Solutions to the practice problems

The MPFR team

September 20, 2005

Note: in the original problems ${ }^{1}$, it is requested to get 10^{N} digits according to the input parameter N. To simplify the analysis, we assume here that we ask N digits, so instead of taking values $N=2,3,4, \ldots$, the parameter N will be $100,1000,10000, \ldots$

Problem P01: Compute the first N decimal digits after the decimal point of $\sin (\sin (\sin 1))$, rounded toward zero. We have $\sin (\sin (\sin 1)) \approx 0.678$: the first N decimal digits after the decimal point match the first N mantissa digits.

We use a target decimal precision $N_{1}>N$, and a binary precision p. We compute $x=\circ(\sin 1), y=\circ(\sin x), z=\circ(\sin y)$, with all roundings to nearest. It is easy to see that since $p \geq 3$, we have $1 / 2 \leq x, y, z<1$, thus all rounding errors are bounded by 2^{-p-1}. We can thus write $x=\sin 1+\epsilon_{x}$ with $\left|\epsilon_{x}\right| \leq 2^{-p-1}$. It follows $y=\sin \left(\sin 1+\epsilon_{x}\right)+\epsilon_{y}$ with $\left|\epsilon_{y}\right| \leq 2^{-p-1}$; we can write $\sin \left(\sin 1+\epsilon_{x}\right)=\sin (\sin 1)+\epsilon_{x} \cos \theta$, thus the absolute error on y is bounded by $\left|\epsilon_{x}\right|+\left|\epsilon_{y}\right| \leq 2^{-p}$. Similarly, the error on z is bounded by $3 \cdot 2^{-p-1}$. With $p \geq 2+N_{1} \frac{\log 10}{\log 2}$, we have $3 \cdot 2^{-p-1}<1 / 2 \cdot 10^{-N_{1}}$.

Finally, we output the binary value z in decimal to N_{1} digits, with rounding to nearest. Since $1 / 2 \leq z<1$, the last digit has weight $10^{-N_{1}}$, thus the total error - including that on z and the output error - is bounded by $10^{-N_{1}}$. Thus, unless the last $N_{1}-N$ digits of the output are all zero, we can decide the correct output to N digits, rounded toward zero.

Note: if the function $\sin (\sin (\sin x))$ was D-finite, i.e. if it would satisfy a linear differential equation with polynomial coefficients, then it would be possible to compute $\sin (\sin (\sin 1))$ to precision n in $O(M(n) \log n)$ using the "binary splitting" algorithm. Unfortunately, it does not seem that $\sin (\sin (\sin x))$ is D-finite.

Problem P02: Compute the first N decimal digits after the decimal point of $\sqrt{\pi}$. We have $\sqrt{\pi} \approx 1.772$, so we need to take the $N+1$ first digits of the mantissa, and remove the first digit, namely " 1 ".

Let $x=\circ(\pi)$ and $y=\sqrt{x}$, with rounding to nearest and a precision of p bits. If we use a precision of p bits, we have $x=\pi(1+u)$ and $y=\sqrt{x}(1+v)$ with $|u|,|v| \leq 2^{-p}$. Thus $y=\sqrt{\pi} \sqrt{1+u}(1+v)$. For $p \geq 2$, it is easy to see that $\sqrt{1+u}(1+v)$ can be written $1+2 w$ with $|w| \leq 2^{-p}$. Thus $y=\sqrt{\pi}(1+2 w)$, and the absolute error is bounded by 2^{2-p}.

[^0]Assume we output $M+1$ digits of the approximation y, with $M \geq N$, with rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{2-p} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq 3+M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P03: Compute the first N decimal digits after the decimal point of $\sin e$. We have $\sin e \approx 0.410$: the first N decimal digits after the decimal point match the first N mantissa digits.

Let $x=\circ(\exp 1)$ and $y=\circ(\sin x)$, with rounding to nearest and a precision of p bits. If we use a precision of p bits, we have $x=e(1+u)$ and $y=\sin (x)(1+v)$ with $|u|,|v| \leq 2^{-p}$. Since $\sin x=\sin (e+e u)=\sin e+e u \cos \theta$ for some $\theta \in(e, e+e u)$, the absolute error on y is bounded by $|v|+e|u|<2^{2-p}$.

We find the same bound than for P 02 , thus the end of the analysis is identical.

Problem P04: Compute the first N decimal digits after the decimal point of $\exp (\pi \sqrt{163})$. We have $\exp (\pi \sqrt{163}) \approx 262537412640768743.999$: we thus have to compute $N+18$ digits, and disregard the first 18 .

We compute $x=\circ(\pi), y=\circ(\sqrt{163}), z=\circ(x y)$, and $t=\circ\left(e^{z}\right)$, with all computations to precision p and rounding to nearest.

We have $x=\pi(1+u), y=\sqrt{163}(1+v), z=x y(1+w)$, and $t=e^{z}(1+s)$, with $|u|,|v|,|w|,|s| \leq 2^{-p}$. We can thus write $z=\pi \sqrt{163}(1+\theta)^{3}$ with $|\theta| \leq 2^{-p}$. We have $\left|(1+\theta)^{3}-1\right|=\left|3 \theta+3 \theta^{2}+\theta^{3}\right| \leq 3|\theta|+4 \theta^{2} \leq 4|\theta|$ for $p \geq 2$. The relative error on z is thus bounded by 2^{2-p}. We can write $z=\pi \sqrt{163}+h$ with $|h| \leq \pi \sqrt{163} 2^{2-p} \leq 41 \cdot 2^{2-p}$. Then $e^{z}=e^{\pi \sqrt{163}} \cdot e^{h}$. For $p \geq 8$, we have $|h| \leq 1$, thus $\left|e^{h}-1\right| \leq 2|h|$. The relative error on e^{z} is thus bounded by $41 \cdot 2^{3-p}$, which since $e^{z}<2^{58}$ corresponds to a maximal absolute error of $41 \cdot 2^{61-p}$. We must add the final rounding error, which is bounded by 2^{57-p}. This gives a final error less than 2^{66-p}.

Assume we output $M+18$ digits of the approximation t, with $M \geq N$, and rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{66-p} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq 67+M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P05: Compute the first N decimal digits after the decimal point of $\exp (\exp (\exp 1))$. We have $\exp (\exp (\exp 1)) \approx 3814279.104$, we thus have to compute $N+7$ digits, and disregard the first 7 .

We compute $x=\circ(\exp 1), y=\circ(\exp x), z=\circ(\exp y)$, with all computations to precision p and rounding to nearest.

