
International Journal on Document Analysis and Recognition manuscript No.
(will be inserted by the editor)

A complete system for the analysis of architectural drawings

Philippe Dosch, Karl Tombre, Christian Ah-Soon?, G�erald Masini

LORIA, Campus scienti�que, B.P. 239, 54506 Vand�uvre-l�es-Nancy CEDEX, France

Received: date / Revised version: date

Abstract. In this paper, we present a complete system
for the analysis of architectural drawings, with the aim
of reconstructing in 3D the represented buildings. We
describe successively the graphics recognition algorithms
used for image processing and feature extraction, the 2D
modeling step, which includes symbol recognition and
converts the drawing into a description in terms of ba-
sic architectural entities, and a proposed 3D modeling
process which matches reconstructed
oors. The system
also includes a powerful and
exible user interface.

Key words: Graphics recognition, architectural draw-
ings, symbol recognition, vectorization

1 Introduction

Graphics recognition techniques have been applied to
many kinds of technical documents and drawings. How-
ever, surprisingly few teams have been dealing with ar-
chitectural drawings. There are probably two main rea-
sons for that. Firstly, there has been less demand from
the application �eld than in other domains for systems
capable of analyzing paper drawings and yielding a 2D
or 3D Cad description of the represented building. Sec-
ondly, architectural design is more or less at the cross-
roads between engineering and art, which makes precise
analysis and reconstruction more diÆcult.

These last years, our team has conducted a research
project whose aim was to reconstruct 3D models of build-
ings as automatically as possible, from the analysis of ar-
chitectural drawings. This paper presents the resulting
complete system. We start by presenting the algorithms
we chose for the image processing part and the feature
extraction from the drawings (Sect. 2). These features
allow a �rst 2D modeling, in terms of basic architec-
tural entities (Sect. 3). We then propose a 3D modeling
process (Sect. 4). From the beginning, it was clear that

? Now with Business Objects, Paris.
Correspondence to: Philippe.Dosch@loria.fr

such a system cannot be fully automatic, so we needed
a powerful and
exible user interface, which is described
in Sect. 5. To implement such a large system, it is es-
sential to de�ne a suitable system architecture, which is
detailed Sect. 6. In Sect. 7, we propose some conclusions
and perspectives on this work, with a critical analysis of
the results obtained.

2 Image processing and feature extraction

Our basic idea was to look for robust algorithms and
methods [30], i.e. methods which do not require tuning
a lot of parameters. Of course, we are not completely
satis�ed with the achievements so far, and we indicate
at the end of the section what remains to be done.

2.1 Tiling

In some cases, the document images on which we have to
work are very large, and the memory requirements of our
methods exceed what is usually available with a common
workstation. We therefore designed a method for divid-
ing the image into tiles, each of them being processed and
analyzed independently. The graphical features resulting
from the feature extraction process are then merged at
the end.

Splitting up the image: the original image is split into
partially overlapping tiles. The width of the overlap-
ping zone is chosen so as to allow for good matching
of the resulting features [34]. It is set to 3 times the
maximal width of the graphical features present in
the document.
Through this splitting, as many tiles are generated
as necessary for covering the whole image (Fig. 1).

Merging the tiles: the tiles are merged again after vec-
torization (Sect. 2.3), by matching the segments ex-
tracted in each tile. At vector level, the memory re-
quirements are smaller, so it becomes useful to work
on the complete data structure again.
The merging algorithm works as follows:

2 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

Tiling

Merging

Initial image

Vectorial image

Low-level processings

Fig. 1. Principle of tiling.

-

-

-

-

-

-

Internal image zone

Central image zone

External image zone

9=
; Total image zone

External model zone

Central model zone

Internal model zone

9=
; Total model zone

Fig. 2. Detail of the di�erent overlapping sub-zones for a tile. The width of each of these zones corresponds to the maximal
thickness of the graphical features. Here, we represent the vertical sub-zones; the same process is done horizontally.

{ For each tile T (called the model here), analyze
its neighboring tiles Ta (called the images).

