Solutions to the practice problems

The MPFR team
September 20, 2005

Note: in the original problems', it is requested to get 10V digits according to the input
parameter N. To simplify the analysis, we assume here that we ask N digits, so instead of
taking values N = 2,3,4,..., the parameter N will be 100, 1000, 10000, . . .

Problem PO01: Compute the first N decimal digits after the decimal point of
sin(sin(sin 1)), rounded toward zero. We have sin(sin(sin 1)) ~ 0.678: the first N deci-
mal digits after the decimal point match the first N mantissa digits.

We use a target decimal precision N; > N, and a binary precision p. We compute
x =o(sinl), y = o(sinz), z = o(siny), with all roundings to nearest. It is easy to see that
since p > 3, we have 1/2 < z,y, z < 1, thus all rounding errors are bounded by 27771, We
can thus write z = sinl + ¢, with |e,| < 27771 Tt follows y = sin(sinl + €,) + ¢, with
le,] < 27P71; we can write sin(sin 1 + €,) = sin(sin 1) + €, cos §, thus the absolute error on
y is bounded by |e,| + |e,| < 27P. Similarly, the error on z is bounded by 3 - 2771, With
p>2+ N, I;fggo, we have 3-27771 < 1/2.10~M,

Finally, we output the binary value z in decimal to N; digits, with rounding to nearest.
Since 1/2 < z < 1, the last digit has weight 1071, thus the total error — including that on
z and the output error — is bounded by 10~*. Thus, unless the last N; — N digits of the
output are all zero, we can decide the correct output to NV digits, rounded toward zero.

Note: if the function sin(sin(sin x)) was D-finite, i.e. if it would satisfy a linear differential
equation with polynomial coefficients, then it would be possible to compute sin(sin(sin 1)) to
precision n in O(M (n)logn) using the “binary splitting” algorithm. Unfortunately, it does
not seem that sin(sin(sinx)) is D-finite.

Problem P02: Compute the first N decimal digits after the decimal point of /7.
We have /7 ~ 1.772, so we need to take the N + 1 first digits of the mantissa, and remove
the first digit, namely “1”.

Let x = o(w) and y = /z, with rounding to nearest and a precision of p bits. If we use
a precision of p bits, we have z = 7(1 + u) and y = /z(1 + v) with |u|,|v| < 277. Thus
y=+/mV1+u(l+v). For p> 2 it is easy to see that v/1 + u(1 + v) can be written 1+ 2w
with |w| < 277. Thus y = /7(1 + 2w), and the absolute error is bounded by 2277.

'http://www.cs.ru.nl/"milad/manydigits/sample_questions.php

Assume we output M + 1 digits of the approximation y, with M > N, with rounding to
nearest. The output rounding error will be at most % S107M . 1f 22 < % -10~™ which holds

810 the total error is bounded by 107, i.e. one ulp of the output.
g 2

assoonasp>3+ M

Problem P03: Compute the first N decimal digits after the decimal point of sine.
We have sine = 0.410: the first N decimal digits after the decimal point match the first N
mantissa digits.

Let x = o(exp 1) and y = o(sinx), with rounding to nearest and a precision of p bits. If
we use a precision of p bits, we have x = e(1 + u) and y = sin(x)(1 + v) with |ul, |v| < 27P.
Since sinx = sin(e + eu) = sine + eu cos f for some 0 € (e, e + eu), the absolute error on y
is bounded by |v| + e|u| < 227P.

We find the same bound than for P02, thus the end of the analysis is identical.

Problem P04: Compute the first N decimal digits after the decimal point of
exp(mv/163). We have exp(mv/163) ~ 262537412640768743.999: we thus have to compute
N + 18 digits, and disregard the first 18.

We compute z = o(7), y = o(v/163), z = o(xy), and t = o(e?), with all computations to
precision p and rounding to nearest.

We have 2 = 7(1 +u), y = V163(1 +v), z = xy(l + w), and t = e*(1 + s), with
lul, |v], |w|,|s| < 27P. We can thus write z = 7v/163(1 + 0)> with |§] < 27. We have
(14 6)> — 1] =130 + 362 + 63| < 3|0| + 46* < 4]6)| for p > 2. The relative error on z is thus
bounded by 227P. We can write z = 7mv/163 + h with |h| < 71632277 < 41 - 2277, Then
e* = ™13 . ¢h For p > 8 we have |h| < 1, thus |e" — 1| < 2|h|. The relative error on e is
thus bounded by 41 - 2377, which since e* < 2°® corresponds to a maximal absolute error of
41 - 257, 'We must add the final rounding error, which is bounded by 257~P. This gives a
final error less than 266-7,

Assume we output M + 18 digits of the approximation ¢, with M > N, and rounding
to nearest. The output rounding error will be at most § - 107, If 2667 < 1. 107 which
holds as soon as p > 67 + leoggg), the total error is bounded by 10, i.e. one ulp of the
output.