We have $x=e(1+u), y=e^{x}(1+v), z=e^{y}(1+w)$, with $|u|,|v|,|w| \leq 2^{-p}$. We use the following lemma: for $|h| \leq 1,\left|e^{h}-1\right| \leq 2|h|$. For $p \geq 2$, we can use the lemma for $h=e u$: $e^{x}=e^{e} e^{h}$ can be written $e^{e}\left(1+2 h^{\prime}\right)$ with $\left|h^{\prime}\right| \leq 2^{-p}$; then $y=e^{e}\left(1+2 h^{\prime}\right)(1+v)$ can be written $e^{e}\left(1+4 v^{\prime}\right)$ with $\left|v^{\prime}\right| \leq 2^{-p}$. We use again the lemma for $h^{\prime}=4 e^{e} v^{\prime}$, which is less than 1 for $p \geq 6: e^{y}=e^{e^{e}} e^{h^{\prime}}$ can be written $e^{e^{e}}\left(1+2 h^{\prime \prime}\right)$ with $\left|h^{\prime \prime}\right| \leq 2^{-p}$; then $z=e^{e^{e}}\left(1+2 h^{\prime \prime}\right)(1+w)$
can be written $e^{e^{e}}\left(1+4 w^{\prime}\right)$ with $\left|w^{\prime}\right| \leq 2^{-p}$. Since $\left|e^{e^{e}}\right|<2^{22}$, the absolute error on z is thus bounded by 2^{24-p}.

Assume we output $M+7$ digits of the approximation z, with $M \geq N$, and rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{24-p} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq 25+M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P06: Compute the first N decimal digits after the decimal point of $\log (1+\log (1+\log (1+\log (1+\pi))))$. We have $\log (1+\log (1+\log (1+\log (1+\pi)))) \approx 0.490$: the first N decimal digits after the decimal point match the first N mantissa digits.

We compute $s=\circ(\pi), t=\circ(1+s), u=\circ(\log t), v=\circ(1+u), w=\circ(\log v), x=\circ(1+w)$, $y=\circ(\log x), z=\circ(1+y), r=\circ(\log z)$. It is easy to check that for $p \geq 9,2 \leq s, v<4$, $4 \leq t<8,1 \leq u, x, z<2,1 / 2 \leq w, y<1,1 / 4 \leq r<1 / 2$.

The absolute error on s is bounded by $\frac{1}{2} u l p(s)=2^{1-p}$, thus that on t is bounded by $2^{1-p}+\frac{1}{2} \operatorname{ulp}(t)=6 \cdot 2^{-p}$. We use the following lemma: if $q \geq a$ is an approximation of some unknown number $q^{\prime} \geq a$ with error h bounded by ϵ, then the error on $\log q$ is at most ϵ / a. Using this lemma for $q=t, a=4, \epsilon=6 \cdot 2^{-p}$ yields an absolute error of at most $3 / 2 \cdot 2^{-p}$ for $\log t$. Together with the rounding error of at most $\frac{1}{2} u l p(u)=2^{-p}$, this gives an absolute error $\leq 5 / 2 \cdot 2^{-p}$ for u. The same kind of analysis yields a bound of $9 / 2 \cdot 2^{-p}$ for $v, 11 / 4 \cdot 2^{-p}$ for $w, 15 / 4 \cdot 2^{-p}$ for $x, 17 / 4 \cdot 2^{-p}$ for $y, 21 / 4 \cdot 2^{-p}$ for z, and finally $11 / 2 \cdot 2^{-p}<2^{3-p}$ for r.

Assume we output M digits of the approximation r, with $M \geq N$, with rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{3-p} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq 4+M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P07: Compute the first N decimal digits after the decimal point of e^{1000}. We have $e^{1000} \approx 0.197 \cdot 10^{435}$, thus we have to compute $N+435$ digits, and disregard the first 435.

We compute $x=\circ(1000), y=\circ(\exp x)$, with precision p and rounding to nearest. We choose $p \geq 7$, so that $x=1000$ exactly. The error on y thus only consists of the final rounding error, which is bounded by $\frac{1}{2} \operatorname{ulp}(y) \leq 2^{1442-p}$.

Assume we output $M+435$ digits of the approximation r, with $M \geq N$, with rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{1442-p} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq 1443+M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P08: Compute the first N decimal digits after the decimal point of $\cos 10^{50}$. We have $\cos 10^{50} \approx-0.613$, the first N decimal digits after the decimal point match the first N mantissa digits (note that the sign is not requested).

We first compute $x=\circ\left(10^{50}\right)$, then $y=\circ(\cos x)$.
If the precision is $p \geq 117$, then $x=10^{50}$ exactly, thus as for P 07 , the only error is the final rounding error on y, which is at most $\frac{1}{2} \mathrm{ulp}(y)=2^{-p-1}$.

Assume we output M digits of the approximation r, with $M \geq N$, with rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{-p-1} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P09: Compute the first N decimal digits after the decimal point of $\sin (3 \log (640320) / \sqrt{163})$. We have $\sin (3 \log (640320) / \sqrt{163}) \approx 0.221 E-15$, thus the answer starts with 15 zeroes, followed by the first $N-15$ significant digits of the mantissa.

We compute $x=\circ(\log 640320)$, $y=\circ(\sqrt{163}), z=\circ(x / y), s=\circ(3 z), t=\circ(\sin s)$. Taking the precision p large enough so that the constants 640320 and 163 are exact, e.g. $p \geq 14$, we can write $x=\log 640320(1+u)$ and $y=\sqrt{163} /(1+v)$ with $|u|,|v| \leq 2^{-p}$. Thus $x / y=$ $\log (640320) / \sqrt{163}(1+u)(1+v)$ can be written $\log (640320) / \sqrt{163}\left(1+u^{\prime}\right)^{2}$ with $\left|u^{\prime}\right| \leq 2^{-p}$, $z=\log (640320) / \sqrt{163}\left(1+u^{\prime \prime}\right)^{3}$ with $\left|u^{\prime \prime}\right| \leq 2^{-p}$, and $s=3 \log (640320) / \sqrt{163}(1+w)^{4}$ with $|w| \leq 2^{-p}$. For $p \geq 3$, we can write $(1+w)^{4}=1+5 w^{\prime}$ with $\left|w^{\prime}\right| \leq 2^{-p}$; the absolute error on s is thus bounded by $15 \log (640320) / \sqrt{163} 2^{-p} \leq 15.8 \cdot 2^{-p}$. Since the sine function is contracting, the final absolute error on t is bounded by $15.8 \cdot 2^{-p}+\frac{1}{2} \mathrm{ulp}(s)=15.8 \cdot 2^{-p}+2^{-53-p} \leq 2^{4-p}$.

Assume we output $M-15$ digits of the approximation t, with $M \geq N$, with rounding to nearest. The output rounding error will be at most $\frac{1}{2} \cdot 10^{-M}$. If $2^{4-p} \leq \frac{1}{2} \cdot 10^{-M}$, which holds as soon as $p \geq 5+M \frac{\log 10}{\log 2}$, the total error is bounded by 10^{-M}, i.e. one ulp of the output.

Problem P10: Compute the first N decimal digits after the decimal point of

$$
z=\left[(32 / 5)^{1 / 5}-(27 / 5)^{1 / 5}\right]^{1 / 3}-\left(1+3^{1 / 5}-9^{1 / 5}\right) / 25^{1 / 5}
$$

The constant z is identically zero. However, it is possible to output the first N decimal digits after the decimal point, since it suffices to show that $|z|<10^{-N}$ to correctly output N zeroes.