{ For each segment si in T , look for matching seg-
ments saj , using the Hausdor� distance H(ri; r

a
j),

de�ned by [27]:

H(M; I) = max(h(M; I); h(I;M))

with:

h(M; I) = max
m2M

min
i2I

jjm� ijj

where
{ M represents the model segments (of T) and
I represents the image segments (of the Ta
tiles);

{ m and i are the vertices of the associated
polygon (a segment with a thickness is mod-
eled by a 4-vertex polygon);

{ ri and r
a
j are the parts of segments si and s

a
j

which are contained in the central overlap-
ping zone (Fig. 2).

{ Store the match if H(ri; r
a
j) < � (experimentally,

we set � = 50 pixels).
{ Extract the best candidate match for each fea-
ture. This extraction uses propagation, by looking
for the matches which verify:
{ H(ri; r

a
j) is the smallest distance between ri

and all image segments matched with ri,
{ H(ri; r

a
j) is the smallest distance between raj

and all model segments matched with raj .

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 3

{ Merge the matched segments, over several tiles
when necessary.

The results are very satisfying. As an example, for
a 6000 � 15600 image, split into 36 tiles of size 2000
� 2000 pixels, with an overlapping zone of 120 pixels,
the merging process takes approximately 5 seconds on a
Sun Ultra 1 workstation and yields a �nal set of 3910
segments, with an error rate lower than 1%.

2.2 Segmentation

Our basic choice for text/graphics segmentation was to
implement the well known method proposed by Fletcher
and Kasturi [13], while adapting the parameters to our
kind of documents. These thresholds are stable, and the
method yields good results (Fig. 3).

Of course, such a method, based on analyzing the
shape and the size of the connected components, adds
many dashes from dashed lines to the character layer.
This is corrected interactively with our user interface
(cf. Sect. 5).

The characters are then grouped into strings, us-
ing the Hough transform-based approach proposed by
Fletcher and Kasturi. The bounding boxes of the strings
can be corrected interactively, if necessary (Fig. 4), and
their position is then stored, for later character recogni-
tion.

The remaining graphics part is further segmented
into thin lines and thick lines. For this, we chose morpho-
logical �ltering [30]. Let I be the image of the graphics
part, w be the minimum width of a thick line, and n be
bw
2
c. Using a Bn square sized (2n + 1) � (2n + 1), the

thick lines can then be retrieved lines through partial
geodesic reconstruction (n+ 1 iterations):

K0 = J ;Ki = (Ki�1 �B1) \ I for i = 1 : : : n+ 1

This yields two images Ithick = Kn+1 and Ithin =
I � Ithick (Fig. 5).

2.3 Vectorization

Vectorization is of course a central step in the analysis
process. We emphasize that it must be as stable and
robust as possible [30]. The �rst step in vectorization is
to process the raster image in order to extract a set of
lines, i.e. of chains of pixels. The most intuitive de�nition
for these lines is probably that they represent the set of
signi�cant medial axes of the original image, considered
as a shape. In this section, we will only summarize our
choices for vectorization; a more thorough presentation
and discussion is available in reference [31].

There are three main families of approaches for this
step. The �rst method which comes to mind is to com-
pute the medial axis, i.e. the skeleton of the raster im-
age. This is the most common approach, and skeletons
are known to yield good precision with respect to the
positioning of the line. But they also tend to have lots
of barbs when the image is somewhat irregular, so they

(a) Graphics layer.

(b) Text layer.

Fig. 3. Text/graphics separation.

need some clever heuristics or post-processing steps, that
weaken their generality and robustness. Another weak-
ness of skeleton-based methods is that they displace the
junction points. This is a direct consequence of the fact
that the skeleton follows the medial axis of the shape,
whereas the position of the junction as envisioned by the
draftsman is not on the medial axis of the shape (Fig. 6).
Other families of methods are based on matching the op-
posite sides of the line, or on sparse-pixel approaches.

4 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

Fig. 4. Extraction of character strings. The popup menu
allows the user to edit the bounding box, merge two strings,
or delete a string.

After a careful study and comparison of the pros and
cons of these various methods [31], our current choice
is the skeleton-based approach, despite its known weak-
nesses. Among the possible approaches for computing a
skeleton, we have found the distance transform to be a
good choice. The skeleton is de�ned as the set of ridge
lines formed by the centers of all maximal disks included
in the original shape, connected to preserve connectiv-
ity. Distance transforms [6] can be computed in only two
passes on the image. To guarantee the precision of the
skeleton, we advocate the use of chamfer distances, which
come closer to approximating the Euclidean distance. A
good compromise between precision and simplicity seems
to be the 3{4 chamfer distance transform (Fig. 7), for
which a good skeletonization algorithm has been pro-
posed by Sanniti di Baja [7]. A single threshold on the
signi�cance of a branch enables correct removal of the
smallest barbs.

