M + 1 digits of the approximation y, with M ≥ N , with rounding to
nearest. The output rounding error will be at most 1

2
·10−M . If 22−p ≤ 1

2
·10−M , which holds

as soon as p ≥ 3 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the output.

Problem P03: Compute the first N decimal digits after the decimal point of sin e.
We have sin e ≈ 0.410: the first N decimal digits after the decimal point match the first N
mantissa digits.

Let x = ◦(exp 1) and y = ◦(sin x), with rounding to nearest and a precision of p bits. If
we use a precision of p bits, we have x = e(1 + u) and y = sin(x)(1 + v) with |u|, |v| ≤ 2−p.
Since sin x = sin(e + eu) = sin e + eu cos θ for some θ ∈ (e, e + eu), the absolute error on y
is bounded by |v|+ e|u| < 22−p.

We find the same bound than for P02, thus the end of the analysis is identical.

Problem P04: Compute the first N decimal digits after the decimal point of
exp(π

√
163). We have exp(π

√
163) ≈ 262537412640768743.999: we thus have to compute

N + 18 digits, and disregard the first 18.
We compute x = ◦(π), y = ◦(

√
163), z = ◦(xy), and t = ◦(ez), with all computations to

precision p and rounding to nearest.
We have x = π(1 + u), y =

√
163(1 + v), z = xy(1 + w), and t = ez(1 + s), with

|u|, |v|, |w|, |s| ≤ 2−p. We can thus write z = π
√

163(1 + θ)3 with |θ| ≤ 2−p. We have
|(1 + θ)3 − 1| = |3θ + 3θ2 + θ3| ≤ 3|θ|+ 4θ2 ≤ 4|θ| for p ≥ 2. The relative error on z is thus
bounded by 22−p. We can write z = π

√
163 + h with |h| ≤ π

√
16322−p ≤ 41 · 22−p. Then

ez = eπ
√

163 · eh. For p ≥ 8, we have |h| ≤ 1, thus |eh − 1| ≤ 2|h|. The relative error on ez is
thus bounded by 41 · 23−p, which since ez < 258 corresponds to a maximal absolute error of
41 · 261−p. We must add the final rounding error, which is bounded by 257−p. This gives a
final error less than 266−p.

Assume we output M + 18 digits of the approximation t, with M ≥ N , and rounding
to nearest. The output rounding error will be at most 1

2
· 10−M . If 266−p ≤ 1

2
· 10−M , which

holds as soon as p ≥ 67 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the
output.

Problem P05: Compute the first N decimal digits after the decimal point of
exp(exp(exp 1)). We have exp(exp(exp 1)) ≈ 3814279.104, we thus have to compute N + 7
digits, and disregard the first 7.

We compute x = ◦(exp 1), y = ◦(exp x), z = ◦(exp y), with all computations to precision
p and rounding to nearest.

We have x = e(1 + u), y = ex(1 + v), z = ey(1 + w), with |u|, |v|, |w| ≤ 2−p. We use the
following lemma: for |h| ≤ 1, |eh − 1| ≤ 2|h|. For p ≥ 2, we can use the lemma for h = eu:
ex = eeeh can be written ee(1+2h′) with |h′| ≤ 2−p; then y = ee(1+2h′)(1+v) can be written
ee(1 + 4v′) with |v′| ≤ 2−p. We use again the lemma for h′ = 4eev′, which is less than 1 for
p ≥ 6: ey = eee

eh′
can be written eee

(1 + 2h′′) with |h′′| ≤ 2−p; then z = eee
(1 + 2h′′)(1 + w)

2

can be written eee
(1 + 4w′) with |w′| ≤ 2−p. Since |eee| < 222, the absolute error on z is thus

bounded by 224−p.
Assume we output M + 7 digits of the approximation z, with M ≥ N , and rounding to

nearest. The output rounding error will be at most 1
2
· 10−M . If 224−p ≤ 1

2
· 10−M , which

holds as soon as p ≥ 25 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the
output.

Problem P06: Compute the first N decimal digits after the decimal point of
log(1 + log(1 + log(1 + log(1 + π)))). We have log(1 + log(1 + log(1 + log(1 + π)))) ≈ 0.490:
the first N decimal digits after the decimal point match the first N mantissa digits.

We compute s = ◦(π), t = ◦(1+s), u = ◦(log t), v = ◦(1+u), w = ◦(log v), x = ◦(1+w),
y = ◦(log x), z = ◦(1 + y), r = ◦(log z). It is easy to check that for p ≥ 9, 2 ≤ s, v < 4,
4 ≤ t < 8, 1 ≤ u, x, z < 2, 1/2 ≤ w, y < 1, 1/4 ≤ r < 1/2.

The absolute error on s is bounded by 1
2
ulp(s) = 21−p, thus that on t is bounded by

21−p + 1
2
ulp(t) = 6 · 2−p. We use the following lemma: if q ≥ a is an approximation of some

unknown number q′ ≥ a with error h bounded by ε, then the error on log q is at most ε/a.
Using this lemma for q = t, a = 4, ε = 6 · 2−p yields an absolute error of at most 3/2 · 2−p

for log t. Together with the rounding error of at most 1
2
ulp(u) = 2−p, this gives an absolute

error ≤ 5/2 · 2−p for u. The same kind of analysis yields a bound of 9/2 · 2−p for v, 11/4 · 2−p

for w, 15/4 · 2−p for x, 17/4 · 2−p for y, 21/4 · 2−p for z, and finally 11/2 · 2−p < 23−p for r.
Assume we output M digits of the approximation r, with M ≥ N , with rounding to

nearest. The output rounding error will be at most 1
2
·10−M . If 23−p ≤ 1

2
·10−M , which holds

as soon as p ≥ 4 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the output.