Let $\alpha=5^{-1 / 5}$ and $\beta=3^{1 / 5}$. We have

$$
z=\left[\left(2-\beta^{3}\right) \alpha\right]^{1 / 3}-\left(1+\beta-\beta^{2}\right) \alpha^{2} .
$$

We compute successively $q=\circ(1 / 5), r=\circ\left(q^{1 / 5}\right), s=\circ\left(3^{1 / 5}\right), u=\circ\left(s^{2}\right), v=\circ(s u)$, $w=\circ(2-v), x=\circ(w r), y=\circ\left(x^{1 / 3}, a=\circ(1+s), b=\circ(a-u), c=\circ(b r), d=\circ(c r)\right.$, $e=\circ(y-d)$. (The powers $q^{1 / 5}, 3^{1 / 5}$ and $x^{1 / 3}$ are computed with the mpfr_root function.) We use here the following simplified notation: $x=y(1+\theta)^{k}$ means that x is an approximation, which can be written $y(1+\theta)^{k}$ with $|\theta| \leq 2^{-p}$. We have $q=1 / 5\left(1+\theta_{1}\right), r=5^{-1 / 5}(1+$ $\left.\theta_{1}\right)^{1 / 5}\left(1+\theta_{2}\right)=5^{-1 / 5}\left(1+\theta_{3}\right)^{2}, s=3^{1 / 5}\left(1+\theta_{4}\right), u=9^{1 / 5}\left(1+\theta_{5}\right)^{3}, v=27^{1 / 5}\left(1+\theta_{6}\right)^{5}$. We can check that for $p \geq 9$, we have $1 / 16 \leq w<1 / 8$, thus the rounding error on w is bounded by $\frac{1}{2} \operatorname{ulp}(w)=2^{-p-4}$; for $p \geq 4$, we can write $\left(1+\theta_{6}\right)^{5}=1+6 \theta_{7}$, thus the total error on w is at most $2^{-p-4}+6 \beta^{3} \theta_{7} \leq 12 \cdot 2^{-p}$. We can thus write $w=W+12 \theta_{8}$ with $W=2-\beta^{3}$. We want to be able to write $w=W\left(1+\theta_{9}\right)^{k}$ for some integer k; we thus need $W+12 \theta_{8}=W\left(1+\theta_{9}\right)^{k}$, or $12 \theta_{8} / W=\left(1+\theta_{9}\right)^{k}-1$. A simple computation shows that $k=241$ is enough: $w=\left(2-\beta^{3}\right)\left(1+\theta_{9}\right)^{241}$ for $p \geq 9$. We thus have $x=\left(2-\beta^{3}\right) \alpha\left(1+\theta_{10}\right)^{244}$, $y=\left[\left(2-\beta^{3}\right) \alpha\right]^{1 / 3}\left(1+\theta_{11}\right)^{83}$.

The absolute error on s being bounded by $\frac{1}{2} u l p(s)=2^{-p}$, that on a is at most $2^{-p}+$ $\frac{1}{2} \operatorname{ulp}(a)=3 \cdot 2^{-p}$; that on u is bounded by $9^{1 / 5}\left|\left(1+\theta_{5}\right)^{3}-1\right| \leq 9^{1 / 5} \cdot\left(4 \theta_{5}\right) \leq 7 \cdot 2^{-p}$, thus that on b is bounded by $3 \cdot 2^{-p}+7 \cdot 2^{-p}+\frac{1}{2} \mathrm{ulp}(b) \leq 11 \cdot 2^{-p}$. We thus can write $b=B+11 \cdot \theta_{12}$ with $B=1+\beta-\beta^{2}$; since $B \geq 1 / 2$, we can write similarly as above $b=B\left(1+\theta_{13}\right)^{23}$.

Thus $c=\left(1+\beta-\beta^{2}\right) \alpha\left(1+\theta_{14}\right)^{26}, d=\left(1+\beta-\beta^{2}\right) \alpha^{2}\left(1+\theta_{15}\right)^{29}$, thus the absolute error on d is bounded by $\left(1+\beta-\beta^{2}\right) \alpha^{2}\left|\left(1+\theta_{15}\right)^{29}-1\right| \leq\left(1+\beta-\beta^{2}\right) \alpha^{2}\left(30 \cdot 2^{-p}\right) \leq 11 \cdot 2^{-p}$ for $p \geq 9$.

Similarly, the absolute error on y is bounded by $\left[\left(2-\beta^{3}\right) \alpha\right]^{1 / 3}\left|\left(1+\theta_{11}\right)^{83}-1\right| \leq[(2-$ $\left.\left.\beta^{3}\right) \alpha\right]^{1 / 3}\left(91 \cdot 2^{-p}\right) \leq 34 \cdot 2^{-p}$, still for $p \geq 9$.

For $p \geq 9$, we can show that $|e| \leq 5 / 128$, thus the rounding error on e is bounded by $\frac{1}{2} \operatorname{ulp}(e) \leq 2^{-p-5}$. Therefore the total error on e is bounded by $11 \cdot 2^{-p}+34 \cdot 2^{-p}+2^{-p-5} \leq 2^{6-p}$.

If $2^{6-p}<\frac{1}{2} 10^{-N}$, i.e. $p \geq 7+N \frac{\log 10}{\log 2}$, then since we know the exact answer is zero, we should have $|e| \leq 2^{6-p}$, so we know the exact answer is less than 10^{-N} in absolute value, so the output should be N consecutive zeroes. Note that in this case no loop is needed: the first iteration should always be successful.

Problem P11: Compute the first N decimal digits after the decimal point of $\tan e+\arctan e+\tanh e+\operatorname{arctanh}(1 / e) . \quad$ We have $\tan e+\arctan e+\tanh e+\operatorname{arctanh}(1 / e) \approx$ 2.145, thus we have to compute $N+1$ digits and discard the initial 2 .

We compute $x=\circ(\exp 1), y=\circ(\tan x), z=\circ(\arctan x), t=\circ(\tanh x), u=\circ(1 / x)$, $v=\circ(\operatorname{arctanh} u), w=\circ(y+v), a=\circ(w+t), b=\circ(a+z)$.

For $p \geq 10$, we have $2 \leq x, b<3,-1 / 2<y \leq-1 / 4,1 \leq z<2,1 / 2 \leq t, a<1$, $1 / 4 \leq u, v<1 / 2,-1 / 8<w \leq-1 / 16$. The absolute error on x is at most $\frac{1}{2} \operatorname{ulp}(x)=2^{1-p}$; since $x=e+h$ with $|h| \leq 2^{1-p}$, we have $\tan x=\tan e+h\left(1+\tan ^{2} \theta\right)$ with $\theta \in(e, x)$, thus the error on y is at $\operatorname{most} \frac{1}{2} u \operatorname{ulp}(y)+5.78 \cdot 2^{1-p} \leq 11.9 \cdot 2^{-p}$. Similarly, we have $\arctan x=$ $\arctan e+\frac{h}{1+\theta^{2}}$, thus the error on z is at most $\frac{1}{2} u \operatorname{ulp}(z)+1 / 52^{1-p} \leq 1.4 \cdot 2^{-p}$. For t, we have $\tanh x=\tanh e+h\left(1-\tanh ^{2} \theta\right)$, thus the error on t is at most $\frac{1}{2} \mathrm{ulp}(t)+0.071 \cdot 2^{1-p} \leq 0.642 \cdot 2^{-p}$. The error on u is at most $\frac{1}{2} u l p(u)+2^{1-p} / \theta^{2} \leq 0.75 \cdot 2^{-p}$; then that on v is at most $\frac{1}{2} u l p(v)+$ $\left(0.75 \cdot 2^{-p}\right) \cdot 1 / 3 \leq 0.5 \cdot 2^{-p}$. By Sterbenz theorem, $y+v$ is exact, thus the error on w is at most $11.9 \cdot 2^{-p}+0.5 \cdot 2^{-p} \leq 12.4 \cdot 2^{-p}$; that on a is at most $\frac{1}{2} \mathrm{ulp}(a)+12.4 \cdot 2^{-p}+0.642 \cdot 2^{-p} \leq 13.6 \cdot 2^{-p}$; and finally that on b is at most $\frac{1}{2} \operatorname{ulp}(b)+13.6 \cdot 2^{-p}+1.4 \cdot 2^{-p} \leq 17 \cdot 2^{-p} \leq 2^{5-p}$.

