
Solutions for the “many digits” friendly competition

The MPFR team

12 October 2005

Note: in the original problems1, it is requested to get 10N digits according to the input
parameter N . To simplify the analysis, we assume here that we ask N digits, so instead of
taking values N = 2, 3, 4, . . ., the parameter N will be 100, 1000, 10000, . . .

In the whole document, p denotes the working precision in bits, and θ represents a value
such that |θ| ≤ 2−p (different occurrences of θ may represent different values).

Unless explicitely mentioned, we compute the correct output with rounding toward zero
of the last digit.

Problem C01: Compute the first N decimal digits after the decimal point of
sin(tan(cos 1)). We have sin(tan(cos 1)) ≈ 0.564: the firstN decimal digits after the decimal
point match the first N mantissa digits.

We use a target decimal precision M ≥ N , and a binary precision p. We compute
x = ◦(cos 1), y = ◦(tan x), z = ◦(sin y), with all roundings to nearest. It is easy to see that
for p ≥ 5, we have 1/2 ≤ x, y, z < 1, thus all rounding errors are bounded by 2−p−1. We
can thus write x = cos 1 + εx with |εx| ≤ 2−p−1. It follows y = tan(cos 1 + εx) + εy with
|εy| ≤ 2−p−1; we can write tan(cos 1 + εx) = tan(cos 1) + εx

1+θ2 , thus the absolute error on
y is bounded by |εx| + |εy| ≤ 2−p. Similarly, the error on z is bounded by 3 · 2−p−1. With
p ≥ 2 +M log 10

log 2
, we have 3 · 2−p−1 < 1/2 · 10−M .

Finally, we output the binary value z in decimal to M digits, with rounding to nearest.
Since 1/2 ≤ z < 1, the last digit has weight 10−M , thus the total error — including that on
z and the output error — is bounded by 10−M . Thus, unless the last M − N digits of the
output are all zero, we can decide the correct output to N digits, rounded toward zero.

Problem C02: Compute the first N decimal digits after the decimal point of√
e/π. We have

√
π ≈ 0.930.

Let x = ◦(e), y = ◦(π), z = ◦(x/y), t = ◦(
√
z), with rounding to nearest. If we use a

precision of p bits, we have x = e(1 + u), y = π(1 + v), z = x/y(1 + w), t =
√
z(1 + s),

with |u|, |v|, |w|, |s| ≤ 2−p. Thus t can be written
√
e/π(1 + θ)5/2 with |θ| ≤ 2−p. For p ≥ 2,

(1 + θ)5/2 can be written 1 + 3ε with |ε| ≤ 2−p. Thus y =
√
e/π(1 + 3ε), and the absolute

error is bounded by 3 · 2−p.

1http://www.cs.ru.nl/~milad/manydigits/

1

Assume we output M digits of the approximation y, with M ≥ N , with rounding to
nearest. The output rounding error will be at most 1

2
· 10−M . If 3 · 2−p ≤ 1

2
· 10−M , which

holds as soon as p ≥ 3 + M log 10
log 2

, the total error is bounded by 10−M , i.e. one ulp of the
output.

Problem C03: Compute the first N decimal digits after the decimal point of
sin((e+1)3). We have sin((e+1)3) ≈ 0.909. We use the following algorithm, with precision
p and rounding to nearest:

x = ◦(exp 1)
y = ◦(x+ 1)
z = ◦(y2)
t = ◦(zy)
u = ◦(sin t)

We have with θ a generic value such that |θ| ≤ 2−p: x = e(1+ θ), y = (x+1)(1+ θ) = (e(1+
θ)+1)(1+θ) = (e+1)(1+θ)2, z = y2(1+θ) = (e+1)2(1+θ)5, t = zy(1+θ) = (e+1)3(1+θ)8.

For p ≥ 2, we have 24 ≤ t ≤ 64, and (1 + θ)8 can be written 1 + 13θ when |θ| ≤ 2−p, so
the absolute error on t is bounded by 13 · 26−p.

Thus t = (e+1)3 +r with |r| ≤ 13 ·26−p; sin t = sin((e+1)3)+r cos a for some a, thus the
final error, taking into account the rounding error on u, is bounded by 1

2
ulp(u) + 13 · 26−p ≤

2−p−1 + 13 · 26−p ≤ 210−p.
Thus for 210−p ≤ 1

2
10−M , i.e. p ≥ 11 +M log 10

log 2
, the error on u is bounded by 1

2
ulp of the

output value.

Problem C04: Compute the first N decimal digits after the decimal point of
exp(π

√
2011). We have exp(π

√
2011) ≈ 1.528 · 1061, and exp(π

√
2011) mod 1 ≈ 0.089.

Thus to get N digits after the decimal point, we must compute N + 62 mantissa digits.
We compute with precision p ≥ 11 — so that 2011 can be represented exactly — and

rounding to nearest:

x = ◦(π)
y = ◦(

√
2011)

z = ◦(xy)
t = ◦(exp z)

With θ a generic value such that |θ| ≤ 2−p, we have x = π(1 + θ), y =
√

2011(1 + θ), thus
z = π

√
2011(1 + θ)3. For p ≥ 11, (1 + θ)3 can be written 1 + 3.002θ, thus the absolute error

on z is bounded by 3.002π
√

20112−p ≤ 423 · 2−p.
We thus have t = exp(π

√
2011) exp(423θ)(1 + θ); the expression exp(423θ)(1 + θ) can be

written 1 + 472θ, thus the total roundoff error is bounded by 472 exp(π
√

2011)θ ≤ 2213−p.
Thus if we output M ≥ N digits after the decimal point, and p ≥ 214 + M log 10

log 2
, the

output value differs by at most one ulp from the exact value.