Problem P05: Compute the first N decimal digits after the decimal point of
exp(exp(exp1)). We have exp(exp(exp 1)) ~ 3814279.104, we thus have to compute N + 7
digits, and disregard the first 7.

We compute z = o(exp 1), y = o(exp), z = o(expy), with all computations to precision
p and rounding to nearest.

We have x = e(1 +u), y = e*(1 +v), z = e¥(1 + w), with |ul, |v], |w| < 27P. We use the
following lemma: for |h| < 1, [e" — 1| < 2|h|. For p > 2, we can use the lemma for h = eu:
e® = e®eM can be written e¢(1+42h') with |h/| < 27P; then y = e®(1+2h')(14v) can be written
ef(1 + 4v') with |[o'| < 27P. We use again the lemma for b’ = 4e®v’, which is less than 1 for
p>6: e’ = e can be written e (14 2R”) with |h”| < 277; then z = e (1 4+ 20")(1 + w)

can be written e (1 + 4w’) with |w’| < 27P. Since |e®| < 2?2, the absolute error on z is thus
bounded by 22477,

Assume we output M + 7 digits of the approximation z, with M > N, and rounding to
nearest. The output rounding error will be at most £ - 107, If 227 < 1. 107 which
holds as soon as p > 25 + leog;;, the total error is bounded by 10~ i.e. one ulp of the
output.

Problem P06: Compute the first N decimal digits after the decimal point of
log(1+ log(1+log(1+1log(1+m)))). We have log(1+log(1+ log(1+log(1+7)))) ~ 0.490:
the first N decimal digits after the decimal point match the first N mantissa digits.

We compute s = o(m), t = o(1+s), u = o(logt), v = o(14u), w = o(logv), x = o(1+w),
y = o(logz), z = o(l +y), r = o(logz). It is easy to check that for p > 9, 2 < s,v < 4,
4<t<8 1<ur,2<2,1/2<w,y<1,1/4<r<1/2

The absolute error on s is bounded by %ulp(s) = 217P_ thus that on t is bounded by
2'7P 4 Lulp(t) = 6 - 277. We use the following lemma: if ¢ > a is an approximation of some
unknown number ¢’ > a with error h bounded by ¢, then the error on logq is at most €/a.
Using this lemma for ¢ = ¢, a = 4, ¢ = 6 - 277 yields an absolute error of at most 3/2 - 277
for logt. Together with the rounding error of at most %ulp(u) = 27P, this gives an absolute
error < 5/2-277 for u. The same kind of analysis yields a bound of 9/2-27? for v, 11/4-277
for w, 15/4 - 27P for x, 17/4 - 277 for y, 21/4 - 277 for z, and finally 11/2- 277 < 2377 for r.

Assume we output M digits of the approximation r, with M > N, with rounding to
nearest. The output rounding error will be at most % S107MO I3 < % -10~™ | which holds
log 10
log 2

assoonasp >4+ M , the total error is bounded by 10= i.e. one ulp of the output.

Problem P07: Compute the first N decimal digits after the decimal point of ¢'°%,

We have €% ~ 0.197 - 10*®, thus we have to compute N + 435 digits, and disregard the
first 435.

We compute z = o(1000), y = o(expx), with precision p and rounding to nearest. We
choose p > 7, so that x = 1000 exactly. The error on y thus only consists of the final
rounding error, which is bounded by fulp(y) < 244277,

Assume we output M + 435 digits of the approximation r, with M > N, with rounding
to nearest. The output rounding error will be at most § - 107 If 2144277 < 1.10~™ which
holds as soon as p > 1443 + M%, the total error is bounded by 10~ i.e. one ulp of the
output.

Problem P08: Compute the first N decimal digits after the decimal point of
cos 10°°. We have cos10°° ~ —0.613, the first N decimal digits after the decimal point
match the first N mantissa digits (note that the sign is not requested).

We first compute 2 = o(10%Y), then y = o(cos x).

If the precision is p > 117, then x = 10°° exactly, thus as for P07, the only error is the
final rounding error on y, which is at most ulp(y) = 277",

Assume we output M digits of the approximation r, with M > N, with rounding to
nearest. The output rounding error will be at most 1 - 107, If 2771 < 1 .10, which

1fog 10 the total error is bounded by 107, i.e. one ulp of the output.
g 2

holds as soon as p > M

Problem P09: Compute the first N decimal digits after the decimal point of
sin(310g(640320)/v/163). We have sin(31og(640320)/v/163) =~ 0.221E —15, thus the answer
starts with 15 zeroes, followed by the first N — 15 significant digits of the mantissa.