Problem P12: Compute the first N decimal digits after the decimal point of $\arcsin (1 / e)+\cosh e+\operatorname{arcsinh} e$. We have $\arcsin (1 / e)+\cosh e+\operatorname{arcsinh} e \approx 9.712$, thus as in P11 we compute $N+1$ digits and discard the leading " 9 ".

We proceed as follows: let $x=\circ(\exp 1), y=\circ(1 / x), z=\circ(\arcsin y), t=\circ(\operatorname{arcsinh} x)$, $u=\circ(\cosh x), v=\circ(z+t), w=\circ(v+u)$. For $p \geq 3$, we have $2 \leq x, v<3,1 / 4 \leq y, z<1 / 2$, $1 \leq t<2,4 \leq u<8,8 \leq w<16$. The same error analysis as for P11 yields a maximum error of at most 2^{1-p} for $x, 0.75 \cdot 2^{-p}$ for $y, 1.12 \cdot 2^{-p}$ for $z, 2.79 \cdot 2^{-p}$ for $t, 24.1 \cdot 2^{-p}$ for u, $5.91 \cdot 2^{-p}$ for v, and finally $38.1 \cdot 2^{-p} \leq 2^{6-p}$ for w.

Problem P13: Compute the first N decimal digits after the decimal point of the N th term of the logistic map. The logistic map is defined by $x_{0}=1 / 2$, and

$$
x_{n+1}=\frac{15}{4} x_{n}\left(1-x_{n}\right)
$$

We compute it as follows:

$$
\begin{aligned}
& t_{n}=\circ\left(1-x_{n}\right) \\
& u_{n}=\circ\left(x_{n} t_{n}\right) \\
& v_{n}=\circ\left(15 u_{n}\right) \\
& x_{n+1}=v_{n} / 4 \text { [exact] }
\end{aligned}
$$

For $p \geq 8, x_{1}=\frac{15}{16}=0.9375$ and $x_{2}=\frac{225}{1024}=0.2197265625$ are computed exactly. Since for $x_{2} \leq x \leq x_{1}, x_{2} \leq \frac{15}{4} x(1-x) \leq x_{1}$, we have $x_{2} \leq x_{n} \leq x_{1}$ for all $n \geq 0$. We deduce from this that $0 \leq t_{n}<1,0 \leq u_{n} \leq 1 / 4,0 \leq v_{n} \leq 15 / 4$.

Let ϵ_{n} be the absolute error on x_{n}, and τ_{n} the rounding error on t_{n}, i.e. $t_{n}=1-x_{n}+\tau_{n}$. The absolute error on t_{n} is at most $\epsilon_{n}+\tau_{n}$, and that on u_{n} is at most $\frac{1}{2} \operatorname{ulp}\left(u_{n}\right)+\epsilon_{n} t_{n}+x_{n}\left(\epsilon_{n}+\tau_{n}\right)$; replacing t_{n} by $1-x_{n}+\tau_{n}$, we get $2^{-p-3}+\epsilon_{n}+\left(x_{n}+\epsilon_{n}\right) \tau_{n}$. Since $\tau_{n} \leq \frac{1}{2} \mathrm{ulp}\left(t_{n}\right) \leq 2^{-p-1}$ and $x_{n}+\epsilon_{n} \leq 15 / 16$ - remember the exact value for x_{n} lies in the interval [$x_{n}-\epsilon_{n}, x_{n}+\epsilon_{n}$] -, the error on u_{n} is bounded by $2^{-p-3}+\epsilon_{n}+\frac{15}{16} 2^{-p-1} \leq \epsilon_{n}+\frac{19}{32} 2^{-p}$.

The error on v_{n} is bounded by $\frac{1}{2} \operatorname{ulp}\left(v_{n}\right)+15\left(\epsilon_{n}+\frac{19}{32} 2^{-p}\right) \leq 15 \epsilon_{n}+\frac{83}{32} 2^{-p}$. Finally, the error on x_{n+1} is bounded by

$$
\epsilon_{n+1} \leq \frac{15}{4} \epsilon_{n}+\frac{83}{128} 2^{-p}
$$

This recurrence admits as solution:

$$
\epsilon_{n}=\frac{83}{352} 2^{-p}\left[(15 / 4)^{n}-1\right] \leq 2^{-p-2}(15 / 4)^{n} .
$$

Choose $M \geq N$. Since $0.2197265625 \leq x_{N} \leq 0.9375$, the first decimal digit of x_{N} has always weight $1 / 10$, so the M th digit has weight 10^{-M}. If $2^{-p-2}(15 / 4)^{n} \leq \frac{1}{2} 10^{-M}$, i.e. $p \geq M \frac{\log 10}{\log 2}+n \frac{\log (15 / 4)}{\log 2}-1$, then the M-digit decimal output of x_{N} lies within one ulp of the corresponding exact value.

Problem P14: Compute the first N decimal digits after the decimal point of $a_{100 N}$. The sequence $\left(a_{n}\right)$ is defined as follows: $a_{0}=11 / 2, a_{1}=61 / 11$,

$$
a_{n+1}=111-\frac{1130-3000 / a_{n-1}}{a_{n}}
$$

and is due to Jean-Michel Muller. It is well known that $a_{n}=\frac{6^{n+1}+5^{n+1}}{6^{n}+5^{n}}$. So we could cheat and compute directly that closed form. However we believe this is not in the spirit of the competition.