2

Note: the program we used for the competition computes an interval enclosing the exact
value using the MPFI library, and if that interval is small enough we can compute the output.
This program is about 3.6 times slower than the MPFR-based variant we made after the
competition. With the MPFR-based program, we would have got about 3.3 seconds instead
of 11.6 for N = 5 on the competition machine, which would be faster than GINAC (4.4s)
but still slower than Mathematica (2.05s).

Note: the program we used for the competition outputs in fact N + 1 digits when asked
for N , so we should give N − 1 as argument to get N digits.

Problem C05: Compute the first N decimal digits after the decimal point of
exp(exp(exp(1/2))). We have exp(exp(exp(1/2))) ≈ 181.331, thus we need to output N+3
digits. We use the following algorithm, with precision p and rounding to nearest:

x = ◦(exp 1
2
)

y = ◦(expx)
z = ◦(exp y)

We have x = e1/2(1 + θ), thus the absolute error on x is bounded by e1/22−p; we write
x = e1/2 + e1/2θ. We then have y = exp(e1/2) exp(e1/2θ)(1 + θ), which can be written
y = exp(e1/2)(1 + 2.8θ) for p ≥ 5. We then have

z = (exp y)(1 + θ) = exp(exp(e1/2)) exp(2.8 exp(e1/2)θ)(1 + θ),

which can be written exp(exp(e1/2))(1+21θ). Thus the total roundoff error on z is bounded
by 21θ exp(exp(e1/2)) ≤ 212−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 13+M log 10
log 2

, the output
value differs by at most one ulp from the exact value.

Note: the competition program used p ≥ 25 +M log 10
log 2

instead.

Problem C06: Compute the first N decimal digits after the decimal point of
atanh(1 − atanh(1 − atanh(1 − atanh(1/π)))). We have atanh(1 − atanh(1 − atanh(1 −
atanh(1/π)))) ≈ 1.123. We use the following algorithm:

q = ◦(π)
r = ◦(1/q)
s = ◦(atanh r)
t = ◦(1− s)
u = ◦(atanh t)
v = ◦(1− u)
w = ◦(atanh v)
x = ◦(1− w)
y = ◦(atanhx)

3

We can check that for p ≥ 6, we have 2 ≤ q < 4, 1/4 ≤ r, s < 1/2, 1/2 ≤ t, u, x < 1,
1/8 ≤ v, w < 1/4, 1 ≤ y < 2. More precisely, we have t ≤ 11/16 and x ≤ 27/32.

We have q = π(1 + θ) with |θ| ≤ 2−p, thus r = 1/π(1 + θ)2, which can be written
1/π(1 + 3 ∗ θ), thus the absolute error on r is at most 2−p.

The error on s is at most 1
2
ulp(s) + err(r)/(1− α2) ≤ 2−p−2 + 2−p/(1− (1/2)2) ≤ 2 · 2−p.

The error on t is at most 1
2
ulp(t) + err(s) ≤ 2−p−1 + 2 · 2−p ≤ 3 · 2−p.

The error on u is at most 1
2
ulp(u)+err(t)/(1−α2) ≤ 2−p−1+3·2−p/(1−(11/16)2) ≤ 7·2−p.

The error on v is at most 1
2
ulp(v) + err(u) ≤ 2−p−3 + 7 · 2−p ≤ 8 · 2−p.

The error on w is at most 1
2
ulp(w)+err(v)/(1−α2) ≤ 2−p−3+8·2−p/(1−(1/4)2) ≤ 9·2−p.

The error on x is at most 1
2
ulp(x) + err(w) ≤ 10 · 2−p.

Finally, the error on y is at most 1
2
ulp(y)+err(x)/(1−α2) ≤ 2−p+10·2−p/(1−(27/32)2) ≤

36 · 2−p ≤ 2(6− p).
Thus if we output M ≥ N digits after the decimal point, and p ≥ 7+M log 10

log 2
, the output

value differs by at most one ulp from the exact value.
Note: the competition program used p ≥ 6 +M log 10

log 2
instead, which may be not enough,

but since it computed only M − 1 digits after the decimal point, it was correct.

Problem C07: Compute the first N decimal digits after the decimal point of
π1000. We have π1000 ≈ 1.412 · 10497, and π1000 mod 1 ≈ 0.967, thus we need to compute
498 +N digits. We compute with precision p and rounding to nearest:

x = ◦(π) [π]
y = ◦(x2) [π2]
y = ◦(y2) [π4]
x = ◦(xy) [π5]
y = ◦(x2) [π10]
y = ◦(y2) [π20]
x = ◦(xy) [π25]
y = ◦(x2) [π50]
y = ◦(y2) [π100]
x = ◦(xy) [π125]
x = ◦(x2) [π250]
x = ◦(x2) [π500]
x = ◦(x2) [π1000]

where we’ve put in square brackets the corresponding approximations. (Is this an optimal
addition chain for 1000?)

It can be seen by induction that each approximation of πk can be written πk(1 + θ)2k−1

with |θ| ≤ 2−p. Thus the final x = π1000(1 + θ)1999. For p ≥ 12, (1 + θ)1999 can be written
1 + 2577θ, thus the total roundoff error is bounded by 2577π1000θ ≤ 21663−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 1664 + M log 10
log 2

, the
output value differs by at most one ulp from the exact value.

Note: the competition program used p ≥ 1663 +M log 10
log 2

only.

4

Problem C08: Compute the first N decimal digits after the decimal point of
sin(666

). We have sin(666
) ≈ 0.953. This is a difficult problem, indeed for small N . Indeed,

the integer 666
has 36306 digits, so to get N correct digits, we need to perform an argument

reduction with accuracy 36306 + N digits! This explains why the system which could do
that problem could do it for N = 4 at least.