Problem P07: Compute the first N decimal digits after the decimal point of e1000.
We have e1000 ≈ 0.197 · 10435, thus we have to compute N + 435 digits, and disregard the
first 435.

We compute x = ◦(1000), y = ◦(exp x), with precision p and rounding to nearest. We
choose p ≥ 7, so that x = 1000 exactly. The error on y thus only consists of the final
rounding error, which is bounded by 1

2
ulp(y) ≤ 21442−p.

Assume we output M + 435 digits of the approximation r, with M ≥ N , with rounding
to nearest. The output rounding error will be at most 1

2
· 10−M . If 21442−p ≤ 1

2
· 10−M , which

holds as soon as p ≥ 1443 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the
output.

Problem P08: Compute the first N decimal digits after the decimal point of
cos 1050. We have cos 1050 ≈ −0.613, the first N decimal digits after the decimal point
match the first N mantissa digits (note that the sign is not requested).

We first compute x = ◦(1050), then y = ◦(cos x).
If the precision is p ≥ 117, then x = 1050 exactly, thus as for P07, the only error is the

final rounding error on y, which is at most 1
2
ulp(y) = 2−p−1.

3

Assume we output M digits of the approximation r, with M ≥ N , with rounding to
nearest. The output rounding error will be at most 1

2
· 10−M . If 2−p−1 ≤ 1

2
· 10−M , which

holds as soon as p ≥M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the output.

Problem P09: Compute the first N decimal digits after the decimal point of
sin(3 log(640320)/

√
163). We have sin(3 log(640320)/

√
163) ≈ 0.221E−15, thus the answer

starts with 15 zeroes, followed by the first N − 15 significant digits of the mantissa.
We compute x = ◦(log 640320), y = ◦(

√
163), z = ◦(x/y), s = ◦(3z), t = ◦(sin s). Taking

the precision p large enough so that the constants 640320 and 163 are exact, e.g. p ≥ 14,
we can write x = log 640320(1 + u) and y =

√
163/(1 + v) with |u|, |v| ≤ 2−p. Thus x/y =

log(640320)/
√

163(1 + u)(1 + v) can be written log(640320)/
√

163(1 + u′)2 with |u′| ≤ 2−p,
z = log(640320)/

√
163(1 + u′′)3 with |u′′| ≤ 2−p, and s = 3 log(640320)/

√
163(1 + w)4 with

|w| ≤ 2−p. For p ≥ 3, we can write (1+w)4 = 1+5w′ with |w′| ≤ 2−p; the absolute error on s is
thus bounded by 15 log(640320)/

√
1632−p ≤ 15.8 ·2−p. Since the sine function is contracting,

the final absolute error on t is bounded by 15.8 · 2−p + 1
2
ulp(s) = 15.8 · 2−p + 2−53−p ≤ 24−p.

Assume we output M − 15 digits of the approximation t, with M ≥ N , with rounding to
nearest. The output rounding error will be at most 1

2
·10−M . If 24−p ≤ 1

2
·10−M , which holds

as soon as p ≥ 5 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the output.

Problem P10: Compute the first N decimal digits after the decimal point of

z = [(32/5)1/5 − (27/5)1/5]1/3 − (1 + 31/5 − 91/5)/251/5.

The constant z is identically zero. However, it is possible to output the first N decimal
digits after the decimal point, since it suffices to show that |z| < 10−N to correctly output
N zeroes.

Let α = 5−1/5 and β = 31/5. We have

z = [(2− β3)α]1/3 − (1 + β − β2)α2.

We compute successively q = ◦(1/5), r = ◦(q1/5), s = ◦(31/5), u = ◦(s2), v = ◦(su),
w = ◦(2 − v), x = ◦(wr), y = ◦(x1/3, a = ◦(1 + s), b = ◦(a − u), c = ◦(br), d = ◦(cr),
e = ◦(y−d). (The powers q1/5, 31/5 and x1/3 are computed with the mpfr root function.) We
use here the following simplified notation: x = y(1 + θ)k means that x is an approximation,
which can be written y(1 + θ)k with |θ| ≤ 2−p. We have q = 1/5(1 + θ1), r = 5−1/5(1 +
θ1)

1/5(1 + θ2) = 5−1/5(1 + θ3)
2, s = 31/5(1 + θ4), u = 91/5(1 + θ5)

3, v = 271/5(1 + θ6)
5.