We compute the sequence as follows, with precision p and rounding to nearest:

$$
\begin{aligned}
& b_{n}=\circ\left(3000 / a_{n-1}\right) \\
& c_{n}=\circ\left(1130-b_{n}\right) \\
& d_{n}=\circ\left(c_{n} / a_{n}\right) \\
& a_{n+1}=\circ\left(111-d_{n}\right)
\end{aligned}
$$

Since $11 / 2 \leq a_{n} \leq 6$, we can show that $545 \leq b_{n} \leq 600,530 \leq c_{n} \leq 585,88 \leq d_{n} \leq 107$. Let ϵ_{n} be the absolute error on a_{n}. The error on b_{n} is bounded by $\frac{1}{2} \operatorname{ulp}\left(b_{n}\right)+\epsilon_{n} \frac{3000}{\theta^{2}}$ for some $\theta \in\left[a_{n-1}-\epsilon_{n-1}, a_{n-1}+\epsilon_{n-1}\right]$, which is at most $2^{9-p}+100 \epsilon_{n-1}$. The error on c_{n} is bounded by $\frac{1}{2} \operatorname{ulp}\left(c_{n}\right)+2^{9-p}+100 \epsilon_{n-1} \leq 15362^{-p}+100 \epsilon_{n-1}$; that on d_{n} is bounded by $\frac{1}{2} \operatorname{ulp}\left(d_{n}\right)+\operatorname{err}\left(c_{n}\right) / a_{n}+\epsilon_{n} \frac{585}{\theta^{2}} \leq 3442^{-p}+18 \epsilon_{n-1}+20 \epsilon_{n}$. Finally a_{n+1} is exact by Sterbenz theorem, so we have

$$
\epsilon_{n+1} \leq 20 \epsilon_{n}+18 \epsilon_{n-1}+3442^{-p}
$$

together with $\epsilon_{0}=0$ since $11 / 2$ is exact for $p \geq 4$, and $\epsilon_{1} \leq \frac{1}{2} \operatorname{ulp}\left(a_{1}\right)=42^{-p}$. This Fibonacci-like recurrence admits an exact solution:

$$
\epsilon_{n} 2^{p} \leq(172 / 37-737 / 2183 \sqrt{118}) \alpha^{n}+(172 / 37+737 / 2183 \sqrt{118}) \beta^{n}-344 / 37 .
$$

with $\alpha=10+\sqrt{118} \approx 20.863, \beta=10-\sqrt{118} \approx-0.863$. Since $|\beta|<1$, it follows:

$$
\epsilon_{n} 2^{p} \leq(172 / 37-737 / 2183 \sqrt{118}) \alpha^{n}+(172 / 37+737 / 2183 \sqrt{118})-344 / 37 \leq \alpha^{n}
$$

Recall we want the first N digits after the decimal point of $a_{100 N}$. Let $M \geq N$. If $\epsilon_{100 N} \leq \frac{1}{2} 10^{-M}$, i.e. $p \geq 1+100 N \frac{\log \alpha}{\log 2}+M \frac{\log 10}{\log 2}$, then the M-digit output will be within one ulp of the correct result. Note: since $\frac{\log \alpha}{\log 2} \approx 4.383$, this gives $p \approx 442 N$.

Alas, this approach does not work as is. Indeed, since $a_{n}=\frac{6^{n+1}+5^{n+1}}{6^{n}+5^{n}}$, we have $a_{100 N} \approx$ $6-(5 / 6)^{100 N}$, and thus $a_{100 N}$ is of the form $5.999 \ldots 999$, with about 7.9 N consecutive " 9 ". This means that with rounding to nearest, we need about $M \approx 7.9 \mathrm{~N}$ to be able to round correctly the output.

Problem P15: Compute the first N decimal digits after the decimal point of the harmonic number $h_{10 N}$. We recall $h_{n}=1+1 / 2+\cdots+1 / n$. We can compute h_{n} efficiently using the "binary splitting" method. Define $P(a, b)$ and $Q(a, b)$ as follows: if $b=a+1$, then $P(a, b)=1$ and $Q(a, b)=b$, otherwise

$$
\begin{equation*}
P(a, b)=P(a, c) Q(c, b)+Q(a, c) P(c, b), \quad Q(a, b)=Q(a, c) Q(c, b) \tag{1}
\end{equation*}
$$

for $c=\lfloor(a+b) / 2\rfloor$. We can easily check that $P(a, b) / Q(a . b)=1 /(a+1)+\cdots+1 / b$, and thus $h_{n}=P(0, n) / Q(0, n)$.

However, to get the first N decimal digits after the decimal point of $h_{10 N}$, computing $P(0,10 N)$ and $Q(0,10 N)$ exactly is not very efficient. Indeed, we have $Q(0,10)=(10 N)$!, which has about $10 N \log _{10}(10 N)$ digits, whereas we want only N digits!

To solve this problem, we use the following idea. We use a working precision p large enough to get N correct decimal digits at the end. We compute p-bit approximations of
$P(0, n) / Q(0, n)$. Once we have computed $P(a, b)$ and $Q(a, b)$ as in Eq. (1), if both exceed p bits, we truncate them by 2^{k} so that the smallest one has exactly p bits, with rounding to nearest. The relative error on each truncation is bounded by 2^{1-p}.

Lemma. If the maximal number of truncations along a branch of the recursive call tree is t, then the computed values $P(a, b)$ and $Q(a, b)$ satisfy $P(a, b) / Q(a, b)=h(a, b)(1+u)^{t}$ for $|u| \leq 2^{1-p}$.

We prove the lemma by induction on $b-a$. If $b=a+1$, then P and Q are exact - we assume the working precision is large enough so that b can be represented exactly, i.e. $10 N \leq 2^{p}$-, so the lemma holds. Assume now we have computed approximations of $P(a, c), P(c, b), Q(a, c)$ and $Q(c, b)$, with t_{1} truncations for $P(a, c)$ and $Q(a, c)$, and t_{2} runcations for $P(c, b)$ and $Q(c, b)$. We thus have $P(a, c) / Q(a, c)=h(a, c)(1+u)^{t_{1}}$ and $P(c, b) / Q(c, b)=h(c, b)(1+v)^{t_{2}}$, with $|u|,|v| \leq 2^{1-p}$. If no truncation occurs for $h(a, b)$, then we have $P(a, b) / Q(a, b)=P(a, c) / Q(a, c)+P(c, b) / Q(c, b)$ exactly, thus $P(a, b) / Q(a, b)=$ $h(a, c)(1+u)^{t_{1}}+h(c, b)(1+v)^{t_{2}}$. Since all values are positive, we can write $P(a, b) / Q(a, b)=$ $h(a, b)(1+w)^{\max \left(t_{1}, t_{2}\right)}$. If a truncation occurs on $P(a, b)$ and $Q(a, b)$, then it induces a relative error of at most 2^{1-p} on the ratio - since both errors go in opposite directions - thus we can write $P(a, b) / Q(a, b)=h(a, b)(1+w)^{1+\max \left(t_{1}, t_{2}\right)}$.

We can easily bound the maximal number of truncations. Now since $Q(a, b)=(a+1) \cdots b$, we have $Q(a, b) \leq n^{b-a}$, thus as long as $n(b-a)<2^{p}$, there can be no truncation. Here, we have $n=10 N$ and we take $2^{p} \geq 10^{N}$, so as long as $\left.(10 N)^{(} b-a\right)<10^{N}$, i.e. $b-a<N \frac{\log 10}{\log (10 N)}$, there is no truncation. The number of levels where there can be truncation is thus at most $\left\lceil\log _{2}\left(10 \frac{\log (10 N)}{\log 10}\right\rceil\right.$. For $N \leq 10^{7}$, this is at most 7 .

After we have computed a rational approximation P / Q of $h_{10 N}$, we convert P and Q to p bit floating-point numbers with rounding to nearest, and we divide the two approximations. Since at least one of P and Q fits exactly into p bits, the additional error due to this conversion corresponds to $(1+u)^{2}$ with $|u| \leq 2^{-p}$. Thus the final value is within $(1+u)^{2}(1+2 u)^{t}$ of $h_{10 N}$. For $t \leq 8$ and $p \geq 4$, the relative error is bounded by 2^{5-p}.