After extracting the skeleton, the result of the pro-
cess is a set of pixels considered as being the medial axes
of the lines in the drawing. This set must be linked, to
extract the chains making up the lines. A detailed algo-
rithm for this linking process is given in reference [31].

The lines extracted from the skeletonization step are
to be represented by a set of segments. This is done by
polygonal approximation. Here also, many methods ex-
ist. In our experiments, we have basically used two ap-
proximation methods. The �rst, based on recursive split-
and-merge, was proposed by Rosin and West [26]; it has
the advantage that it does not require any user-given
threshold or parameter. The principle is to recursively
split the curve into smaller and smaller segments, un-
til the maximum deviation is 0 or there are only 3 (or
less) points left. Then, the \tree" of possible segments
is traversed and the method keeps those segments max-
imizing a measure of signi�cance, which is de�ned as a
ratio between the maximum deviation and the length
of the segment. Rosin has also proposed other possible

(a) Thick lines.

(b) Thin lines.

Fig. 5. Thin/thick separation.

Fig. 6. Position of the junction point with a skeleton-based
method.

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 5

V2 V3 V4

V1 X V5

V8 V7 V6

Y = min(V1 + 3; V2 + 4; V3 + 3; V4 + 4)
Z = min(Y; V5 + 3; V6 + 4; V7 + 3; V8 + 4)

Fig. 7. Computing the 3{4 distance transform in two passes
over the image, the �rst from left to right and from top to
bottom, the second from right to left and from bottom to top.
Sanniti di Baja's algorithm performs some post-processing on
this distance transform, such as changing labels 6 to 5 and 3
to 1; see reference [7] for details.

measures of signi�cance [25], and we plan to explore this
further.

We have also used for many years an iterative method,
that of Wall and Danielsson [35], enhanced by our team
with a direction-change marking procedure to preserve
the angular points. This method only needs a single
threshold, on the ratio between the algebraic surface and
the length of the segments. It is fast and eÆcient, but
not as precise as the former. On the other hand, Rosin
and West's method tends to split up the lines around
a junction into too many small segments (see Fig. 8).
This is a direct consequence of its preciseness and of the

(a) Wall & Daniels-
son [35] with typical
threshold = 20.

(b) Rosin & West [26].

Fig. 8. Comparison of two polygonal approximation methods
applied to Fig. 6.

previously mentioned displacement of junction points by
skeleton-based methods.

2.4 Arc detection

The arc detection method we have designed [12] is basi-
cally inspired by that of Rosin & West [26], but we have
included two ideas proposed by Dov Dori [9]: a better
method for computing the center of the arc, and the use
of polylines instead of simple segments. We also added
some improvements of our own to these basic ideas. The
most important of them is the computation of the er-
ror associated with an arc hypothesis, not with respect
to the polygonal approximation, but with respect to the
original chain of skeleton pixels. In order to achieve that,
each set of segments delivered by the polygonal approx-
imation step of our vectorization process is associated
with the pixel chain that the segments approximate. Seg-
ments are grouped into polylines, each polyline being the

approximation of a complete chain. The original linked
chain corresponding to a polyline can be retrieved using
a simple index.

Our arc detection algorithm works in two phases: the
generation of arc hypotheses, and the validation of the
hypotheses. The hypotheses are built from the polygonal
approximation. We maintain a list of connected segments
(S1; :::; Sn), described by their extremities (P1; :::; Pn+1),
such that they contain a minimum number of points (4
points are necessary to build a relevant hypothesis), and

that the successive angles\Si Si+1 and \Si+1 Si+2 are ap-
proximately equal.

Arc detection is performed on each of these hypothe-
ses. If an arc is not detected for a given hypothesis, we
decrease the number of segments of the hypothesis and
test again, until we reach a valid arc or until there are
too few points to build a signi�cant hypothesis. The test
phase is performed using least squares minimization. The
error measure is not done on the segments of the polyg-
onal approximation, but on the subchain of points.