We can check that for p ≥ 9, we have 1/16 ≤ w < 1/8, thus the rounding error on w is
bounded by 1

2
ulp(w) = 2−p−4; for p ≥ 4, we can write (1 + θ6)

5 = 1 + 6θ7, thus the total
error on w is at most 2−p−4 + 6β3θ7 ≤ 12 · 2−p. We can thus write w = W + 12θ8 with
W = 2 − β3. We want to be able to write w = W (1 + θ9)

k for some integer k; we thus
need W + 12θ8 = W (1 + θ9)

k, or 12θ8/W = (1 + θ9)
k − 1. A simple computation shows that

k = 241 is enough: w = (2−β3)(1+θ9)
241 for p ≥ 9. We thus have x = (2−β3)α(1+θ10)

244,
y = [(2− β3)α]1/3(1 + θ11)

83.

4

The absolute error on s being bounded by 1
2
ulp(s) = 2−p, that on a is at most 2−p +

1
2
ulp(a) = 3 ·2−p; that on u is bounded by 91/5|(1+ θ5)

3−1| ≤ 91/5 · (4θ5) ≤ 7 ·2−p, thus that
on b is bounded by 3 · 2−p + 7 · 2−p + 1

2
ulp(b) ≤ 11 · 2−p. We thus can write b = B + 11 · θ12

with B = 1 + β − β2; since B ≥ 1/2, we can write similarly as above b = B(1 + θ13)
23.

Thus c = (1 + β − β2)α(1 + θ14)
26, d = (1 + β − β2)α2(1 + θ15)

29, thus the absolute error
on d is bounded by (1 + β − β2)α2|(1 + θ15)

29 − 1| ≤ (1 + β − β2)α2(30 · 2−p) ≤ 11 · 2−p for
p ≥ 9.

Similarly, the absolute error on y is bounded by [(2 − β3)α]1/3|(1 + θ11)
83 − 1| ≤ [(2 −

β3)α]1/3(91 · 2−p) ≤ 34 · 2−p, still for p ≥ 9.
For p ≥ 9, we can show that |e| ≤ 5/128, thus the rounding error on e is bounded by

1
2
ulp(e) ≤ 2−p−5. Therefore the total error on e is bounded by 11·2−p+34·2−p+2−p−5 ≤ 26−p.

If 26−p < 1
2
10−N , i.e. p ≥ 7 + N log 10

log 2
, then since we know the exact answer is zero, we

should have |e| ≤ 26−p, so we know the exact answer is less than 10−N in absolute value, so
the output should be N consecutive zeroes. Note that in this case no loop is needed: the
first iteration should always be successful.

Problem P11: Compute the first N decimal digits after the decimal point of
tan e+arctan e+tanh e+arctanh(1/e). We have tan e+arctan e+tanh e+arctanh(1/e) ≈
2.145, thus we have to compute N + 1 digits and discard the initial 2.

We compute x = ◦(exp 1), y = ◦(tan x), z = ◦(arctan x), t = ◦(tanh x), u = ◦(1/x),
v = ◦(arctanhu), w = ◦(y + v), a = ◦(w + t), b = ◦(a + z).

For p ≥ 10, we have 2 ≤ x, b < 3, −1/2 < y ≤ −1/4, 1 ≤ z < 2, 1/2 ≤ t, a < 1,
1/4 ≤ u, v < 1/2, −1/8 < w ≤ −1/16. The absolute error on x is at most 1

2
ulp(x) = 21−p;

since x = e + h with |h| ≤ 21−p, we have tan x = tan e + h(1 + tan2 θ) with θ ∈ (e, x), thus
the error on y is at most 1

2
ulp(y) + 5.78 · 21−p ≤ 11.9 · 2−p. Similarly, we have arctan x =

arctan e + h
1+θ2 , thus the error on z is at most 1

2
ulp(z) + 1/521−p ≤ 1.4 · 2−p. For t, we have

tanh x = tanh e+h(1−tanh2 θ), thus the error on t is at most 1
2
ulp(t)+0.071·21−p ≤ 0.642·2−p.

The error on u is at most 1
2
ulp(u)+21−p/θ2 ≤ 0.75 · 2−p; then that on v is at most 1

2
ulp(v)+

(0.75·2−p)·1/3 ≤ 0.5·2−p. By Sterbenz theorem, y+v is exact, thus the error on w is at most
11.9·2−p+0.5·2−p ≤ 12.4·2−p; that on a is at most 1

2
ulp(a)+12.4·2−p+0.642·2−p ≤ 13.6·2−p;

and finally that on b is at most 1
2
ulp(b) + 13.6 · 2−p + 1.4 · 2−p ≤ 17 · 2−p ≤ 25−p.

Problem P12: Compute the first N decimal digits after the decimal point of
arcsin(1/e) + cosh e + arcsinh e. We have arcsin(1/e) + cosh e + arcsinh e ≈ 9.712, thus as
in P11 we compute N + 1 digits and discard the leading “9”.

We proceed as follows: let x = ◦(exp 1), y = ◦(1/x), z = ◦(arcsin y), t = ◦(arcsinh x),
u = ◦(cosh x), v = ◦(z + t), w = ◦(v +u). For p ≥ 3, we have 2 ≤ x, v < 3, 1/4 ≤ y, z < 1/2,
1 ≤ t < 2, 4 ≤ u < 8, 8 ≤ w < 16. The same error analysis as for P11 yields a maximum
error of at most 21−p for x, 0.75 · 2−p for y, 1.12 · 2−p for z, 2.79 · 2−p for t, 24.1 · 2−p for u,
5.91 · 2−p for v, and finally 38.1 · 2−p ≤ 26−p for w.