Problem P16: Compute the first N non zero digits of $f(N)$. The sequence $f(i)$ is defined by

$$
f(i)=\pi-\left(3+\frac{1 \cdot 1}{3 \cdot 4 \cdot 5}\left(8+\frac{2 \cdot 3}{3 \cdot 7 \cdot 8}\left(\cdots\left(5 i-2+\frac{i(2 i-1)}{3(3 i+1)(3 i+2)}\right)\right)\right)\right) .
$$

We can compute $f(i)$ by the following program:

$$
\begin{aligned}
& r \leftarrow 1 \\
& \text { for } i:=N \text { downto } 1 \text { do } \\
& r \leftarrow r i(2 i-1) / 3 /(3 i+1) /(3 i+2) \\
& r \leftarrow 5 i-2+r \\
& r \leftarrow \pi-r
\end{aligned}
$$

The computation in the loop are done as follows:

$$
\begin{aligned}
& r \leftarrow \circ(i r) \\
& r \leftarrow \circ((2 i-1) r) \\
& r \leftarrow \circ(r / 3) \\
& r \leftarrow \circ(r /(3 i+1)) \\
& r \leftarrow \circ(r /(3 i+2)) \\
& r \leftarrow \circ(r+(5 i-2))
\end{aligned}
$$

The ratio between the computed value of r and the exact value after the k th iteration can be written $(1+u)^{6 k}$ for $|u| \leq 2^{-p}$. This is true for $k=0$. Assume this is true for $k \geq 0$. Then after $r \leftarrow \circ(r /(3 i+2))$ the ratio can be written $(1+u)^{6 k+5}$; since both r and $5 i-2$ are positive, we can write $r(1+u)^{6 k+5}+(5 i-2)=[r+(5 i-2)]\left(1+u^{\prime}\right)^{6 k+5}$, thus we get $\left(1+u^{\prime \prime}\right)^{6 k+6}$ after rounding.

When $i \rightarrow \infty, f(i)$ converges to 0 . When truncated to $i=N$, it is easy to see that $f(N)=O\left((2 / 27)^{N}\right)$. Thus to get N significant digits of $f(N)$, we need the final error to be less than 135^{-N}.

The error on r before $\pi-r$ is of the form $(1+u)^{6 N}$; using $|u| \leq 2^{-p} \leq 135^{-N}$, it can be shown that $\left|(1+u)^{6 N}-1\right| \leq 7 N u$. The error when computing π is bounded by 2^{1-p}, and that of rounding $\pi-r$ too (the latter is much smaller due to the cancellation, but this bound is enough). Thus the final error is bounded by $7 N u r+2^{2-p} \leq(7 N+1) 2^{2-p}$.

Problem P17: Compute the first N decimal digits after the decimal point of $\zeta(2) \zeta(3)+\zeta(5)$. We have $\zeta(2) \zeta(3)+\zeta(5) \approx 3.014$, so we just need to compute $N+1$ significant digits and discard the first one.

Since the Riemann Zeta function is native in MPFR, we simply compute with precision p and rounding to nearest:

$$
\begin{aligned}
& u \leftarrow \circ(\zeta(2)) \\
& v \leftarrow \circ(\zeta(3)) \\
& w \leftarrow \circ(\zeta(5)) \\
& t \leftarrow \circ(u v) \\
& s \leftarrow \circ(t+w)
\end{aligned}
$$

If θ denotes a generic quantity such that $|\theta| \leq 2^{-p}$, we have $u=\zeta(2)(1+\theta), v=\zeta(3)(1+\theta)$, $w=\zeta(5)(1+\theta), t=\zeta(2) \zeta(3)(1+\theta)^{3}$, thus since all quantities are positive, $t+w=$ $(\zeta(2) \zeta(3)+\zeta(5))(1+\theta)^{3}$, and $s=(\zeta(2) \zeta(3)+\zeta(5))(1+\theta)^{4}$. For $p \geq 6$, we have $s \leq 25 / 8$; we can write $(1+\theta)^{4}$ as $1+5 \theta$, thus the final absolute error is bounded by $5 \cdot 2^{-p} s \leq 2^{4-p}$.

Note: the mpfr_zeta function is quite slow for evaluating $\zeta(i)$ for i a small integer. A close look at the implementation shows that the bottleneck lies in the computation of the Bernoulli numbers, which takes more than 99% of the computing time. Also, the computation of the Bernoulli numbers could be cached and thus shared between the three evaluations of ζ, which is not the case.

Note 2: we could replace $\zeta(2)$ by $\pi^{2} / 6$, which would give a gain of about 33% since the computation of π is quite efficient, but we thought this was not in the spirit of the competition.

Problem P18: Compute the first N decimal digits after the decimal point of Euler's γ constant. Euler's γ constant is defined as $\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)-\log n \approx$ 0.577. This is a native MPFR constant, thus we simply compute $x=\circ(\gamma)$ with precision p and rounding to nearest. The largest possible error is $\frac{1}{2} \mathrm{ulp}(x)=2^{-p-1}$.

Problem P19: Compute the first N decimal digits after the decimal point of $L=\sum_{n=1}^{\infty} 7^{-n^{2}}$. We have $L \approx 0.143$. This is simply a base-conversion problem. The base7 representation of L is $(0.100100001 \ldots)$. We simply form a string corresponding to this base- 7 representation, truncated to get enough accuracy, then convert this string to a binary floating-point value, which is then converted back to a decimal string.

Assume we truncate L to q base- 7 digits, use a binary precision of p bits, and a final decimal output of $M \geq N$ digits, all with rounding to nearest. The error we make when truncating L to q digits is bounded by 7^{-q}, the input conversion error is bounded by $\frac{1}{2} 2^{-p}$, and the output conversion error by $\frac{1}{2} 10^{-M}$. If both $7^{-q}+\frac{1}{2} 2^{-p} \leq \frac{1}{2} 10^{-M}$, then the total error will be less than one ulp of the output. It thus suffices to have $q \geq 1+M \frac{\log 10}{\log 7}$ and $p \geq 1+M \frac{\log 10}{\log 2}$.

Problem P20: Compute the N th partial quotient from the continued fraction expansion of $\cos (2 \pi / 7)$. We have $\cos (2 \pi / 7) \approx 0.623$. Its continued fraction expansion starts with $[1,1,1,1,1,9,1,2, \ldots]$. We use a subquadratic implementation of Lehmer's method ${ }^{2}$. We first compute an interval enclosing $\cos (2 \pi / 7)$, with a binary precision of about 3.5 N bits ${ }^{3}$. The MPFR cos function being too slow, we use an interval Newton iteration.

The quadratic Lehmer's algorithm is used when the input size in bits is less than a given threshold (5000 bits seems near to optimal in our implementation), otherwise a subquadratic variant is used, which looks like the "half-gcd" algorithm for computing gcds.