We compute z = o(log 640320), y = o(v/163), z = o(x/y), s = o(32), t = o(sin s). Taking
the precision p large enough so that the constants 640320 and 163 are exact, e.g. p > 14,
we can write 2 = log 640320(1 4 u) and y = v/163/(1 + v) with |u|, |v| < 277. Thus z/y =
log(640320)/v/163(1 + u)(1 + v) can be written log(640320)/v/163(1 + «/)? with |u/| < 277,
z = log(640320)/+/163(1 + u")? with |u”| < 277, and s = 31og(640320)/v/163(1 + w)* with
lw| < 27P. For p > 3, we can write (1+w)* = 145w’ with |w’| < 27P; the absolute error on s is
thus bounded by 1510g(640320)/1/163277 < 15.8-277. Since the sine function is contracting,
the final absolute error on ¢ is bounded by 15.8 - 277 + lulp(s) = 15.8 - 277 + 2753 P < 24P,

Assume we output M — 15 digits of the approximation ¢, with M > N, with rounding to
nearest. The output rounding error will be at most 3 - 10~ If 277 < 1.107*, which holds

lﬁ)g 19 “the total error is bounded by 10~ i.e. one ulp of the output.
g 2

assoonasp>b+ M

Problem P10: Compute the first N decimal digits after the decimal point of
2 =1[(32/5)° — (27/5)Y°]M3 — (1 + 315 — 91/%) j251/%,

The constant z is identically zero. However, it is possible to output the first N decimal
digits after the decimal point, since it suffices to show that |z| < 107 to correctly output

N zeroes.
Let & = 57'/5 and 8 = 3'/5. We have

2=[2- 8" = (1+5 - 5%)a”.

We compute successively ¢ = o(1/5), r = o(¢"/?), s = o(3'/%), u = o(s?), v = o(su),
w = o(2—v), z =o(wr), y =ox3 a=o(l+s),b=oa—u),c=o(br),d=o(cr),
e = o(y—d). (The powers ¢'/°, 3!/ and /3 are computed with the mpfr_root function.) We
use here the following simplified notation: x = y(1 + 6)* means that z is an approximation,
which can be written y(1 4+ 6)F with || < 277. We have ¢ = 1/5(1 + 6y), r = 57/°(1 +
0)Y2(1 4 0y) = 57151 + 63)2, s = 3Y5(1 + 6y), u = 9/°(1 + 05)%, v = 27/°(1 + 65)°.
We can check that for p > 9, we have 1/16 < w < 1/8, thus the rounding error on w is
bounded by fulp(w) = 2777%; for p > 4, we can write (1 + 65)°> = 1+ 667, thus the total
error on w is at most 27774 4+ 63%0; < 12 -27P. We can thus write w = W + 1205 with
W = 2 — 3. We want to be able to write w = W (1 + 6y)* for some integer k; we thus
need W + 1205 = W (1 + 60y)*, or 1205/W = (1 +6)* — 1. A simple computation shows that
k = 241 is enough: w = (2— 33)(1+469)**! for p > 9. We thus have z = (2— *)a(1+6010)**,
y= 12— 5%a]" (1 + 011)%.

The absolute error on s being bounded by %ulp(s) = 277, that on a is at most 277 +
ulp(a) = 3-277; that on u is bounded by 9/°((1+6;)® — 1| < 9'/%-(465) < 7-277, thus that
on b is bounded by 3- 277 + 7-277 + 1ulp(b) < 11 - 27P. We thus can write b = B + 11 - 6
with B =1+ 3 — 3% since B > 1/2, we can write similarly as above b = B(1 + 6;3)%.

Thus ¢ = (14— %)a(l+614)*, d = (1 + 8 — *)a*(1 + 615)?, thus the absolute error
on d is bounded by (14 3 — 8*)a?|(1 + 615)* — 1] < (1 + 5 — *)a?(30-27P) < 11-277 for
p=9.

Similarly, the absolute error on ¥ is bounded by [(2 — 3%)a]'/3|(1 + 611)% — 1| < [(2 —
3)a]'/3(91-27P) < 34 - 277, still for p > 9.

For p > 9, we can show that |e| < 5/128, thus the rounding error on e is bounded by
fulp(e) < 27775, Therefore the total error on e is bounded by 11-27P 434277427775 < 2677,

If 26-P < %10*]\7 ,ie.p>T7T+ N 1;>Ogg1207 then since we know the exact answer is zero, we

should have |e| < 2677, so we know the exact answer is less than 10~ in absolute value, so
the output should be N consecutive zeroes. Note that in this case no loop is needed: the
first iteration should always be successful.

Problem P11: Compute the first N decimal digits after the decimal point of
tan e +arctan e 4+ tanh e +arctanh(1/e). We have tan e 4 arctan e 4+ tanh e 4+ arctanh(1/e) ~
2.145, thus we have to compute N + 1 digits and discard the initial 2.

We compute x = o(exp 1), y = o(tanx), z = o(arctanz), t = o(tanhz), u = o(1/x),
v = o(arctanhu), w = o(y +v), a = o(w + t), b = o(a + 2).