We use the following method, with different precisions q = 120606 (this is one plus the
number of bits of 666

), q + p and p:

n← 666

x← 2 ◦q+p (π)
y ← ◦q(n) [exact]
z ← ◦q(y/x)
k ← bze
v ← ◦q+p(kx)
s← ◦p(y − v)
t← ◦p(sin s)

We have x = 2π(1+θ) with |θ| ≤ 2−q. Since 666
< 2q, y is exactly n. Now z = n/(2π)(1+θ)2,

and since (1+ θ)2 can be written 1+3θ, the error on z is bounded by 3n/(2π)θ ≤ 1/8. Thus
k differs of at most 5/8 from n/(2π), i.e. |n− 2kπ| ≤ 5π/4 < 4.

Now x = 2π(1+µ) with |µ| ≤ 2−q−p, and v = 2kπ(1+µ)2, thus the error on v is at most
6kπµ ≤ 0.8 · 2−p. Thus the error on s is at most 1

2
ulp(s) + 0.8 · 2−p ≤ 2.8 · 2−p since |s| < 4.

The total roundoff error on t is thus bounded by 1
2
ulp(t)+ 2.8 · 2−p| cosα| ≤ 3.3 · 2−p ≤ 22−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 3+M log 10
log 2

, the output
value differs by at most one ulp from the exact value.

Note: the competition program used q = 120640 and p ≥ M log 10
log 2

, which is more than
needed, but works.

Problem C09: Compute the first N decimal digits after the decimal point of
sin(10 atan(tanh(π

√
2011/3))). We have sin(10 atan(tanh(π

√
2011/3))) ≈ 0.999, but the

digits differ from 9 up from the 80th.
We compute with precision p ≥ 11 — so that 2011 is exact — and rounding to nearest:

q = ◦(π)
r = ◦(

√
2011)

s = ◦(qr)
t = ◦(s/3)
u = ◦(tanh t)
v = ◦(atanu)
w = ◦(10v)
x = ◦(sinw)

For p ≥ 6, we have 2 ≤ q < 4, 32 ≤ r, t < 64, 128 ≤ s < 256, 1/2 ≤ u, v < 1, 4 ≤ w < 8.
More precisely, 45 ≤ t ≤ 48, 63/64 ≤ u ≤ 1, 61/8 ≤ w ≤ 8, and 31/32 ≤ sin(61/8) thus
31/32 ≤ x ≤ 1.

5

We have q = π(1 + θ) with |θ| ≤ 2−p, r =
√

2011(1 + θ), s = π
√

2011(1 + θ)3, t =
πsqrt2011/3(1 + θ)4.

Since (1+θ)4 can be written 1+5θ, the absolute error on t is bounded by πsqrt2011/3(5θ) ≤
235 · 2−p. Thus err(u) ≤ 1

2
ulp(u) + err(t)(1− tanh(α)2) ≤ 2−p−1 + 235 · 2−p(1− tanh(45)2) ≤

2−p−1 + 2−119−p ≤ 2−p.
Now err(v) ≤ 1

2
ulp(v) + err(u)/(1 + α2) ≤ 2−p−1 + 2−p/(1 + (63/64)2) ≤ 2 · 2−p.

And err(w) ≤ 1
2
ulp(w) + 10err(v) ≤ 22−p + 20 · 2−p ≤ 24 · 2−p.

Finally, err(x) ≤ 1
2
ulp(x) + err(w)| cosα| ≤ 2−p−1 + 24 · 2−p ≤ 25−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 6+M log 10
log 2

, the output
value differs by at most one ulp from the exact value.

Problem C10: Compute the first N decimal digits after the decimal point of
(7+21/5−5·81/5)1/3+41/5−21/5. This constant is equal to 1. If the question was to compute
it with rounding to nearest, it would be impossible since if we output an approximation to M
digits, with total error bounded by 1 ulp, this approximation will necessarily be 1.000 . . . 000︸ ︷︷ ︸

M

.

But the rules only ask for an absolute error of less than one ulp.
With x = 21/5, this expression is (7+x−5∗x3)(1/3)+x2−x. We compute with precision

p and rounding to nearest:

x = ◦(21/5)
y = ◦(x2)
z = ◦(yx)
q = ◦(7 + x)
r = ◦(5z)
s = ◦(q − r)
t = ◦(s1/3)
u = ◦(t+ y)
v = ◦(u− x)

(The values ◦(21/5) and ◦(s1/3) are computed with the mpfr_root function.)
For p ≥ 10, we have 1 ≤ x, y, z < 2, 8 ≤ q < 16, 4 ≤ r < 8, 1/2 ≤ s, t < 1, 2 ≤ u < 4,

1/2 ≤ v ≤ 2. More precisely, 67/128 ≤ s ≤ 19/32.
We have x = 21/5(1+θ), and the absolute error on x can be bounded by 21/52−p ≤ 2(1−p).
Then y = 22/5(1 + θ)3, thus err(y) ≤ 22/5(4θ) ≤ 6 · 2−p, and z = 23/5(1 + θ)5.
Now err(q) ≤ 1

2
ulp(q)+ err(x) ≤ 23−p +21−p ≤ 10 · 2−p; r = 5 · 23/5(1+ θ)6. Since (1+ θ)6

can be written 1 + 7θ, the absolute error on r is bounded by 5 · 23/5(7θ) ≤ 54 · 2−p.
Now err(s) ≤ 1

2
ulp(s) + err(q) + err(r) ≤ 2−p−1 + 10 · 2−p + 54 · 2−p ≤ 65 · 2−p; err(t) ≤

1
2
ulp(t) + err(s)(1/3α−2/3) ≤ 2−p−1 + 65 · 2−p(1/3(67/128)−2/3) ≤ 34 · 2−p.