Problem P21: Compute the first N decimal digits after the decimal point of the solution of $e^{\sin x}=x$. The equation $e^{\sin x}=x$ has a unique solution $\rho \approx 2.219$. We approximate it using Newton's iteration, with the function $f(x)=x-e^{\sin x}$. The explicit second-order expansion of $f(x)$ at $x=\rho$ yields:

$$
\begin{equation*}
f(\rho)=f(x)+(\rho-x) f^{\prime}(x)+\frac{(\rho-x)^{2}}{2} f^{\prime \prime}(\theta) \tag{2}
\end{equation*}
$$

for $\theta \in(x, \rho)$. Neglecting the second order term, we get the usual formula for Newton's iteration:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} .
$$

[^1]Rewriting Eq. (2) gives:

$$
\rho=x-\frac{f(x)}{f^{\prime}(x)}-\frac{(\rho-x)^{2}}{2} \frac{f^{\prime \prime}(\theta)}{f^{\prime}(x)},
$$

thus if $\left|f^{\prime \prime}\right| \leq M$ and $\left|f^{\prime}\right| \geq m$ on the considered interval, we have $\left|x_{k+1}-\rho\right| \leq \frac{M}{2 m}\left|x_{k}-\rho\right|^{2}$. We have $f^{\prime}(x)=1-e^{\sin x} \cos x$, and $f^{\prime \prime}(x)=e^{\sin x}\left(\sin x-\cos ^{2} x\right)$, and $\left|f^{\prime \prime}\right| \leq 2$ for $2 \leq x \leq 3$.

Here, we have $\left|f^{\prime}(x)\right| \geq 2$ and $\left|f^{\prime \prime}(x)\right| \leq 2$ for $2 \leq x \leq 3$, thus $\left|x_{k+1}-\rho\right| \leq 1 / 2\left|x_{k}-\rho\right|^{2}$.
We use the following rounding operations to compute an approximation of x_{k+1} from that of x_{k} :

$$
\begin{aligned}
& y \leftarrow \circ(\sin x) \\
& z \leftarrow \circ(\cos x) \\
& t \leftarrow \circ\left(e^{y}\right) \\
& u \leftarrow \circ(x-t) \\
& v \leftarrow \circ(t z) \\
& w \leftarrow \circ(1-v) \\
& r \leftarrow \circ(u / w) \\
& s \leftarrow \circ(x-r)
\end{aligned}
$$

We can show that when $17 / 8 \leq x \leq 9 / 4$ and the precision p satisfies $p \geq 5$, then $3 / 4 \leq y \leq$ $7 / 8,-21 / 32 \leq z \leq-1 / 2,2 \leq t \leq 5 / 2,-27 / 16 \leq v \leq-1,2 \leq w \leq 11 / 4$.

Assume now that $|x-\rho| \leq 2^{-q}$, and we apply one iteration as above. Since $\left|f^{\prime}\right| \leq 3$ for $2 \leq x \leq 3$, we have $|f(x)| \leq 3 \cdot 2^{-q}$. The error on y is at most $\frac{1}{2} u \operatorname{ulp}(y)=2^{-p-1}$, that on t is at $\operatorname{most} \frac{1}{2} \operatorname{ulp}(t)+e^{\theta} 2^{-p-1}$ for $3 / 4 \leq \theta \leq 7 / 8$, i.e. at most $3.2 \cdot 2^{-p}$. Thus $x-t$ is within $3.2 \cdot 2^{-p}$ of its corresponding exact value $f(x)$. But $|f(x)| \leq 3 \cdot 2^{-q}$, we have $|x-t| \leq 3 \cdot 2^{-q}+3.2 \cdot 2^{-p}$. Assume $p \geq 2 q$ and $q \geq 2$, then $|x-t| \leq \cdot 4 \cdot 2^{-q}$. Thus the error on u is bounded by $\frac{1}{2} \operatorname{ulp}(u)+3.2 \cdot 2^{-p} \leq 2^{1-q-p}+3.2 \cdot 2^{-p} \leq 3.7 \cdot 2^{-p}$ since $q \geq 2$.

The error on z is at $\operatorname{most} \frac{1}{2} \mathrm{ulp}(z) \leq 2^{-p-1}$, that on v is bounded by $\frac{1}{2} \operatorname{ulp}(v)+\operatorname{err}(t)(|z|+$ $\operatorname{err}(z))+|t| \operatorname{err}(z) \leq 2^{-p}+3.2 \cdot 2^{-p}(0.68)+5 / 22^{-p-1} \leq 4.5 \cdot 2^{-p}$, that on w is bounded by $\frac{1}{2} \mathrm{ulp}(w)+4.5 \cdot 2^{-p} \leq 2^{1-p}+4.5 \cdot 2^{-p} \leq 6.5 \cdot 2^{-p}$. We can write $1 / w=1 / f^{\prime}\left(x_{k}\right)+6.5 \cdot 2^{-p} / \theta^{2}$ for $\theta \in\left(w, f^{\prime}\left(x_{k}\right)\right)$, thus $1 / w=1 / f^{\prime}\left(x_{k}\right)+1.7 \epsilon$ with $|\epsilon| \leq 2^{-p}$. This gives an error on r bounded by $\frac{1}{2} \operatorname{ulp}(r)+\operatorname{err}(u)\left(1 / w+1.72^{-p}\right)+|u|\left(1.72^{-p}\right) \leq 2^{-2 p}+3.7 \cdot 2^{-p}\left(1 / 2+1.72^{-p}\right)+2^{2-q}\left(1.72^{-p}\right) \leq$ $3.7 \cdot 2^{-p}$ for $p \geq 6$. Then the final error on s - i.e. the difference with x_{k+1} as computed in infinite precision - is bounded by $\frac{1}{2} \mathrm{ulp}(s)+3.7 \cdot 2^{-p} \leq 2^{1-p}+3.7 \cdot 2^{-p} \leq 5.7 \cdot 2^{-p}$.

Therefore, if $p \geq 2 q+4$, then $5.7 \cdot 2^{-p} \leq 2^{-2 q-1}$, and since $\left|x_{k+1}-\rho\right| \leq 2^{-2 q-1}$, then $|s-\rho| \leq 2^{-2 q}$, so we get a quadratic convergence.

Note: we don't need to compute $r=\circ(u / v)$ to full precision p, since we know in advance that r is of the order of 2^{-q}, so only the $q \approx p / 2$ most significant bits of r are needed. This implies in turn that u and w can be computed with precision $\approx p / 2$ too. In fact, only y and t need to be computed to full precision p, since there is a cancellation in $x-t$. However the expected speedup is small, since the most expensive operations are the computations of $\sin x, \cos x$ and e^{y}.

Problem P22: Compute the first N decimal digits after the decimal point of $I=\int_{0}^{1} \sin (\sin x) d x$. We have $I \approx 0.430$. We use here an implementation by Laurent Fousse of Gauss-Legendre quadrature, with a rigorous bound on the total error, i.e. both the error due to the quadrature method and the rounoff error.