5

Problem P13: Compute the first N decimal digits after the decimal point of the
Nth term of the logistic map. The logistic map is defined by x0 = 1/2, and

xn+1 =
15

4
xn(1− xn).

We compute it as follows:

tn = ◦(1− xn)
un = ◦(xntn)
vn = ◦(15un)
xn+1 = vn/4 [exact]

For p ≥ 8, x1 = 15
16

= 0.9375 and x2 = 225
1024

= 0.2197265625 are computed exactly. Since
for x2 ≤ x ≤ x1, x2 ≤ 15

4
x(1− x) ≤ x1, we have x2 ≤ xn ≤ x1 for all n ≥ 0. We deduce from

this that 0 ≤ tn < 1, 0 ≤ un ≤ 1/4, 0 ≤ vn ≤ 15/4.
Let εn be the absolute error on xn, and τn the rounding error on tn, i.e. tn = 1−xn+τn. The

absolute error on tn is at most εn+τn, and that on un is at most 1
2
ulp(un)+εntn+xn(εn+τn);

replacing tn by 1 − xn + τn, we get 2−p−3 + εn + (xn + εn)τn. Since τn ≤ 1
2
ulp(tn) ≤ 2−p−1

and xn + εn ≤ 15/16 — remember the exact value for xn lies in the interval [xn− εn, xn + εn]
—, the error on un is bounded by 2−p−3 + εn + 15

16
2−p−1 ≤ εn + 19

32
2−p.

The error on vn is bounded by 1
2
ulp(vn) + 15(εn + 19

32
2−p) ≤ 15εn + 83

32
2−p. Finally, the

error on xn+1 is bounded by

εn+1 ≤
15

4
εn +

83

128
2−p.

This recurrence admits as solution:

εn =
83

352
2−p[(15/4)n − 1] ≤ 2−p−2(15/4)n.

Choose M ≥ N . Since 0.2197265625 ≤ xN ≤ 0.9375, the first decimal digit of xN

has always weight 1/10, so the Mth digit has weight 10−M . If 2−p−2(15/4)n ≤ 1
2
10−M ,

i.e.p ≥M log 10
log 2

+ n log(15/4)
log 2

− 1, then the M -digit decimal output of xN lies within one ulp of
the corresponding exact value.

Problem P14: Compute the first N decimal digits after the decimal point of
a100N . The sequence (an) is defined as follows: a0 = 11/2, a1 = 61/11,

an+1 = 111− 1130− 3000/an−1

an

,

and is due to Jean-Michel Muller. It is well known that an = 6n+1+5n+1

6n+5n . So we could cheat
and compute directly that closed form. However we believe this is not in the spirit of the
competition.

We compute the sequence as follows, with precision p and rounding to nearest:

6

bn = ◦(3000/an−1)
cn = ◦(1130− bn)
dn = ◦(cn/an)
an+1 = ◦(111− dn)

Since 11/2 ≤ an ≤ 6, we can show that 545 ≤ bn ≤ 600, 530 ≤ cn ≤ 585, 88 ≤ dn ≤ 107.
Let εn be the absolute error on an. The error on bn is bounded by 1

2
ulp(bn) + εn

3000
θ2 for

some θ ∈ [an−1 − εn−1, an−1 + εn−1], which is at most 29−p + 100εn−1. The error on cn

is bounded by 1
2
ulp(cn) + 29−p + 100εn−1 ≤ 15362−p + 100εn−1; that on dn is bounded by

1
2
ulp(dn) + err(cn)/an + εn

585
θ2 ≤ 3442−p + 18εn−1 + 20εn. Finally an+1 is exact by Sterbenz

theorem, so we have
εn+1 ≤ 20εn + 18εn−1 + 3442−p,

together with ε0 = 0 since 11/2 is exact for p ≥ 4, and ε1 ≤ 1
2
ulp(a1) = 42−p. This

Fibonacci-like recurrence admits an exact solution:

εn2p ≤ (172/37− 737/2183
√

118)αn + (172/37 + 737/2183
√

118)βn − 344/37.

with α = 10 +
√

118 ≈ 20.863, β = 10−
√

118 ≈ −0.863. Since |β| < 1, it follows:

εn2p ≤ (172/37− 737/2183
√

118)αn + (172/37 + 737/2183
√

118)− 344/37 ≤ αn.

Recall we want the first N digits after the decimal point of a100N . Let M ≥ N . If
ε100N ≤ 1

2
10−M , i.e.p ≥ 1 + 100N log α

log 2
+ M log10

log 2
, then the M -digit output will be within one

ulp of the correct result. Note: since log α
log 2
≈ 4.383, this gives p ≈ 442N .

Alas, this approach does not work as is. Indeed, since an = 6n+1+5n+1

6n+5n , we have a100N ≈
6− (5/6)100N , and thus a100N is of the form 5.999 . . . 999, with about 7.9N consecutive “9”.
This means that with rounding to nearest, we need about M ≈ 7.9N to be able to round
correctly the output.