This method also detects full circles. When working
on a closed loop of successive segments, we eliminate
one of the segments and apply the previously described
method. If a unique arc is detected, including all the
segments, we test the presence of a circle by checking
the validity of the last segment.

Figure 9 illustrates results obtained on an architec-
tural drawing. There are still several possible improve-
ments to the method. One of them is to test arc hypothe-
ses on more than one polyline, as the skeleton linking al-
gorithm starts new chains at each junction. This would
lead to the possibility of recognizing a single arc, even
when it is crossed by another line, or to recognize two
full arcs whenever they share short segments. The main
diÆculty here is not with the method, but with the com-
putational complexity of the implementation.

We also still have thresholds in the method, especially
for the similarity between two angular measures. A pos-
sible improvement would be to extend Rosin's work on
signi�cance measures [25] to arc detection.

2.5 Stability, robustness and possible improvements

As said previously, our aim is to have stable and ro-
bust methods, with few and well-de�ned parameters and
thresholds. The stability of our current processes is vary-
ing. The tiling process and subsequent matching of vec-
tors in the di�erent tiles (Sect. 2.1) relies on well-de�ned
parameters and can be considered as stable. The same
can be said of most segmentation steps (Sect. 2.2), al-
though it remains hard to stabilize the thresholds for
character grouping into strings. We have implemented
vectorization methods which rely on nearly no parame-
ter (Sect. 2.3), and this is in our opinion an important
factor of robustness. The same cannot be said yet of arc
detection (Sect. 2.4), which remains dependent on too
many parameters, which are relatively hard to master.

In addition to continuing work on the stability as-
pect, we also need to improve the precision of vector-
ization. As we have seen, an important remaining prob-

6 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

(a) Original image. (b) Detected arcs.

Fig. 9. Results of arc detection.

lem is that of the processing of junctions, where we end
up having to �nd a \compromise" between the num-
ber of segments and the precision of the vectorization.
This problem is annoying as it has an impact on the
quality and robustness of all the following steps, includ-
ing symbol recognition (Sect. 3.3) and 3D reconstruction
(Sect. 4). We are currently investigating several possible
improvements, including a post-processing process where
the exact position of the junction would be recomputed
after a �rst vectorization [24,15], and complementary ap-
proaches where the skeleton is not computed, but the
lines searched for directly on the image [32].

3 2D Modeling

When the basic features have been extracted from the
document image, the next step consists in recognizing
elements which can be used when building a 2D model
of a
oor of the building.

3.1 Detection of dashed lines

In architectural drawings, many lines are dashed. We
therefore needed a detection method to recognize them
as such. This can be either done directly on the pixel
image, using image processing tools such as directional

mathematical morphology operators [1], or on the vec-
tors yielded by the raster-to-vector conversion. We chose
the latter approach and adapted to our case a method
�rst proposed by Dori [8]. This algorithm relies on some
characteristics common to all dashed lines:

{ they have a minimum number of dashes having ap-
proximately the same length;

{ they are regularly spaced;
{ they follow a virtual line.

The method starts by extracting the segments which
are smaller than a given threshold and which have at
least one free extremum|i.e. which are not connected
to another segment or arc. All such segments which have
not yet been included in a potential dashed line are called
keys. The main loop consists in choosing a key as the
start of a new dashed line hypothesis, and in trying to ex-
tend this hypothesis in both directions, by �nding other
segments belonging to the same virtual line. This search
is done in a search area whose width is the double of
the current key width, and whose length is the maximal
distance allowed between two segments belonging to a
same dashed line (Fig. 10).

If there is more than one key contained in this search
area, we choose the one closest to the extremum of the
current key. To reduce computation times in this search-
ing process, we use a data structure of buckets [4], by
dividing the image into meshes. The new key must be

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 7

First key Search areaCurrent key Virtual lineStarting endpoint

Fig. 10. Search area for dashed lines extraction.

aligned with the keys already detected. It is then added
to the current dashed line hypothesis, and the search is
continued from the new current key, until it is not pos-
sible to add any new key.

Only hypotheses with at least 3 dashes are kept;
the corresponding keys are erased and replaced by the
corresponding line segments, with a \dashed" attribute.
Fig. 11 presents the results of the method.