And err(u) ≤ 1
2
ulp(u) + err(t) + err(y) ≤ 21−p + 34 · 2−p + 6 · 2−p ≤ 42 · 2−p.

Finally err(v) ≤ 1
2
ulp(v) + err(u) + err(x) ≤ 2−p + 42 · 2−p + 21−p ≤ 45 · 2−p ≤ 26−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 7+M log 10
log 2

, the output
value differs by at most one ulp from the exact value.

6

Note: in March 2005, Torbjörn Granlund and Paul Zimmermann designed a new im-
plementation of the mpn_rootrem function from GMP, on which mpfr_root is based. With
this new implementation, N = 5 takes 768ms on an Athlon 1.7Ghz, and N = 6 takes 15.9s
(among which 8.2s for the 5th root, and 2.6s for the 3rd root), which should correspond to
0.5s and 11.1s respectively on the competition machine.

Problem C11: Compute the first N decimal digits after the decimal point of
tan(21/2) + atanh(sin 1). We have tan(21/2) + atanh(sin 1) ≈ 7.560, thus we need to output
N + 1 digits.

We proceed as follows, with precision p and rounding to nearest:

x = ◦(
√

2)
y = ◦(tan x)
z = ◦(sin 1)
t = ◦(atanh z)
u = ◦(y + t)

For p ≥ 5, we have 45/32 ≤ x ≤ 91/64, 6 ≤ y ≤ 107/16, 107/128 ≤ z ≤ 27/32, 77/64 ≤ t ≤
79/64, and 115/16 ≤ u ≤ 127/16.

We thus have err(x) ≤ 1
2
ulp(x) ≤ 2−p, err(y) ≤ 1

2
ulp(y) + err(x)(1 + α2) for α ∈

[45/32, 91/64], i.e. err(y) ≤ 22−p + 2−p(1 + (91/64)2) ≤ 7.1 · 2−p. Then err(z) ≤ 1
2
ulp(z) =

2−p−1, err(t) ≤ 1
2
ulp(t)+err(z)/(1−β2) for β ∈ [107/128, 27/32], i.e. err(t) ≤ 2−p+2−p−1/(1−

(27/32)2) ≤ 2.8 · 2−p.
Finally err(u) ≤ 1

2
ulp(u)+ err(y)+ err(t) ≤ 22−p +7.1 · 2−p +2.8 · 2−p = 13.9 · 2−p ≤ 24−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 5 + M log 10
log 2

, the

output value differs by at most one ulp from the exact value. (The competition program
used p ≥ 6 +M log 10

log 2
.)

For N = 5, the tangent takes 74% of the time, the sine 13% and the hyperbolic arc-
tangent 14%.

Problem C12: Compute the first N decimal digits after the decimal point of
asin(1/e2)+asinh(e2). We have asin(1/e2)+asinh(e2) ≈ 2.833, so we need to output N +1
digits.

We proceed as follows, using the identity asinh t = log(t +
√
t2 + 1). We thus get

asinh(e2) = log(e2 +
√
e4 + 1) = 2 + log(1 +

√
1 + e−4). Therefore replacing asinh(e2) by

log(1 +
√

1 + e−4) will give the same digits after the decimal point, and moreover without
the integer part “2”:

x = ◦(exp(−2))
y = ◦(x2)
z = ◦(1 + y)
t = ◦(

√
z)

u = ◦(log1pt)

7

v = ◦(asinx)
w = ◦(u+ v)

All quantities are positive. For p ≥ 4, we have x, v < 2−2, y < 2−5, 1 ≤ z, t < 2, u,w ≤ 1.
We deduce x = e−2(1 + θ), y = e−4(1 + θ)3, z = (1 + e−4)(1 + θ)4, t =

√
1 + e−4(1 + θ)3,

thus the absolute error on t is bounded by
√

1 + e−4(3.2θ) ≤ 3.3 · 2−p. Now err(u) ≤
1
2
ulp(u) + err(t)/(1 + α) for α ∈ [1, 2], i.e. err(u) ≤ 2−p−1 + 3.3 · 2−p/2 ≤ 2.2 · 2−p.

Then err(v) ≤ 1
2
ulp(v) + err(x)(1 − β2)−1/2 for β ∈ [1/8, 1/4], i.e. err(v) ≤ 2−p−3 +

e−22−p(1− (1/4)2)−1/2 ≤ 0.27 · 2−p.
Finally err(w) ≤ 1

2
ulp(w) + err(u) + err(v) ≤ 2−p−1 + 2.2 · 2−p + 0.27 · 2−p ≤ 22−p.

Thus if we output M ≥ N digits after the decimal point, and p ≥ 3 + M log 10
log 2

, the

output value differs by at most one ulp from the exact value. (The competition program
used p ≥ 2 +M log 10

log 2
.)

Problem C13: Compute the first N decimal digits after the decimal point of the
Nth term of the logistic map. The logistic map is defined by x0 = 1/2, and

xn+1 = 3.999xn(1− xn).

We compute it as follows:

tn = ◦(1− xn)
un = ◦(xntn)
vn = ◦(3999un)
xn+1 = ◦(vn/1000)

For p ≥ 12, 2047/2048 ≤ x1 ≤ 4095/4096 and 1023/1048576 ≤ x2 ≤ 4095/2097152 ≈
0.00195. For 1023/1048576 ≤ xn ≤ 1/2, it can be checked by interval analysis with p = 12
that 2045/1048576 ≤ xn+1, thus we deduce 1023/1048576 ≤ xn for all n. For xn ≥ 1/2,
then tn is exact by Sterbenz theorem, thus un = ◦(xn(1 − xn)); since x(1 − x) ≤ 1/4 for
0 ≤ x ≤ 1, it follows un ≤ 1/4, vn ≤ 3999/4, and xn+1 ≤ up(3999/4000) ≤ 4095/4096.
We deduce 1023/1048576 ≤ xn ≤ 4095/4096 for all n, 0 ≤ tn < 1, 0 ≤ un ≤ 1/4, and
0 ≤ vn ≤ 3999/4.