Problem P15: Compute the first N decimal digits after the decimal point of the
harmonic number h10N . We recall hn = 1+1/2+· · ·+1/n. We can compute hn efficiently
using the “binary splitting” method. Define P (a, b) and Q(a, b) as follows: if b = a+1, then
P (a, b) = 1 and Q(a, b) = b, otherwise

P (a, b) = P (a, c)Q(c, b) + Q(a, c)P (c, b), Q(a, b) = Q(a, c)Q(c, b), (1)

for c = b(a + b)/2c. We can easily check that P (a, b)/Q(a.b) = 1/(a + 1) + · · · + 1/b, and
thus hn = P (0, n)/Q(0, n).

However, to get the first N decimal digits after the decimal point of h10N , computing
P (0, 10N) and Q(0, 10N) exactly is not very efficient. Indeed, we have Q(0, 10) = (10N)!,
which has about 10N log10(10N) digits, whereas we want only N digits!

To solve this problem, we use the following idea. We use a working precision p large
enough to get N correct decimal digits at the end. We compute p-bit approximations of

7

P (0, n)/Q(0, n). Once we have computed P (a, b) and Q(a, b) as in Eq. (1), if both exceed p
bits, we truncate them by 2k so that the smallest one has exactly p bits, with rounding to
nearest. The relative error on each truncation is bounded by 21−p.

Lemma. If the maximal number of truncations along a branch of the recursive call tree
is t, then the computed values P (a, b) and Q(a, b) satisfy P (a, b)/Q(a, b) = h(a, b)(1 + u)t

for |u| ≤ 21−p.
We prove the lemma by induction on b − a. If b = a + 1, then P and Q are exact

— we assume the working precision is large enough so that b can be represented exactly,
i.e. 10N ≤ 2p —, so the lemma holds. Assume now we have computed approximations
of P (a, c), P (c, b), Q(a, c) and Q(c, b), with t1 truncations for P (a, c) and Q(a, c), and t2
runcations for P (c, b) and Q(c, b). We thus have P (a, c)/Q(a, c) = h(a, c)(1 + u)t1 and
P (c, b)/Q(c, b) = h(c, b)(1+v)t2 , with |u|, |v| ≤ 21−p. If no truncation occurs for h(a, b), then
we have P (a, b)/Q(a, b) = P (a, c)/Q(a, c) + P (c, b)/Q(c, b) exactly, thus P (a, b)/Q(a, b) =
h(a, c)(1+u)t1 +h(c, b)(1+ v)t2 . Since all values are positive, we can write P (a, b)/Q(a, b) =
h(a, b)(1+w)max(t1,t2). If a truncation occurs on P (a, b) and Q(a, b), then it induces a relative
error of at most 21−p on the ratio — since both errors go in opposite directions — thus we
can write P (a, b)/Q(a, b) = h(a, b)(1 + w)1+max(t1,t2).

We can easily bound the maximal number of truncations. Now since Q(a, b) = (a+1) · · · b,
we have Q(a, b) ≤ nb−a, thus as long as n(b− a) < 2p, there can be no truncation. Here, we
have n = 10N and we take 2p ≥ 10N , so as long as (10N)(b−a) < 10N , i.e. b−a < N log 10

log(10N)
,

there is no truncation. The number of levels where there can be truncation is thus at most
dlog2(10

log(10N)
log 10

e. For N ≤ 107, this is at most 7.

After we have computed a rational approximation P/Q of h10N , we convert P and Q to p-
bit floating-point numbers with rounding to nearest, and we divide the two approximations.
Since at least one of P and Q fits exactly into p bits, the additional error due to this conversion
corresponds to (1 + u)2 with |u| ≤ 2−p. Thus the final value is within (1 + u)2(1 + 2u)t of
h10N . For t ≤ 8 and p ≥ 4, the relative error is bounded by 25−p.

Problem P16: Compute the first N non zero digits of f(N). The sequence f(i) is
defined by

f(i) = π − (3 +
1 · 1

3 · 4 · 5
(8 +

2 · 3
3 · 7 · 8

(· · · (5i− 2 +
i(2i− 1)

3(3i + 1)(3i + 2)
)))).

We can compute f(i) by the following program:

r ← 1
for i := N downto 1 do
r ← ri(2i− 1)/3/(3i + 1)/(3i + 2)
r ← 5i− 2 + r
r ← π − r

The computation in the loop are done as follows:

8

r ← ◦(ir)
r ← ◦((2i− 1)r)
r ← ◦(r/3)
r ← ◦(r/(3i + 1))
r ← ◦(r/(3i + 2))
r ← ◦(r + (5i− 2))

The ratio between the computed value of r and the exact value after the kth iteration can
be written (1 + u)6k for |u| ≤ 2−p. This is true for k = 0. Assume this is true for k ≥ 0.
Then after r ← ◦(r/(3i + 2)) the ratio can be written (1 + u)6k+5; since both r and 5i − 2
are positive, we can write r(1 + u)6k+5 + (5i − 2) = [r + (5i − 2)](1 + u′)6k+5, thus we get
(1 + u′′)6k+6 after rounding.

When i → ∞, f(i) converges to 0. When truncated to i = N , it is easy to see that
f(N) = O((2/27)N). Thus to get N significant digits of f(N), we need the final error to be
less than 135−N .