For p > 10, we have 2 < z,b < 3, —1/2 <y < —1/4, 1 < z < 2, 1/2 < t,a < 1,
1/4 <wu,v < 1/2, —1/8 < w < —1/16. The absolute error on z is at most julp(z) = 2'77;
since z = e + h with |h| < 2!7P, we have tanx = tane + h(1 + tan?) with 6 € (e, x), thus
the error on y is at most sulp(y) 4+ 5.78 - 2!? < 11.9 - 277, Similarly, we have arctanz =
arctan e + 1155, thus the error on z is at most ulp(z) +1/52'"7 <1.4-277. For ¢, we have
tanhz = tanh e4+h(1—tanh” §), thus the error on ¢ is at most 2ulp(¢)+0.071-2!77 < 0.642-27P.
The error on u is at most fulp(u) +2'77/6% < 0.75-277; then that on v is at most ulp(v) +
(0.75-277)-1/3 < 0.5-27P. By Sterbenz theorem, y+v is exact, thus the error on w is at most
11.9-27740.5-27P < 12.4-27P; that on a is at most %ulp(a)+12.4-2*1”—1—0.642-2*1” <13.6-277;
and finally that on b is at most fulp(b) +13.6-277 4+ 1.4-277 < 17.277 < 277,

Problem P12: Compute the first N decimal digits after the decimal point of
arcsin(1/e) + cosh e + arcsinhe. We have arcsin(1/e) + cosh e 4 arcsinh e ~ 9.712, thus as
in P11 we compute N + 1 digits and discard the leading “9”.

We proceed as follows: let x = o(expl), y = o(1/x), z = o(arcsiny), t = o(arcsinh),
u =o(coshz), v =o(z+t), w=o(v+u). Forp >3, wehave2 < z,v<3,1/4 <y,z<1/2,
1<t<2,4<u<8, 8 < w< 16. The same error analysis as for P11 yields a maximum
error of at most 2! for =, 0.75 - 27P for y, 1.12-27P for z, 2.79 - 27 for ¢, 24.1 - 277 for w,
5.91-27P for v, and finally 38.1 - 277 < 26=7 for w.

Problem P13: Compute the first N decimal digits after the decimal point of the
Nth term of the logistic map. The logistic map is defined by zg = 1/2, and

15
Tnt1 = an(l — iL‘n)

We compute it as follows:

tn, =o(l —x,)
Up = O(xntn)
vy, = o(15u,)

Tpt1 = vy /4 [exact]

For p > 8, z1 = % = 0.9375 and x5 = % = 0.2197265625 are computed exactly. Since
for o <z <1, 15 < %3}(1 —1z) < x1, we have o < x, < z; for all n > 0. We deduce from
this that 0 <t, <1,0<wu, <1/4,0<w, <15/4.

Let €, be the absolute error on x,,, and 7,, the rounding error on t,,, i.e. t, = 1—x,+7,. The
absolute error on ¢, is at most €, +7,,, and that on wu,, is at most %ulp(un) +entn+xn(€n+Th);
replacing t, by 1 — z,, + 7,,, we get 27773 + ¢, + (z,, + €,)7. Since 7, < %ulp(tn) < 27p-l
and x, + €, < 15/16 — remember the exact value for x,, lies in the interval [x,, — €,, T, + €,]
—, the error on u, is bounded by 27773 4 ¢, + %2_7’_1 <e€,+ %2_73.

The error on v, is bounded by sulp(v,) + 15(e, + 53277) < 15¢, + 52277, Finally, the
error on ,y is bounded by

15 83
el < —€, + —27P.
Ent1 = et 1og
This recurrence admits as solution:
e = S 0 P[(15/4)" — 1] < 2-P2(15/4)"
" 352 - '

Choose M > N. Since 0.2197265625 < xy < 0.9375, the first decimal digit of xy
has always weight 1/10, so the Mth digit has weight 107", If 27772(15/4)" < 1107V,
iep> M 1;>Ogg120 + nlogl(;;?/ 9 _ 1, then the M-digit decimal output of zy lies within one ulp of
the corresponding exact value.

Problem P14: Compute the first N decimal digits after the decimal point of
ajpon. The sequence (a,) is defined as follows: ag = 11/2; a; = 61/11,
1130 — 3000/ a,,—;

sy = 111 — :
Qp

and is due to Jean-Michel Muller. It is well known that a, = %. So we could cheat

and compute directly that closed form. However we believe this is not in the spirit of the
competition.
We compute the sequence as follows, with precision p and rounding to nearest:

b, = 0(3000/a,_1)
¢, = o(1130 — by,)
d,, = o(cn/ay)

tps1 = o(111 — d)

Since 11/2 < a,, < 6, we can show that 545 < b, < 600, 530 < ¢, < 585, 88 < d,, < 107.
Let €, be the absolute error on a,. The error on b, is bounded by %ulp(bn) + en% for
some 0 € [a,_1 — €,-1,a,_1 + €,_1], which is at most 297P 4+ 100¢,_;. The error on ¢,
is bounded by %ulp(cn) + 2977 4+ 100€,,—1 < 153627P 4 100¢,_;; that on d, is bounded by
%ulp(dn) + err(c,)/an + en% < 344277 + 18¢,_1 + 20¢,. Finally a,; is exact by Sterbenz
theorem, so we have