Problem P23: Compute the first 10 decimal digits of the element $(N-1, N-3)$ of M_{1}. The matrix M_{1} is the inverse of the $N \times N$ Hilbert matrix, whose entries are $\left(\frac{1}{i+j-1}\right)$ for $1 \leq i, j \leq N$. For example, for $N=7$, we have

$$
M_{1}=\left[\begin{array}{ccccccc}
49 & -1176 & 8820 & -29400 & 48510 & -38808 & 12012 \\
-1176 & 37632 & -317520 & 1128960 & -1940400 & 1596672 & -504504 \\
8820 & -317520 & 2857680 & -10584000 & 18711000 & -15717240 & 5045040 \\
-29400 & 1128960 & -10584000 & 40320000 & -72765000 & 62092800 & -20180160 \\
48510 & -1940400 & 18711000 & -72765000 & 133402500 & -115259760 & 37837800 \\
-38808 & 1596672 & -15717240 & 62092800 & -115259760 & 100590336 & -33297264 \\
12012 & -504504 & 5045040 & -20180160 & 37837800 & -33297264 & 11099088
\end{array}\right],
$$

and here the element $(N-1, N-3)$ is 62092800 . For $N=10$, the element $(N-1, N-3)$ is 1766086882560 , so the answer should be 1766086882 . It can be seen that the entries of M_{1} are integral. We assume the element $(N-1, N-3)$ cannot be represented exactly as a 10 -digit floating-point number, which seems to be the case for $N \geq 10$.

We use the following approach. Using the MPFI library developed by Nathalie Revol and Fabrice Rouillier ${ }^{4}$, we perform a naive Gaussian elimination to solve the linear system $H x=b$, where all b entries are zero, except $b_{N-3}=1$. The entry x_{n-1} is a binary floatingpoint interval $[u, v]$ enclosing the exact value of the element $(N-1, N-3)$ of M_{1}. If both u and v agree, when converted to 10 -digit decimal floating-point values with rounding to nearest, then this common value is the wanted answer.

Experimentally, it seems that using a working precision $p \geq 4.2 N \log N$ is enough. (For $N=100$, this gives $p=1965$, whereas $p=1375$ is the minimal precision that works.)

Problem P24: Compute the first 10 decimal digits of the element $(N-1, N)$ of M_{2}. The matrix M_{1} is the inverse of the $I_{N}+H_{N}$, where I_{N} is the $N \times N$ identity matrix, and H_{N} is the $N \times N$ Hilbert matrix. For $n=4$, we have:

$$
M_{2}=\left[\begin{array}{cccc}
\frac{10213696}{17799777} & -\frac{1084840}{5933259} & -\frac{728800}{659251} & -\frac{13777740}{1779977} \\
-\frac{1084840}{5933359} & \frac{1688800}{197753} & -\frac{75300}{659251} & -\frac{550480}{5533259} \\
-\frac{72880}{659251} & -\frac{75300}{659251} & \frac{593280}{659251} & -\frac{57400}{659251} \\
-\frac{1377740}{17799777} & -\frac{550480}{5933259} & -\frac{57400}{659251} & \frac{16391200}{17799777}
\end{array}\right],
$$

[^2]thus the element $(N-1, N)$ is $\frac{-57400}{659251} \approx-0.08706850653$, and the answer should be 8706850653 . As in P23, we assume that element cannot be represented exactly as a 10-digit decimal floating-point value.

We use the same technique as in P23, with the MPFI library. The only difference is that, the matrix $I_{N}+H_{N}$ being much less singular, the necessary working precision is much smaller. We found experimentally that up to $N=1000$, a precision of 46 bits is enough.

Timings

We give timings obtained on the competition machine "harif" (AMD Opteron 144 under Debian GNU/Linux "sid" unstable i386 in 32 bit mode, with 4GB of RAM). Here, the column N stands for 10^{N} digits, as in the original practice problems.

We used version 4.1.4 of GMP, tuned for harif: go to repository tune, type make tune, and replace the file gmp-mparam.h by the results obtained, in particular:

```
#define MUL_KARATSUBA_THRESHOLD 24
#define MUL_TOOM3_THRESHOLD 177
#define DIV_DC_THRESHOLD 68
#define POWM_THRESHOLD 116
#define GET_STR_DC_THRESHOLD 23
#define GET_STR_PRECOMPUTE_THRESHOLD 35
#define SET_STR_THRESHOLD 3962
#define MUL_FFT_TABLE { 784, 1824, 3456, 7680, 22528, 57344, 0 }
#define MUL_FFT_MODF_THRESHOLD }84
#define MUL_FFT_THRESHOLD 8448
```

We used the cvs version from MPFR from 20 September 2005 (cvs -D 20050920 co mpfr), tuned for harif too (simply type make tune in the mpfr build directory):
\#define MPFR_MUL_THRESHOLD 18
\#define MPFR_EXP_2_THRESHOLD 32
\#define MPFR_EXP_THRESHOLD 25081
We used MPFI version 1.3.3, with a small patch to make it work with the cvs version from MPFR.

Finally, we used INTLIB version 0.0.20050913, a numerical quadrature library from Laurent Fousse.

problem	N	cpu time	first... last digits				
P01	4	0.181	678... 573				
P01	5	18.062	678... 645				
P02	4	0.021	772... 288	problem	N	cpu time	first... last digits
P02	5	0.830	772... 320	P13	4	8.804	824... 580
P02	6	23.310	772... 944	P14	2	29.591	999. . 999
P03	4	0.089	410. . . 073	P15	4	0.205	090. . . 123
P03	5	8.251	410. . 508	P15	5	6.300	392... 432
P04	4	0.090	999... 927	P16	4	0.391	112... 637
P04	5	3.271	999. . 658	P16	5	68.860	326... 023
P04	6	81.741	999... 707	P17	3	3.070	014... 886
P05	4	0.151	104. . . 248	P18	4	0.790	577... 165
P05	5	5.213	104. . 929	P18	5	24.165	577. . . 897
P06	4	0.192	490... 462	P19	4	0.003	143... 377
P06	5	8.056	490... 892	P19	5	0.135	143. . 205
P07	4	0.022	226... 510	P19	6	3.372	143. . . 250
P07	5	0.665	226... 841	P19	7	70.630	143... 382
P07	6	13.853	226... 815	P20	4	0.047	1
P08	4	0.159	613... 446	P20	5	1.238	1
P08	5	5.466	613... 362	P20	6	27.138	1
P09	4	0.235	000... 432	P21	4	0.229	219... 878
P09	5	18.864	000... 306	P21	5	15.096	219... 495
P10	4	0.198	000... 000	P22	3	15.931	430... 309
P10	5	6.684	000... 000	P23	2	2.698	9844998112
P11	4	0.548	145. . . 744	P24	2	0.196	2933301369
P11	5	22.439	145... 390				
P12	4	0.460	712... 629				
P12	5	14.292	712... 771				

[^0]: ${ }^{1}$ http://www.cs.ru.nl/~~milad/manydigits/sample_questions.php

[^1]: ${ }^{2}$ See Equation (3) page 4 of http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub166. html.
 ${ }^{3}$ It is known from the theory of continued fractions that d decimal digits give about $\frac{6 \log 2 \log 10}{\pi^{2}} d$ partial quotients, so to get p partial quotients, we need about $\frac{\pi^{2}}{6 \log 2 \log 10} p$ decimal digits, or $\frac{\pi^{2}}{6 \log ^{2} 2} p \approx 3.423$ bits.

[^2]: ${ }^{4}$ http://perso.ens-lyon.fr/nathalie.revol/software.html