We have added some improvements to this method.
For instance, we need to recompute the precise con-
nections of the dashed line segments found with the
other segments and arcs of the vectorization. This is done
through a post-processing step which tries to prolongate
the dashed segments until meeting other segments. The
maximum length which is added to a segment extremity
is the maximum distance between two dashes. Figures 12
and 13 illustrate the results of this improved method.

3.2 Staircases

Staircases are useful modeling elements, both for repre-
senting the layout of a
oor and as matching features
when reconstructing the 3D model (Sect. 4). They can
usually be considered as a kind of texture, where the
individual stairs are regularly repeated (Fig. 14).

We chose to use a structural texture analysis process
designed by G. S�anchez [28]. The method is based on
searching for regular polygonal structures. For that, a
graph of all the polygons extracted from the vectoriza-
tion is built [16]. This graph is used to perform structural
texture segmentation, using a pyramidal approach [19].
In this process, we need the ability to compute a similar-
ity measure between two polygons; for that, a distance
is de�ned, based on the di�erence between the areas of
the polygons.

Among the various textures detected by this approach
(Fig. 15), we must then recognize those corresponding to
staircases. As there is no unique standard for represent-
ing stairs, we use simple heuristics, based on the number
and size of stairs. Therefore, we simply �lter the result
of the previous texture detection process, keeping the
regions having between 5 and 30 texture elements. Al-
though this is a very crude and simplistic rule, it extracts
most staircases without adding much noise. Thus, it is
easy and not costly in time to interactively adapt the
result with the user interface (Sect. 5).

Fig. 16 presents some of our results, before user inter-
action. Despite some strange results, the recognition rate
is surprisingly good, given the simplicity of the �ltering
process.

3.3 Symbol recognition

A number of symbols must be recognized as such in
the drawing. One problem with architectural symbols
is that many models are \increments" of simpler mod-
els (Fig. 17.a), and the recognition method must be able
to recognize the most extended symbol. In our system,
symbol recognition is performed using the method de-
signed in our group by Christian Ah-Soon, on the basis
of previous work by Pasternak [23] and by Messmer[21].
The details of the method are described elsewhere [3];
we will only summarize it here.

The models of possible symbols are described in terms
of elementary features and of geometric and topological
constraints between these features, using a simple de-
scription language. The descriptions are stored in a text
�le, readable by a simple parser. Fig. 17.b shows an ex-
cerpt from such a �le, to give an idea of the kind of
constraints used.

The network of constraints used in our method tries
to factorize the similarities of the di�erent models. The
basic principle of the recognition method is that the fea-
tures yielded by vectorization (segments and arcs) are
input into a network of constraints. The search for sym-
bols works through propagation of these segments and
arcs through the network. The network is made of �ve
kinds of nodes : NNSegment, NNArc, NNMerge, NNCon-
dition and NNFinal. These nodes are connected through
father{son links; each node can have at most two fa-
thers, but can have several sons. Each node tests some
constraints, and can thus be seen as a \�lter", which
only transmits to its sons the features (de�ned as sets of
segments and arcs) which verify the tested constraints.
These features, created only once by each node, can be
used by all the sons of the node. At the end, the segments
and arcs of the features which have \trickled" down to
the terminal nodes of the network represent the corre-
sponding symbols.

For each network, there is only one NNSegment node
and one NNArc node; they correspond to the inputs of
the network. These nodes initialize the recognition pro-
cess, create a one-segment or one-arc feature for each
segment or arc, and send it to all their sons. A NNCon-
dition node has only one father. It tests the constraint
on the features sent to it by its father. If the constraint
is satis�ed, the node propagates the feature to its sons.
A NNMerge node has two father nodes, and gathers the
features sent by its fathers, if they verify a connection
constraint. The resulting merged feature, if any, is sent
to the sons of the node. The NNFinal nodes are the ter-
minal nodes. Each of these nodes corresponds to one of
the symbols which have to be recognized. When a fea-
ture reaches such a node, it has gone through a number of
NNMerge and NNCondition nodes and has veri�ed their
constraints. To get the actual symbol, it is therefore suf-
�cient to get the set of features stored in the NNFinal
node.

Although we only perform recognition on the vector-
ization of the thin lines layer (Sect. 2.2), there are still
errors due to noise and to the approximation of curves
by polylines. We therefore use an error measure, which

8 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

(a) Source image. (b) Detected dashed lines.

Fig. 11. Dashed lines detection.

(a) Original drawing. (b) Detected dashed lines.