€nt1 < 20€, + 18¢, 1 + 344277,

together with ¢y = 0 since 11/2 is exact for p > 4, and ¢; < Julp(a;) = 4277, This
Fibonacci-like recurrence admits an exact solution:

€,2" < (172/37 — 737/2183v/118)a™ + (172/37 + 737/2183v/118)3" — 344/37.
with a = 10 + /118 ~ 20.863, 8 = 10 — /118 ~ —0.863. Since |8| < 1, it follows:
€,2P < (172/37 — 737/2183V/118)a™ + (172/37 + 737/2183v/118) — 344/37 < o™

Recall we want the first N digits after the decimal point of ajgon. Let M > N. If
100N < %IO*M, i.ep > 1+ 100N 4 Nrloall then the M-digit output will be within one

log 2 log2 7’
ulp of the correct result. Note: since 112% ~ 4.383, this gives p ~ 442N.
. . . n+1 n+1
Alas, this approach does not work as is. Indeed, since a,, = %, we have aigony ~

6 — (5/6)19°N "and thus ajgon is of the form 5.999...999, with about 7.9N consecutive “9”.
This means that with rounding to nearest, we need about M ~ 7.9N to be able to round
correctly the output.

Problem P15: Compute the first N decimal digits after the decimal point of the
harmonic number hioy. Werecall h, = 14+1/24---4+1/n. We can compute h,, efficiently
using the “binary splitting” method. Define P(a,b) and Q(a,b) as follows: if b = a+ 1, then
P(a,b) =1 and Q(a,b) = b, otherwise

P(a,b) = P(a,c)Q(c,b) + Q(a,c)P(c,b), Q(a,b) = Q(a,c)Q(c,b), (1)

for ¢ = [(a + b)/2|. We can easily check that P(a,b)/Q(a.b) = 1/(a+ 1)+ -+ 1/b, and
thus h,, = P(0,n)/Q(0,n).

However, to get the first N decimal digits after the decimal point of higy, computing
P(0,10N) and Q(0,10N) exactly is not very efficient. Indeed, we have Q(0,10) = (10N)!,
which has about 10N log,,(10NV) digits, whereas we want only N digits!

To solve this problem, we use the following idea. We use a working precision p large
enough to get N correct decimal digits at the end. We compute p-bit approximations of

P(0,n)/Q(0,n). Once we have computed P(a,b) and Q(a,b) as in Eq. (1), if both exceed p
bits, we truncate them by 2* so that the smallest one has exactly p bits, with rounding to
nearest. The relative error on each truncation is bounded by 277.

Lemma. If the maximal number of truncations along a branch of the recursive call tree
is t, then the computed values P(a,b) and Q(a,b) satisfy P(a,b)/Q(a,b) = h(a,b)(1 + u)*
for |u| < 2P,

We prove the lemma by induction on b —a. If b = a + 1, then P and @) are exact
— we assume the working precision is large enough so that b can be represented exactly,
ie. I0N < 2P —, so the lemma holds. Assume now we have computed approximations
of P(a,c), P(c,b), Q(a,c) and Q(c,b), with ¢; truncations for P(a,c) and Q(a,c), and t,
runcations for P(c,b) and Q(c,b). We thus have P(a,c)/Q(a,c) = h(a,c)(1 + u)" and
P(c,b)/Q(c,b) = h(c,b)(1+wv)%, with |ul, |[v| < 2'7P. If no truncation occurs for h(a,b), then
we have P(a,b)/Q(a,b) = P(a,c)/Q(a,c) + P(c,b)/Q(c,b) exactly, thus P(a,b)/Q(a,b) =
h(a,c)(1+u)" + h(c, b)(1+v)™2. Since all values are positive, we can write P(a,b)/Q(a,b) =
h(a, b)(1+w)™@t2) If a4 truncation occurs on P(a,b) and Q(a, b), then it induces a relative
error of at most 2177 on the ratio — since both errors go in opposite directions — thus we
can write P(a,b)/Q(a,b) = h(a,b)(1 4 w)'+maxttitz),

We can easily bound the maximal number of truncations. Now since Q(a,b) = (a+1) - -b,
we have Q(a, b) < n®~? thus as long as n{b — a) < 2P, there can be no truncation. Here, we
have n = 10N and we take 27 > 10V so as long as (1ON)(b a) <10V ie.b—a < Nlofg"(glé?v)
there is no truncation. The number of levels where there can be truncation is thus at most

|—10g2(101°1g0g1%v 1. For N < 107, this is at most 7.

After we have computed a rational approximation P/Q of hygy, we convert P and @ to p-
bit floating-point numbers with rounding to nearest, and we divide the two approximations.
Since at least one of P and @ fits exactly into p bits, the additional error due to this conversion
corresponds to (1 + u)? with |u| < 27P. Thus the final value is within (1 + u)?(1 + 2u)’ of
hion. For t < 8 and p > 4, the relative error is bounded by 2°77.