Let εn be the absolute error on xn, and τn the rounding error on tn, i.e. tn = 1−xn+τn. The
absolute error on tn is at most εn+τn, and that on un is at most 1

2
ulp(un)+εntn+xn(εn+τn);

replacing tn by 1−xn + τn, we get 2−p−3 + εn +(xn + εn)τn. Since τn ≤ 1
2
ulp(tn) ≤ 2−p−1 and

xn + εn ≤ 4095/4096 — remember the exact value for xn lies in the interval [xn− εn, xn + εn]
—, the error on un is bounded by 2−p−3 + εn + 4095

4096
2−p−1 ≤ εn + 5119

8192
2−p.

The error on vn is bounded by 1
2
ulp(vn) + 3999(εn + 5119

8192
2−p) ≤ 3999εn + 24665185

8192
2−p.

Finally, the error on xn+1 is bounded by

εn+1 ≤ 2−p−1 +
3999

1000
εn +

24665185

8192000
2−p =

3999

1000
εn +

5752237

1638400
2−p.

8

Writing the recurrence εn+1 = αεn + β, and defining τn = εn + c with c = αc − β, we have
τn+1 = ατn, thus τn = αnτ0, or

τn = 28761185/24567808 · 2−p[(3999/1000)n − 1] ≤ 21−p(3999/1000)n.

Choose M ≥ N . If 21−p(3999/1000)N ≤ 1
2
10−M , i.e. p ≥ M log 39.99

log 2
+ 2, then the M -

digit decimal output of xN lies within one ulp of the corresponding exact value. (The
competition solution used +3 instead of +2.) We have just to take care to add zeroes if
needed before the floating-point mantissa of xN if needed; indeed, xN can be as small as
1023/1048576 ≈ 0.000975. For example, x922 ≈ 0.00258.

For N = 104, and M = N + 10, we get p = 53271 and the result is 354 . . . 324; in fact, a
precision of 42978 seems enough to get a correct result.

Remark: we now analyze a faster method, where we compute x(1−x) by x−x2 instead,
which replaces one product by one square:

tn = ◦(x2
n)

un = ◦(xn − tn)
vn = ◦(3999un)
xn+1 = ◦(vn/1000)

We first show by induction that for p ≥ 12, 0 ≤ tn ≤ 1, 0 ≤ un ≤ 1/4, 0 ≤ vn ≤ 3999/4,
and 0 ≤ xn+1 ≤ 4095/4096. Let τn be the error on tn: tn = x2

n + τn. By induction, |tn| ≤ 1
since |xn| ≤ 1, thus |τn| ≤ 2−p−1. We thus have un = ◦(xn − x2

n − τn). If xn = 1/2, then
τn = 0 and un = 1/4; otherwise either xn ≤ 1/2 − 2−p−1 or xn ≥ 1/2 + 2−p. In the former
case, xn − x2

n ≤ 1/4 − 2−2p−4, but since in that case |tn| ≤ 1/4, we have |τn| ≤ 2−p−3, thus
xn − x2

n − τn ≤ 1/4 − 2−2p−4 + 2−p−3, which implies that un = ◦(xn − x2
n − τn) ≤ 1/4. In

the later case, where xn ≥ 1/2 + 2−p, we further distinguish two cases: either xn ≥
√

2/2, in
which case xn − x2

n ≤
√

2/2 − 1/2 ≤ 0.21, thus trivially un ≤ 1/4; or xn <
√

2/2, in which
case the |τn| ≤ 2−p−2, thus xn − x2

n − τn ≤ 1/4 − 2−2p + 2−p−2, since the midpoint between
1/4 and the next representable number is 1/4 + 2−p−2, again un ≤ 1/4. The rest follows
since 3999/4 is exactly representable with p ≥ 12 bits, and 3999/4000 ≤ 4095/4096, which
is also representable.

Let x̂n be the value of xn we would get if computed with infinite precision, and εn be
the corresponding error: xn = x̂n + εn. We have tn = x2

n + τn and un = xn − tn + νn, where
|νn| ≤ 2−p−3 is the rounding error on un. It follows un = x̂n + εn − [(x̂n + εn)2 + τn] + νn =
x̂n−x̂2

n+εn(1−2x̂n−εn)+νn−τn. The expression 1−2x̂n−εn can also be written 1−x̂n−xn.
Since both xn and x̂n are in [0, 1], it follows err(un) ≤ εn + 5

8
2−p.

The rest of the analysis proceeds as above: err(vn) ≤ 1
2
ulp(vn) + 3999err(un) ≤ 29−p +

3999εn + 19995
8

2−p = 3999εn + 24091
8

2−p. Now err(xn+1) ≤ 1
2
ulp(xn+1) + err(vn)/1000, which

yields

εn+1 ≤
3999

1000
εn +

28091

8000
2−p. (1)

It follows εn ≤ 28091
23992

(3999
1000

)n2−p ≤ 21−p(3999
1000

)n.

9

By looking at Equation (1), we see that when n increases, εn becomes much bigger than
the term 28091

8000
2−p. In other terms, the last bits of xn are completely wrong, and there is

no reason to round it to p bits. So the idea is to adjust the precision at step n, say pn, so
that the term 2−p is of the same order of magnitude as εn. For example since we know that
each iteration looses about α = log 3.999

log 2
bits, we can take pn = p− nα. Replacing p by pn in

Equation (1), we get:

εn+1 ≤
3999

1000
εn +

28091

8000
(
3999

1000
)n2−p,

which admits as solution:

εn =
28091

31992
n2−p(

3999

1000
)n.