The error on r before π − r is of the form (1 + u)6N ; using |u| ≤ 2−p ≤ 135−N , it can
be shown that |(1 + u)6N − 1| ≤ 7Nu. The error when computing π is bounded by 21−p,
and that of rounding π − r too (the latter is much smaller due to the cancellation, but this
bound is enough). Thus the final error is bounded by 7Nur + 22−p ≤ (7N + 1)22−p.

Problem P17: Compute the first N decimal digits after the decimal point of
ζ(2)ζ(3) + ζ(5). We have ζ(2)ζ(3) + ζ(5) ≈ 3.014, so we just need to compute N + 1
significant digits and discard the first one.

Since the Riemann Zeta function is native in MPFR, we simply compute with precision
p and rounding to nearest:

u← ◦(ζ(2))
v ← ◦(ζ(3))
w ← ◦(ζ(5))
t← ◦(uv)
s← ◦(t + w)

If θ denotes a generic quantity such that |θ| ≤ 2−p, we have u = ζ(2)(1+ θ), v = ζ(3)(1+ θ),
w = ζ(5)(1 + θ), t = ζ(2)ζ(3)(1 + θ)3, thus since all quantities are positive, t + w =
(ζ(2)ζ(3) + ζ(5))(1 + θ)3, and s = (ζ(2)ζ(3) + ζ(5))(1 + θ)4. For p ≥ 6, we have s ≤ 25/8;
we can write (1 + θ)4 as 1 + 5θ, thus the final absolute error is bounded by 5 · 2−ps ≤ 24−p.

Note: the mpfr zeta function is quite slow for evaluating ζ(i) for i a small integer. A close
look at the implementation shows that the bottleneck lies in the computation of the Bernoulli
numbers, which takes more than 99% of the computing time. Also, the computation of the
Bernoulli numbers could be cached and thus shared between the three evaluations of ζ, which
is not the case.

Note 2: we could replace ζ(2) by π2/6, which would give a gain of about 33% since
the computation of π is quite efficient, but we thought this was not in the spirit of the
competition.

9

Problem P18: Compute the first N decimal digits after the decimal point of
Euler’s γ constant. Euler’s γ constant is defined as γ = limn→∞(1+ 1

2
+ · · ·+ 1

n
)− log n ≈

0.577. This is a native MPFR constant, thus we simply compute x = ◦(γ) with precision p
and rounding to nearest. The largest possible error is 1

2
ulp(x) = 2−p−1.

Problem P19: Compute the first N decimal digits after the decimal point of
L =

∑∞
n=1 7−n2

. We have L ≈ 0.143. This is simply a base-conversion problem. The base-
7 representation of L is (0.100100001 . . .). We simply form a string corresponding to this
base-7 representation, truncated to get enough accuracy, then convert this string to a binary
floating-point value, which is then converted back to a decimal string.

Assume we truncate L to q base-7 digits, use a binary precision of p bits, and a final
decimal output of M ≥ N digits, all with rounding to nearest. The error we make when
truncating L to q digits is bounded by 7−q, the input conversion error is bounded by 1

2
2−p,

and the output conversion error by 1
2
10−M . If both 7−q + 1

2
2−p ≤ 1

2
10−M , then the total

error will be less than one ulp of the output. It thus suffices to have q ≥ 1 + M log 10
log 7

and

p ≥ 1 + M log 10
log 2

.

Problem P20: Compute the Nth partial quotient from the continued fraction ex-
pansion of cos(2π/7). We have cos(2π/7) ≈ 0.623. Its continued fraction expansion starts
with [1, 1, 1, 1, 1, 9, 1, 2, . . .]. We use a subquadratic implementation of Lehmer’s method2.
We first compute an interval enclosing cos(2π/7), with a binary precision of about 3.5N
bits3. The MPFR cos function being too slow, we use an interval Newton iteration.

The quadratic Lehmer’s algorithm is used when the input size in bits is less than a given
threshold (5000 bits seems near to optimal in our implementation), otherwise a subquadratic
variant is used, which looks like the “half-gcd” algorithm for computing gcds.

Problem P21: Compute the first N decimal digits after the decimal point of
the solution of esin x = x. The equation esin x = x has a unique solution ρ ≈ 2.219. We
approximate it using Newton’s iteration, with the function f(x) = x − esin x. The explicit
second-order expansion of f(x) at x = ρ yields:

f(ρ) = f(x) + (ρ− x)f ′(x) +
(ρ− x)2

2
f ′′(θ), (2)

for θ ∈ (x, ρ). Neglecting the second order term, we get the usual formula for Newton’s
iteration:

xk+1 = xk −
f(xk)

f ′(xk)
.

2See Equation (3) page 4 of http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub166.
html.

3It is known from the theory of continued fractions that d decimal digits give about 6 log 2 log 10
π2 d partial

quotients, so to get p partial quotients, we need about π2

6 log 2 log 10p decimal digits, or π2

6 log2 2
p ≈ 3.423 bits.

10

Rewriting Eq. (2) gives:

ρ = x− f(x)

f ′(x)
− (ρ− x)2

2

f ′′(θ)

f ′(x)
,

thus if |f ′′| ≤M and |f ′| ≥ m on the considered interval, we have |xk+1 − ρ| ≤ M
2m
|xk − ρ|2.