Problem P16: Compute the first N non zero digits of f(/N). The sequence f(i) is
defined by

1.1 2.3 , i(2i — 1)
8 (50— 2
3150 37t B s Ei)

fli)=m—(3+).

We can compute f(i) by the following program:

r—1

for i := N downto 1 do
r—ri(2t —1)/3/(3i +1)/(3i + 2)
re—>5—2471

TA—T—T

The computation in the loop are done as follows:

The ratio between the computed value of and the exact value after the kth iteration can
be written (1 + u)% for |u| < 27P. This is true for k = 0. Assume this is true for & > 0.
Then after r < o(r/(3i + 2)) the ratio can be written (1 + u)%*?; since both r and 5i — 2
are positive, we can write 7(1 + u)%**5 + (5i — 2) = [r + (5i — 2)](1 + «/)5*>, thus we get
(1 + u")5%*6 after rounding.

When i — oo, f(i) converges to 0. When truncated to i = N, it is easy to see that
f(N)=0((2/27)"). Thus to get N significant digits of f(IN), we need the final error to be
less than 1357V,

The error on r before m — r is of the form (1 + u)®; using |u| < 277 < 1357V, it can
be shown that |(1 4+)" — 1| < 7Nu. The error when computing 7 is bounded by 2177,
and that of rounding 7™ — r too (the latter is much smaller due to the cancellation, but this
bound is enough). Thus the final error is bounded by 7Nur + 2277 < (7N + 1)2%77,

Problem P17: Compute the first N decimal digits after the decimal point of
C(2)¢(3) + ¢(5). We have ¢(2)¢(3) + ¢(5) ~ 3.014, so we just need to compute N + 1
significant digits and discard the first one.

Since the Riemann Zeta function is native in MPFR, we simply compute with precision
p and rounding to nearest:

u < o(¢(2))
v —o(((3))
w — o(¢(5))
t — o(uv)

s« o(t + w)

If 6 denotes a generic quantity such that |§] < 277, we have u = ((2)(1+60), v = ((3)(1+6),
w = (B)1+0), t = ¢(2)¢(3)(1 +)3, thus since all quantities are positive, ¢t + w =
(C(2)¢(3) + ¢(5))(1 + 6)*, and s = (¢(2)¢(3) + ¢(5))(1 + 0)*. For p > 6, we have s < 25/8;
we can write (1 + 6)% as 1 + 56, thus the final absolute error is bounded by 5 - 27Ps < 2477

Note: the mpfr_zeta function is quite slow for evaluating () for i a small integer. A close
look at the implementation shows that the bottleneck lies in the computation of the Bernoulli
numbers, which takes more than 99% of the computing time. Also, the computation of the
Bernoulli numbers could be cached and thus shared between the three evaluations of {, which
is not the case.

Note 2: we could replace ((2) by 72/6, which would give a gain of about 33% since
the computation of 7 is quite efficient, but we thought this was not in the spirit of the
competition.

Problem P18: Compute the first N decimal digits after the decimal point of
Euler’s v constant. Euler’s v constant is defined as y = limy, oo (1+5+---+2) —logn ~
0.577. This is a native MPFR constant, thus we simply compute = = o(y) with precision p
and rounding to nearest. The largest possible error is %ulp(:c) = 2P L

Problem P19: Compute the first N decimal digits after the decimal point of
L=>">, 777, We have L & 0.143. This is simply a base-conversion problem. The base-
7 representation of L is (0.100100001...). We simply form a string corresponding to this
base-7 representation, truncated to get enough accuracy, then convert this string to a binary
floating-point value, which is then converted back to a decimal string.

Assume we truncate L to ¢ base-7 digits, use a binary precision of p bits, and a final
decimal output of M > N digits, all with rounding to nearest. The error we make when
truncating L to ¢ digits is bounded by 77¢, the input conversion error is bounded by %2_” ,

and the output conversion error by %10*M. If both 777 4 %2*1” < %10*M, then the total
1

error will be less than one ulp of the output. It thus suffices to have ¢ > 1+ M

log 10
Z)Ei 1'+’A41522.

og 10
Tog 7 and

Problem P20: Compute the Nth partial quotient from the continued fraction ex-
pansion of cos(27/7). We have cos(27/7) =~ 0.623. Its continued fraction expansion starts
with [1,1,1,1,1,9,1,2,...]. We use a subquadratic implementation of Lehmer’s method?.
We first compute an interval enclosing cos(27/7), with a binary precision of about 3.5N
bits®. The MPFR cos function being too slow, we use an interval Newton iteration.

The quadratic Lehmer’s algorithm is used when the input size in bits is less than a given
threshold (5000 bits seems near to optimal in our implementation), otherwise a subquadratic
variant is used, which looks like the “half-ged” algorithm for computing geds.