For M ≥ N , it thus suffices to have p ≥M log 39.99
log 2

+ logM
log 2

+ 1.
That new version takes 5.8s for N = 4 — and 1407 seconds for N = 5 — on the

competition machine (instead of 9.1s for the original code we used): this is slightly better
than the IRRAM time of 6.0s.

Problem C14: Compute the first N decimal digits after the decimal point of
a100N . The sequence an is defined by a0 = 14/3, a1 = 5, a2 = 184/35,

an+2 = 114−
1463−

6390− 9000
an−1

an

an+1

.

We have in fact an = 6n+1+5n+1+3n+1

6n+5n+3n . Thus a100N = 6 +O((5/6)100N). This means that since
we print N digits, the answer should be either 999 . . . 999 or 000 . . . 000.

The program we used for the competition is heuristic, in the sense that we gave it the
working precision: for N = 10 we gave precision of 3752 bits, and for N = 100 a precision
of 37892 bits. It appears in fact that for N = 10 we need at least 4100 bits: for 3752 bits
we get 0000000000 as output but the integer part is 100! Similarly for N = 100 we need a
precision of at least 40933 bits.

We compute an approximation of an as follows:

bn = ◦(9000/an−1)
cn = ◦(6390− bn)
dn = ◦(cn/an)
en = ◦(1463− dn)
fn = ◦(en/an+1)
an+2 = ◦(114− fn)

We assume for the rounded an: a0 < a1 < a2 < · · · < an < 6, all computed quantities are
positive, and bn ≤ 211, cn ≤ 213, dn ≤ 210, en ≤ 210, fn ≤ 28, and 14/3 ≤ an ≤ 6.2

2Assuming ◦down(14/3) ≤ an−1 ≤ 6, 5 ≤ an ≤ 6 and ◦down(184/35) ≤ an+1 ≤ 6, we can prove for p ≥ 10
that 1500 ≤ bn ≤ 1930, 4456 ≤ cn ≤ 4896, 742 ≤ dn ≤ 980, 483 ≤ en ≤ 721, 161/2 ≤ fn ≤ 275/2, which
proves that en = ◦(1463− dn) is exact, and an+2 = 114− fn is exact.

10

Let εn be the absolute error on an. We thus have err(bn) ≤ 210−p + εn−1
9000
θ2 for θ ∈

[14/3, 6], thus err(bn) ≤ 210−p + 20250
49

εn−1; err(cn) ≤ 212−p + err(bn) ≤ 5120 · 2−p + 20250
49

εn−1;
err(dn) ≤ 29−p + err(cn)/an + cnerr(an)/θ′2 with θ′ ∈ [5, 6], thus err(dn) ≤ 1536 · 2−p +
4050
49
εn−1 + 4896

25
εn; err(en) ≤ err(dn) since en is exact by Sterbenz theorem; err(fn) ≤ 27−p +

err(en)/an+1+enerr(an+1)/θ
′′2 with θ′′ ∈ [◦down(184/35), 6], thus err(fn) ≤ 2944

7
2−p+5400

343
εn−1+

6528
175

εn + 1648
63
εn+1; and finally

εn+2 ≤
2944

7
2−p +

5400

343
εn−1 +

6528

175
εn +

1648

63
εn+1.

It follows that
εn ≤ 0.0278αn2−p,

where α is the real root of 77175x3 − 2018800 ∗ x2 − 2878848 ∗ x− 1215000, i.e. α ≈ 27.534.
This means that each iteration looses log α

log 2
≈ 4.783 bits, so to get a100N with accuracy 10−N

we need to take p ≥ 478.3N +N log 10
log 2
≈ 482N .

Problem C15: Compute the first N decimal digits after the decimal point of
h(10N) where h(n) = 1/n + · · · + 1/n2. This is a more difficult problem than the corre-
sponding practice problem which was h(n) = 1 + 1/2 + · · · + 1/n, i.e. the usual harmonic
number. Indeed, summing n2 terms is not efficient enough, even with the help of binary
splitting.

Let n = 10N . According to (6.3.2) in [1], we have:

ψ(n) = −γ +
n−1∑
k=1

1/k,

thus h(n) = ψ(n2 + 1)− ψ(n) and we are reduced to the problem of computing n/10 digits
of ψ(n2 + 1)− ψ(n).

Formula (6.3.18) from [1] gives:

ψ(z) ≈ log z − 1/(2z)−
∞∑

k=1

B2k

2kz2k
.

Since we have |B2k| ≤ 2(2k)!/(2π)2k/(1−21−2k) [1, Eq. (23.1.15)], we deduce |B2k/(2kz
2k)| ≤

2/k(2k)!/(2πz)2k for k ≥ 1. Using n! ≤ (n/e)n
√

8n which is true for n ≥ 1, we get

|B2k/(2kz
2k)| ≤ 8(k/(eπz))2k.

The minimum of (k/(eπz))2k is obtained for k ≈ πz, with a value of e−2k ≈ e−2πz. Thus
to get a sufficient accuracy, we need that z is large enough. Here we have for ψ(n2 + 1):
z = n2 + 1 and we want n/10 digits, thus this is ok.

Let R(z) =
∑∞

k=1
B2k

2kz2k . We have ψ(n2 + 1) ≈ log(n2 + 1)− 1/(2n2 + 2)−R(n2 + 1), thus

h(n) ≈ log(n2 + 1)− 1/(2n2 + 2)−R(n2 + 1) + γ −
n−1∑
k=1

1/k.

The sum
∑n−1

k=1 1/k is computed by binary splitting, and R(n2 + 1) is an alternating series.