Fig. 12. Detection and correction of dashed lines.

quanti�es the deviation between the searched symbol
and the candidate features. When a node receives a fea-
ture, it computes the resulting error, if the segments of
the feature do not exactly verify the constraint. This er-
ror is accumulated from one node to the other, and when
it exceeds a given threshold, the feature is not transmit-
ted anymore. We are working on having more adaptive
thresholds, instead of the �xed ones currently in use.

A great advantage of the recognition method is that
nearly the same algorithms used for recognition are also
used when building the network, through input of model
symbols and incrementally adding new nodes whenever
new constraints are detected [3]. An example of recogni-
tion results is given in Fig. 18.

4 3D Modeling

At the end of the 2D modeling process, we have a de-
scription of each
oor in terms of architectural symbols.
In our present system, there are 7 families of such sym-
bols: windows, French windows, doors, bearing walls, di-
viding walls, staircases, and symbols describing vertical
elements such as chimneys or pipes|we will call these

symbols \pipes" in the following, for the sake of simplic-
ity.

The 3D structure of a particular
oor is obtained
from its 2D structure by elevating the walls at the ad-
equate height, which is supposed to be known a priori
(Fig. 19). The elevation of windows and other standard
symbols is given as a parameter of the system. The full
3D structure of the building is then obtained by building
a \stack" of these 3D
oor structures. For this, we must
be able to match two consecutive
oors, using features
selected from their 2D geometrical description.

4.1 Choice of features

We studied various architectural drawings to determine
the kind of features to be taken into account in this
matching process [11]. Four categories were �nally se-
lected:

{ Corners : They are relevant features whenever the
shape of the
oors is quite stable. Corners are deter-
mined using a method described by Jiang and Bunke
[16]: among the pairs of connected segments repre-
senting bearing walls, corners are supposed to form

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 9

(a) Original vectorized image.

A

B
D

C

E

F

(b) Detected dashed and dotted lines.

Fig. 13. Detection of dashed and dotted lines on an example from the Grec'95 contest [18]. Some annotations: A. line not
recognized (not enough keys) { B. corrected line { C. corrected line { D. line not corrected (too long) { E. wrong correction {
F. corrected lines.

10 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

(a) First
oor. (b) Second
oor.

Fig. 14. Staircases in a typical architectural drawing.

(a) (b)

Fig. 15. Some textures detected by S�anchez' texture analysis method [28]: original image (a) and detected textures (b).

angles close to �
2
radians. We are aware that this may

sometimes not be true, especially in modern architec-
ture!

{ Staircases : They infallibly are available on maps of
multi-level buildings, although corresponding stair-
cases on two
oors can have quite di�erent shapes
(cf. Fig. 14). Some of them may include an arrow to
discriminate between up and down staircases. This
would help for the matching, but the recognition of

such arrows often fails due to the complexity of the
surrounding symbol they belong to.

{ Pipes : Their shape is always invariant and is usually
symmetric (square or circle), and can be consequently
matched in several di�erent ways.

{ Bearing walls : These features are oriented and, by
de�nition, their location is generally invariant. How-
ever, there are at least two reasons why they are not
reliable features. First, the nature and disposition of

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 11

(a) (b)

(c) (d)

(e) (f)

Fig. 16. Vectorized drawings (a, c, e) and recognized staircases (b, d, f)|before user interaction and correction.

12 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

(a) Examples of increasingly more complex archi-
tectural symbols.

SEGMENT 2 - ARC 2

50 < seg1.length();

50 < seg2.length();

arc1.pt2_angle_pt2 (arc2) == 360;

seg2.pt1_angle_pt1 (arc2) == 90;

arc1.pt1_angle_pt2 (seg1) == 90;

seg1.extremity1() == arc1.center();

seg2.extremity2() == arc2.center();

SEGMENT 5 - ARC 2

seg1.pt1_angle_pt2 (seg2) == 180;

seg2.pt1_angle_pt2 (seg3) == 90;

seg3.pt1_angle_pt2 (seg4) == 90;

seg4.pt1_angle_pt2 (seg5) == 180;

arc1.pt2_angle_pt2 (arc2) == 360;

seg5.pt1_angle_pt1 (arc2) == 90;

arc1.pt1_angle_pt2 (seg1) == 90;

50 < seg1.length();

50 < seg5.length();

50 < seg3.length();

(b) Excerpt from a symbol description �le.