Problem P21: Compute the first N decimal digits after the decimal point of

the solution of €% = . The equation €% = z has a unique solution p ~ 2.219. We
sinz The explicit

approximate it using Newton’s iteration, with the function f(x) =z —e
second-order expansion of f(x) at x = p yields:

F(0) = f@) + (0 — 2)f'(2) + L= g, @)

for € (x,p). Neglecting the second order term, we get the usual formula for Newton’s
iteration:
f(an)

Tt = f(g)

2See Equation (3) page 4 of http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/publ66.
html.
3Tt is known from the theory of continued fractions that d decimal digits give about filogi%d partial

quotients, so to get p partial quotients, we need about Wp decimal digits, or ﬁp ~ 3.423 bits.

10

Rewriting Eq. (2) gives:
S d@ (-2)
/() 2 flx)
thus if [f”| < M and |f’| > m on the considered interval, we have |zj1 — p| < 2L |z), — p|%.
We have f/(z) = 1— e cosz, and f"(z) = e *(sinz —cos®x), and |f”| <2 for 2 <z < 3.
Here, we have |f/(x)| > 2 and |f"(z)| <2 for 2 < 2 < 3, thus |41 — p| < 1/2|zx — p|?.
We use the following rounding operations to compute an approximation of z;,; from
that of x:

y < o(sinz)
z « o(cos)
t — o(eY)
u— o(x —t)
v« o(tz)

w «— o(1 —wv)
7« o(u/w)
s«—o(x—r)

We can show that when 17/8 < x < 9/4 and the precision p satisfies p > 5, then 3/4 <y <
/8, —21/32< 2 < —1/2,2<t<5/2, —27/16<v < —1,2 < w < 11/4.

Assume now that |z — p| < 279, and we apply one iteration as above. Since |f’| < 3 for
2 < <3, we have | f(x)| < 3-279. The error on y is at most sulp(y) = 277", that on ¢ is at
most 1ulp(t) + 277! for 3/4 < 6 < 7/8, i.e. at most 3.2-27P. Thus z — ¢ is within 3.2-277
of its corresponding exact value f(z). But |f(z)| < 3-279, we have |z —t| < 3-27943.2-27P.
Assume p > 2q and ¢ > 2, then |z — t| < -4 -279 Thus the error on u is bounded by
%ulp(u) +3.2.-27P <279 1 32.27P < 3.7-27P since g > 2.

The error on z is at most ulp(z) < 2777, that on v is bounded by sulp(v) + err(t)(|z| +
err(z)) + |tlerr(z) < 27P 4 3.2 27P(0.68) 4+ 5/227P~1 < 4.5-27P that on w is bounded by
tulp(w)+4.5-277 <2177 +4.5.27P < 6.5-27P. We can write 1/w = 1/ f'(z))+6.5-277/6* for
0 € (w, f'(zx)), thus 1/w = 1/f'(x) + 1.7€ with |¢| < 27P. This gives an error on r bounded
by Lulp(r)+ere(u) (1/w-+1.7277) +|u|(1.7277) < 27 4+3.7.277(1/241.7277) +-2279(1.7277) <
3.7-27P for p > 6. Then the final error on s — i.e. the difference with x;,; as computed in
infinite precision — is bounded by %ulp(s) +3.7-27P<2P 4 37.27P < 57.27P,

Therefore, if p > 2¢ + 4, then 5.7 - 277 < 272471 and since |11 — p| < 27271, then
|s — p| < 27% so we get a quadratic convergence.

Note: we don’t need to compute r = o(u/v) to full precision p, since we know in advance
that r is of the order of 279, so only the g &~ p/2 most significant bits of r are needed. This
implies in turn that u and w can be computed with precision ~ p/2 too. In fact, only y and
t need to be computed to full precision p, since there is a cancellation in = — t. However
the expected speedup is small, since the most expensive operations are the computations of
sinx, cosx and €Y.

11

Problem P22: Compute the first N decimal digits after the decimal point of
I = fol sin(sinx)dr. We have I = 0.430. We use here an implementation by Laurent
Fousse of Gauss-Legendre quadrature, with a rigorous bound on the total error, i.e. both the
error due to the quadrature method and the rounoff error.

Problem P23: Compute the first 10 decimal digits of the element (N —1, N —3) of
M. The matrix M, is the inverse of the N x N Hilbert matrix, whose entries are (=)

ij—1
for 1 <i,j5 < N. For example, for N =7, we have ’
[49 —1176 8820 —29400 48510 —38808 12012
—1176 37632 —317520 1128960 —1940400 1596672 —504504
8820 —317520 2857680 —10584000 18711000 —15717240 5045040
M; = | —29400 1128960 —10584000 40320000 —72765000 62092800 —20180160

and here the element (N — 1, N — 3) is 62092800. For N = 10, the element (N — 1, N — 3)
is 1766086882560, so the answer should be 1766086882. It can be seen that the entries of
M, are integral. We assume the element (N — 1, N — 3) cannot be represented exactly as a
10-digit floating-point number, which seems to be the case for N > 10.