11

Problem C16: Compute the first N non-zero decimal digits of f(i). The sequence
f(i) is defined by

f(i) =
π2

6
− (13/8 + (1/(8 · 27))(34/8 + (8/(8 · 125))(· · · ((21i− 8)/8 + ((i3)/(8(2i+ 1)3)))))).

The right part of f(i) converges to π2

6
, thus we have a cancellation here.

More precisely, we can write f(i) = π2

6
− S(i), where S(i) =

∑i
k=0 fk, and

fk =
(k!)3(21k + 13)

8k+1[1 · 3 · · · (2k + 1)]3
,

except the last term fi which lacks the 21i + 13 factor in the numerator, and a factor 8 in
the denominator.

The program we used for the competition performed a classical summation. However,
we can use binary splitting to compute S(i). Define P (k, k + 1) = k3, except P (0, 1) = 1,
Q(k, k + 1) = 8(2k + 1)3, T (k, k + 1) = P (k, k + 1)(21k + 13), except Q(i, i+ 1) = (2i+ 1)3

and T (i, i+ 1) = P (i, i+ 1), and recursively for c = b(a+ b)/2e,

P (a, b) = P (a, c)P (c, b), Q(a, b) = Q(a, c)Q(c, b), T (a, b) = Q(b, c)T (a, b) + P (a, b)T (b, c),

then S(i) = T (0, i+ 1)/Q(0, i+ 1).

Problem C17: Compute the first N decimal digits after the decimal point of
S = −4ζ(2) − 2ζ3) + 4ζ(2)ζ(3) + 2ζ(5). We have S ≈ 0.999222. We use the identity
ζ(2) = π2/6, and an implementation of ζ(n) for n integer with correct rounding:

x = ◦(π)
y = ◦(x2)
z = ◦(y/3)
t = ◦(z − 1)
u = ◦(ζ(3))
v = ◦(ζ(5))
w = ◦(u− 1)
a = ◦(v − 1)
b = ◦(tw)
c = ◦(b+ v)
d = 2c

The obtained value d is exactly S.
For p ≥ 6, all values are positive, and x, z < 4, y < 11, t < 3, 1 ≤ u, v < 2, w < 1/4,

a ≤ 2−4, b < 1, and c < 2. We have x = π(1+θ), y = π2(1+θ)3, z = π2(1+θ)4, thus for p ≥ 6
the absolute error on z is bounded by 13 · 2−p. Now err(t) ≤ 1

2
ulp(t) + 13 · 2−p ≤ 15 · 2−p;

err(u), err(v) ≤ 2−p, w and a are exact by Sterbenz theorem, thus err(w), err(a) ≤ 2−p,
err(b) ≤ 1

2
ulp(b) + err(t)w + (2ζ(2) − 1)err(w) ≤ 7 · 2−p, err(c) ≤ err(b) + err(v) ≤ 8 · 2−p,

and err(d) ≤ 24−p.

12

Problem C18: Compute the first N decimal digits after the decimal point of
Catalan’s constant G. Catalan’s constant G is defined as

G =
∞∑

k=0

(−1)k

(2k + 1)2
≈ 0.915.

This is a native MPFR constant, thus we simply compute x = ◦(G) with precision p and
rounding to nearest. The largest possible error is 1

2
ulp(x) = 2−p−1.

Problem C19: Compute the first N decimal digits after the decimal point of
L =

∑∞
n=1 7−n3−1. We have L ≈ 0.020, thus we need only N − 1 digits. This is simply a

base-conversion problem. The base-7 representation of L is (0.0100000010 . . .). We simply
form a string corresponding to this base-7 representation, truncated to get enough accuracy,
then convert this string to a binary floating-point value, which is then converted back to a
decimal string.

Assume we truncate L to q base-7 digits, use a binary precision of p bits, and a final
decimal output of M ≥ N − 1 digits, all with rounding to nearest. The error we make when
truncating L to q digits is bounded by 7−q, the input conversion error is bounded by 1

2
2−p,

and the output conversion error by 1
2
10−M . If both 7−q + 1

2
2−p ≤ 1

2
10−M , then the total

error will be less than one ulp of the output. It thus suffices to have q ≥ 1 + M log 10
log 7

and

p ≥ 1 +M log 10
log 2

.

Problem C20: Compute the first Nth partial quotient of the continued fraction
of X = sin(2π/17). We have X ≈ 0.361. The first partial quotients are 2, 1, 3, 3, . . . For
N = 10 we get 8, for N = 100 we get 22, for N = 103 we get 70, 1 for N = 104, 1 for
N = 105, and 3 for N = 106.

We use here the fact that X is algebraic, namely:

65536X16−278528X14+487424X12−452608X10+239360X8−71808X6+11424X4−816X2+17 = 0.

We can compute an approximation X using five square roots as follows (is it possible using
only four?):

x = ◦(
√

17)
z = 2x [exact]
y = ◦(34− z)
z = ◦(34 + z)
y = ◦(√y)
z = ◦(

√
z)

z = 8z [exact]
s = ◦(6x)
s = ◦(s+ 34)
s = ◦(s− z)
z = ◦(x− 1)

13

z = ◦(zy)
s = ◦(s+ z)
s = 2s [exact]
s = ◦(

√
s)

x = ◦(x+ y)
s = ◦(s+ x)
s = ◦(s− 1)
s = s/16 [exact]
s = ◦(s2)
s = ◦(1− s)
s = ◦(

√
s)

We claim the final error on s is less than 10.7 · 2−p.
After having computed an approximation s of X, we use a subquadratic implementation

of Lehmer’s method — see Equation (3) page 4 from [2] — which guarantees the computed
quotients to be correct.

Problem C21: Compute the first N digits after the decimal point of the root
of equation exp(cosx) = x. This equation has a unique root x ≈ 1.302, so we need to
compute N + 1 digits and discard the initial “1”.