We have f ′(x) = 1− esin x cos x, and f ′′(x) = esin x(sin x− cos2 x), and |f ′′| ≤ 2 for 2 ≤ x ≤ 3.
Here, we have |f ′(x)| ≥ 2 and |f ′′(x)| ≤ 2 for 2 ≤ x ≤ 3, thus |xk+1 − ρ| ≤ 1/2|xk − ρ|2.
We use the following rounding operations to compute an approximation of xk+1 from

that of xk:

y ← ◦(sin x)
z ← ◦(cos x)
t← ◦(ey)
u← ◦(x− t)
v ← ◦(tz)
w ← ◦(1− v)
r ← ◦(u/w)
s← ◦(x− r)

We can show that when 17/8 ≤ x ≤ 9/4 and the precision p satisfies p ≥ 5, then 3/4 ≤ y ≤
7/8, −21/32 ≤ z ≤ −1/2, 2 ≤ t ≤ 5/2, −27/16 ≤ v ≤ −1, 2 ≤ w ≤ 11/4.

Assume now that |x− ρ| ≤ 2−q, and we apply one iteration as above. Since |f ′| ≤ 3 for
2 ≤ x ≤ 3, we have |f(x)| ≤ 3 ·2−q. The error on y is at most 1

2
ulp(y) = 2−p−1, that on t is at

most 1
2
ulp(t)+ eθ2−p−1 for 3/4 ≤ θ ≤ 7/8, i.e. at most 3.2 · 2−p. Thus x− t is within 3.2 · 2−p

of its corresponding exact value f(x). But |f(x)| ≤ 3 ·2−q, we have |x− t| ≤ 3 ·2−q +3.2 ·2−p.
Assume p ≥ 2q and q ≥ 2, then |x − t| ≤ ·4 · 2−q. Thus the error on u is bounded by
1
2
ulp(u) + 3.2 · 2−p ≤ 21−q−p + 3.2 · 2−p ≤ 3.7 · 2−p since q ≥ 2.

The error on z is at most 1
2
ulp(z) ≤ 2−p−1, that on v is bounded by 1

2
ulp(v)+err(t)(|z|+

err(z)) + |t|err(z) ≤ 2−p + 3.2 · 2−p(0.68) + 5/22−p−1 ≤ 4.5 · 2−p, that on w is bounded by
1
2
ulp(w)+4.5 ·2−p ≤ 21−p+4.5 ·2−p ≤ 6.5 ·2−p. We can write 1/w = 1/f ′(xk)+6.5 ·2−p/θ2 for

θ ∈ (w, f ′(xk)), thus 1/w = 1/f ′(xk)+1.7ε with |ε| ≤ 2−p. This gives an error on r bounded
by 1

2
ulp(r)+err(u)(1/w+1.72−p)+|u|(1.72−p) ≤ 2−2p+3.7·2−p(1/2+1.72−p)+22−q(1.72−p) ≤

3.7 · 2−p for p ≥ 6. Then the final error on s — i.e. the difference with xk+1 as computed in
infinite precision — is bounded by 1

2
ulp(s) + 3.7 · 2−p ≤ 21−p + 3.7 · 2−p ≤ 5.7 · 2−p.

Therefore, if p ≥ 2q + 4, then 5.7 · 2−p ≤ 2−2q−1, and since |xk+1 − ρ| ≤ 2−2q−1, then
|s− ρ| ≤ 2−2q, so we get a quadratic convergence.

Note: we don’t need to compute r = ◦(u/v) to full precision p, since we know in advance
that r is of the order of 2−q, so only the q ≈ p/2 most significant bits of r are needed. This
implies in turn that u and w can be computed with precision ≈ p/2 too. In fact, only y and
t need to be computed to full precision p, since there is a cancellation in x − t. However
the expected speedup is small, since the most expensive operations are the computations of
sin x, cos x and ey.

11

Problem P22: Compute the first N decimal digits after the decimal point of
I =

∫ 1

0
sin(sin x)dx. We have I ≈ 0.430. We use here an implementation by Laurent

Fousse of Gauss-Legendre quadrature, with a rigorous bound on the total error, i.e. both the
error due to the quadrature method and the rounoff error.

Problem P23: Compute the first 10 decimal digits of the element (N −1, N −3) of
M1. The matrix M1 is the inverse of the N ×N Hilbert matrix, whose entries are (1

i+j−1
)

for 1 ≤ i, j ≤ N . For example, for N = 7, we have

M1 =

49 −1176 8820 −29400 48510 −38808 12012

−1176 37632 −317520 1128960 −1940400 1596672 −504504

8820 −317520 2857680 −10584000 18711000 −15717240 5045040

−29400 1128960 −10584000 40320000 −72765000 62092800 −20180160

48510 −1940400 18711000 −72765000 133402500 −115259760 37837800

−38808 1596672 −15717240 62092800 −115259760 100590336 −33297264

12012 −504504 5045040 −20180160 37837800 −33297264 11099088

,

and here the element (N − 1, N − 3) is 62092800. For N = 10, the element (N − 1, N − 3)
is 1766086882560, so the answer should be 1766086882. It can be seen that the entries of
M1 are integral. We assume the element (N − 1, N − 3) cannot be represented exactly as a
10-digit floating-point number, which seems to be the case for N ≥ 10.