We use the following approach. Using the MPFI library developed by Nathalie Revol
and Fabrice Rouillier?, we perform a naive Gaussian elimination to solve the linear system
Hx = b, where all b entries are zero, except by_3 = 1. The entry x,,_; is a binary floating-
point interval [u, v] enclosing the exact value of the element (N — 1, N — 3) of M;. If both
u and v agree, when converted to 10-digit decimal floating-point values with rounding to
nearest, then this common value is the wanted answer.

Experimentally, it seems that using a working precision p > 4.2N log N is enough. (For
N =100, this gives p = 1965, whereas p = 1375 is the minimal precision that works.)

Problem P24: Compute the first 10 decimal digits of the element (N — 1, N) of
M. The matrix M is the inverse of the Iy + Hy, where Iy is the N x N identity matrix,
and Hy is the N x N Hilbert matrix. For n = 4, we have:

10213696 1084840 72880 1377740

17799777 5933259 659251 17799777

1084840 1688800 75300 550480

Mo — 5933259 1977753 659251 5933259
27 72880 75300 593280 57400 ?

659251 659251 659251 659251

1377740 550480 57400 16391200

17799777 5933259 659251 17799777

‘http://perso.ens-1lyon.fr/nathalie.revol/software.html

12

48510 —1940400 18711000 —72765000 133402500 —115259760 37837800
—38808 1596672 —15717240 62092800 —115259760 100590336 —33297264
12012 —504504 5045040 —20180160 37837800 —33297264 11099088

thus the element (N—1, N) is 22220 ~ —0.08706850653, and the answer should be 8706850653.
As in P23, we assume that element cannot be represented exactly as a 10-digit decimal
floating-point value.

We use the same technique as in P23, with the MPFTI library. The only difference is
that, the matrix Iy + Hy being much less singular, the necessary working precision is much

smaller. We found experimentally that up to N = 1000, a precision of 46 bits is enough.

Timings

We give timings obtained on the competition machine “harif” (AMD Opteron 144 under
Debian GNU/Linux “sid” unstable i386 in 32 bit mode, with 4GB of RAM). Here, the
column N stands for 10V digits, as in the original practice problems.

We used version 4.1.4 of GMP, tuned for harif: go to repository tune, type make tune,
and replace the file gmp-mparam.h by the results obtained, in particular:

#define MUL_KARATSUBA_THRESHOLD 24
#define MUL_TOOM3_THRESHOLD 177
#define DIV_DC_THRESHOLD 68
#define POWM_THRESHOLD 116
#define GET_STR_DC_THRESHOLD 23
#define GET_STR_PRECOMPUTE_THRESHOLD 35
#define SET_STR_THRESHOLD 3962
#define MUL_FFT_TABLE { 784, 1824, 3456, 7680, 22528, 57344, 0 }
#define MUL_FFT_MODF_THRESHOLD 848
#define MUL_FFT_THRESHOLD 8448

We used the cvs version from MPFR from 20 September 2005 (cvs -D 20050920 co mpfr),
tuned for harif too (simply type make tune in the mpfr build directory):

#define MPFR_MUL_THRESHOLD 18
#define MPFR_EXP_2_THRESHOLD 32
#define MPFR_EXP_THRESHOLD 25081

We used MPFI version 1.3.3, with a small patch to make it work with the cvs version
from MPFR.

Finally, we used INTLIB version 0.0.20050913, a numerical quadrature library from Lau-
rent Fousse.

13

problem N cpu time first...last digits
P01 4 0.181 678...573
PO1 5 18.062 678...645
P02 4 0.021 772...288 problem N cpu time first...last digits
P02 5 0.830 772...320 P13 4 8.804 824...580
P02 6 23.310 772...944 P14 2 29.591 999...999
P03 4 0.089 410...073 P15 4 0.205 090...123
P03 5 8.251 410...508 P15 5 6.300 392...432
P04 4 0.090 999...927 P16 4 0.391 112...637
P04 5 3.271 999...658 P16 5 68.860 326...023
P04 6 81.741 999...707 P17 3 3.070 014...886
P05 4 0.151 104...248 P18 4 0.790 577...165
P05 5 5.213 104...929 P18 5 24.165 577...897
P06 4 0.192 490. ..462 P19 4 0.003 143...377
P06 5 8.056 490. ..892 P19 5 0.135 143...205
PO7 4 0.022 226...510 P19 6 3.372 143...250
PO7 5 0.665 226...841 P19 7 70.630 143...382
PO7 6 13.853 226...815 P20 4 0.047 1
P08 4 0.159 613...446 P20 5 1.238 1
P08 5 5.466 613...362 P20 6 27.138 1
P09 4 0.235 000...432 P21 4 0.229 219...878
P09 5 18.864 000. .. 306 P21 5 15.096 219...495
P10 4 0.198 000...000 P22 3 15931 430. .. 309
P10 5 6.684 000...000 P23 2 2.698 9844998112
P11 4 0.548 145...744 P24 2 0.196 2933301369
P11 5 22439 145...390
P12 4 0.460 712...629
P12 5 14.292 712...771

14