We use the following Newton iteration, with a target precision of Q bits:

x = ◦2(1.3)
q = 2
while true do
if q < Q
q′ = dQ/2ke such that q < q′ ≤ 2q
else increase target precision Q
p = q′ + 4
y = ◦(sinx)
z = ◦(cosx)
z = ◦(exp z)
u = ◦(x− z)
y = ◦(yz)
y = ◦(y + 1)
y = ◦(u/y)
x = ◦(x− y)
q = q′ if q ≥ Q then
if we can round correctly to N digits then exit

The error analysis is similar to that for practice problem P21.

14

Problem C22: Compute the first N digits after the decimal point of J. The
integral J is defined by

J =

∫ 1

0

sin(sin(sin x))dx.

We have J ≈ 0.407. We use here an implementation by Laurent Fousse of Gauss-Legendre
quadrature [3], with a rigorous bound on the total error, i.e. both the error due to the
quadrature method and the rounoff error. The only assumption is the following conjecture:

Conjecture 1 The maximum in absolute value of the nth derivative of sin(sin(sin x)) on
[0, 1] for n even is attained in x = 0.

For N = 1000, we used a composition in 26 intervals, with 218 points on each one, and a
working precision of 3373 bits.

Problem C23: Compute the first 10 non-zero digits of the element (N − 1, N − 3)
of the matrix M1. The matrix M1 is defined as the inverse of the N ×N Hankel matrix
X such that Xij = 1/Fi+j−1 where Fk denotes the kth Fibonacci number: F0 = 0, F1 = 1,
Fk+2 = Fk+1 + Fk.

For N = 4 for example we get:

gp > n=4; X=matrix(n,n,i,j, 1/fibonacci(i+j-1));

gp > 1/X

%18 =

[-9 90 360 -780]

[90 -450 -2400 4680]

[360 -2400 -11520 23400]

[-780 4680 23400 -46800]

thus the result is the coefficient (3, 1) = 360. It can be shown that the inverse of M1 has
integer entries3.

Theee different solutions were tried:

1. first; a generic solution, based on a straightforward MPFI implementation of the clas-
sical Gauss pivot. This required a colossal precision, which is not surprising given the
size of the determinant of the matrix and of the coefficients of the inverse, see below.
The computational complexity of this solution is of O(N3) operations on numbers
which should have at least O(N2) digits of precision, so the total cost is O(N3M(N2)).

3See http://arxiv.org/abs/math.LA/9905079.

15

2. second, Levinson-Zohar recursion for Toeplitz matrices was applied to the matrix de-
duced by a permutation of the rows. Unfortunately, this algorithm (which uses O(N2)
operations only) proved to be highly unstable, at least in that case, and required a
precision still larger than for Gauss pivot, thus requiring a still larger time than Gauss
method.

3. finally, the matrix can be inverted in a formal way, and expliciting the required term,
one finds that one has to evaluate

(−1)N

2

(∏2N−6
k=N−1 Fk∏N−4

k=1 Fk

)2

F2N−5F
2
2N−4F2N−3F2N−2,

which can be evaluated in a naive way in roughly linear time, the precision required
being quite small. When N grows one should be careful to divide out large powers of
10 periodically. Though this reduces the precision, it avoids exponent overflow.

A still more efficient solution would be to notice that for k greater than, say, 50, the
approximation

Fk = φk/
√

5,

with φ = (1 +
√

5)/2 allows one to get the approximate formula (for N > 50)

≈ (−1)N

2
√

5
105

φ2N2−2N+2548(∏50
k=1 Fk

)2 .
In this formula, one should take great care to perform an argument reduction on 2N2 −

2N + 2548 (which can be reduced modulo logφ 10).
The whole computation has a O(1) arithmetic operations cost, with precision O(1). Only

2N2−2N+2548 should be computed with enough precision to guarantee that 2N2−2N+2548
modulo logφ 10 is known with slightly more than 10 digits, making the complexity of the
whole computation roughly O(M(logN))...

Problem C24: Compute the first 10 non-zero digits of the element (N − 1, N) of
the matrix M2. The matrix M2 is defined as the inverse of the N × N Hankel matrix
IN +X where IN is the N ×N identity matrix, and X is defined as in C23.

For N = 4 for example we get:

gp > n=4; X=matid(n)+matrix(n,n,i,j, 1/fibonacci(i+j-1));

gp > 1/X

%2 =

[29720421/36667252 -8791155/18333626 -1741410/9166813 -1281345/9166813]

[-8791155/18333626 9234675/9166813 -705300/9166813 -272610/9166813]

16

[-1741410/9166813 -705300/9166813 8594640/9166813 -327600/9166813]

[-1281345/9166813 -272610/9166813 -327600/9166813 8997300/9166813]

thus the result is the coefficient (3, 4) = −327600/9166813 ≈ −0.0357376113159, so the
correct answer is 3573761131.

The matrix M2 has a much better conditioning than M1 in C23, so we used the first
approach mentioned in C23 (a straightforward implementation of the classical Gauss pivot
with interval arithmetic). A working precision of 40 bits is enough for N = 10, and 41 bits
for N = 100.

Acknowledgements. We thank Milad Niqui for comments on a previous version of this
document.

References

[1] Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Functions. Dover,
1973.

[2] Brent, R. P., van der Poorten, A. J., and te Riele, H. J. J. A comparative
study of algorithms for computing continued fractions of algebraic numbers. In Algo-
rithmic Number Theory (Berlin, 1996), H. Cohen, Ed., vol. 1122 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 35–47.

[3] Fousse, L. Multiple-precision correctly rounded Gauss-Legendre quadrature. Research
Report 5705, Institut National de Recherche en Informatique et en Automatique, Sept.
2005. 17 pages.

17