We use the following approach. Using the MPFI library developed by Nathalie Revol
and Fabrice Rouillier4, we perform a naive Gaussian elimination to solve the linear system
Hx = b, where all b entries are zero, except bN−3 = 1. The entry xn−1 is a binary floating-
point interval [u, v] enclosing the exact value of the element (N − 1, N − 3) of M1. If both
u and v agree, when converted to 10-digit decimal floating-point values with rounding to
nearest, then this common value is the wanted answer.

Experimentally, it seems that using a working precision p ≥ 4.2N log N is enough. (For
N = 100, this gives p = 1965, whereas p = 1375 is the minimal precision that works.)

Problem P24: Compute the first 10 decimal digits of the element (N − 1, N) of
M2. The matrix M1 is the inverse of the IN + HN , where IN is the N ×N identity matrix,
and HN is the N ×N Hilbert matrix. For n = 4, we have:

M2 =

10213696
17799777

−1084840
5933259

− 72880
659251

− 1377740
17799777

−1084840
5933259

1688800
1977753

− 75300
659251

− 550480
5933259

− 72880
659251

− 75300
659251

593280
659251

− 57400
659251

− 1377740
17799777

− 550480
5933259

− 57400
659251

16391200
17799777

 ,

4http://perso.ens-lyon.fr/nathalie.revol/software.html

12

thus the element (N−1, N) is −57400
659251

≈ −0.08706850653, and the answer should be 8706850653.
As in P23, we assume that element cannot be represented exactly as a 10-digit decimal
floating-point value.

We use the same technique as in P23, with the MPFI library. The only difference is
that, the matrix IN + HN being much less singular, the necessary working precision is much
smaller. We found experimentally that up to N = 1000, a precision of 46 bits is enough.

Timings

We give timings obtained on the competition machine “harif” (AMD Opteron 144 under
Debian GNU/Linux “sid” unstable i386 in 32 bit mode, with 4GB of RAM). Here, the
column N stands for 10N digits, as in the original practice problems.

We used version 4.1.4 of GMP, tuned for harif: go to repository tune, type make tune,
and replace the file gmp-mparam.h by the results obtained, in particular:

#define MUL_KARATSUBA_THRESHOLD 24

#define MUL_TOOM3_THRESHOLD 177

#define DIV_DC_THRESHOLD 68

#define POWM_THRESHOLD 116

#define GET_STR_DC_THRESHOLD 23

#define GET_STR_PRECOMPUTE_THRESHOLD 35

#define SET_STR_THRESHOLD 3962

#define MUL_FFT_TABLE { 784, 1824, 3456, 7680, 22528, 57344, 0 }

#define MUL_FFT_MODF_THRESHOLD 848

#define MUL_FFT_THRESHOLD 8448

We used the cvs version from MPFR from 20 September 2005 (cvs -D 20050920 co mpfr),
tuned for harif too (simply type make tune in the mpfr build directory):

#define MPFR_MUL_THRESHOLD 18

#define MPFR_EXP_2_THRESHOLD 32

#define MPFR_EXP_THRESHOLD 25081

We used MPFI version 1.3.3, with a small patch to make it work with the cvs version
from MPFR.

Finally, we used INTLIB version 0.0.20050913, a numerical quadrature library from Lau-
rent Fousse.

13

problem N cpu time first. . . last digits
P01 4 0.181 678. . . 573
P01 5 18.062 678. . . 645
P02 4 0.021 772. . . 288
P02 5 0.830 772. . . 320
P02 6 23.310 772. . . 944

P03 4 0.089 410. . . 073
P03 5 8.251 410. . . 508
P04 4 0.090 999. . . 927
P04 5 3.271 999. . . 658
P04 6 81.741 999. . . 707
P05 4 0.151 104. . . 248
P05 5 5.213 104. . . 929
P06 4 0.192 490. . . 462
P06 5 8.056 490. . . 892
P07 4 0.022 226. . . 510
P07 5 0.665 226. . . 841
P07 6 13.853 226. . . 815
P08 4 0.159 613. . . 446
P08 5 5.466 613. . . 362
P09 4 0.235 000. . . 432
P09 5 18.864 000. . . 306
P10 4 0.198 000. . . 000
P10 5 6.684 000. . . 000
P11 4 0.548 145. . . 744
P11 5 22.439 145. . . 390
P12 4 0.460 712. . . 629
P12 5 14.292 712. . . 771

problem N cpu time first. . . last digits
P13 4 8.804 824. . . 580
P14 2 29.591 999. . . 999
P15 4 0.205 090. . . 123
P15 5 6.300 392. . . 432
P16 4 0.391 112. . . 637
P16 5 68.860 326. . . 023
P17 3 3.070 014. . . 886
P18 4 0.790 577. . . 165
P18 5 24.165 577. . . 897
P19 4 0.003 143. . . 377
P19 5 0.135 143. . . 205
P19 6 3.372 143. . . 250
P19 7 70.630 143. . . 382
P20 4 0.047 1
P20 5 1.238 1
P20 6 27.138 1
P21 4 0.229 219. . . 878
P21 5 15.096 219. . . 495
P22 3 15.931 430. . . 309
P23 2 2.698 9844998112
P24 2 0.196 2933301369

14