Fig. 17. Describing architectural symbols.

(a) A drawing. (b) Thin lines. (c) Symbols.

Fig. 18. Symbol recognition for a simple drawing (1700�1600 pixels) vectorized in about 300 segments and arcs.

(a) Drawing of a
oor. (b) 3D elevation.

Fig. 19. 3D reconstruction of a
oor through elevation.

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 13

pieces of joinery (doors and windows) may di�er from
one level to the other. Secondly, a wall recognized as a
single segment on a given
oor may be split into sev-
eral segments on another
oor, because of the noise
from the image and from the vectorization process.
A single feature may therefore have to be matched
with several correspondents, and reciprocally.

4.2 The matching method

We then had to choose the matching algorithm to use.
As maps may be drawn using di�erent scales and are
scanned from separate sheets, the matching of features
requires the computation of the transformation (a com-
bination of a translation, a rotation and a scaling) that
aligns a map with the other. The sets of features of the
di�erent
oors being generally very dissimilar, it seemed
appropriate to represent a
oor as a relational model:
a feature is characterized by the relative locations of a
�xed minimum number Nmin of neighboring stable fea-
tures.

As there are relatively few features to match and
that each feature is associated with a small number of
simple attributes, sophisticated matching methods are
not necessary. Our choice went to an approach similar
to the Local Feature Focus method proposed by Bolles
and Cain [5], where objects are characterized by simple
features and their relative positions. The hypothesis of
matches between the features of the model and the fea-
tures extracted from the image are represented by nodes
in a compatibility graph. An edge between two nodes ex-
presses that the corresponding hypothesis are consistent.
The largest maximal clique, i.e. the largest totally con-
nected set of nodes, represents the best match between
the model and the image.

A reliable match between a pair of given
oors, F1
and F2, must rely on a minimum number of robust fea-
tures. The relevant features are selected among the sets
of all the available features according to the following
principles:

{ A priority order is de�ned on the categories of fea-
tures, depending on the invariance of their locations
and shapes: pipes, staircases, corners and bearing
walls, in decreasing order. Location stability prevails
shape stability, since the former allows more precise
matches, and thus a more precise computation of the
transformation relating F1 and F2.

{ Let fmin (value experimentally de�ned) be the mini-
mal number of features required for a reliable match.
Let cimin be the minimum of the numbers of features
from category Ci available in F1 and in F2. This
corresponds to the maximum number of consistent
matches that can be performed for this category. The
categories Ci are successively considered in their pri-
ority order, summing the corresponding cimin. When
the total reaches fmin, the possibly remaining cate-
gories are ignored and the others are selected for the
global matching process.

Such principles ensure that noisy or non reliable fea-
tures are not used whenever the set of relevant features

is large enough, and subsequently do not disturb the
matching. Of course, the neighboring features used to
characterize a given feature are picked up in the selected
categories.

Each feature is assimilated to a point: the gravity cen-
ter of the polygon representing the contours of a staircase
or a pipe, the intersection of the two segments forming a
corner, the middle of the segment representing a bearing
wall. The relative orientation of two features is computed
as the direction of the segment joining their two repre-
sentative points.

Two features f1 2 F1 and f2 2 F2 are associated in
a matching hypothesis if that con�dence rate �(f1; f2)
is lower than a �xed threshold. � is de�ned as the sum
of the minimum distances Æ between a neighbor of the
�rst feature and the neighbors of the second feature:

�(f1; f2) =

i=NminX

i=1

j=Nmin

min
j=1

Æ(f1:i; f2:j)

where fp:q represents the q-th neighbor of feature fp. Æ
expresses the di�erence between the relative orientations
of the two considered neighboring features. If these fea-
tures do not belong to the same category, Æ returns a
value which makes any match between the two features
impossible.

Let fa1 :f
i
2 and f

b
1 :f

j
2 be two matching hypotheses. An

edge relates the two corresponding nodes in the graph if
they represent consistent hypotheses, i.e.:

{ a 6= b and i 6= j (a same feature from F1 obviously
cannot match two di�erent features from F2, and re-
ciprocally);

{ �(fa1)� �(f i2) � �(f b1)� �(f j2), where � represents the
absolute direction of a corner or a wall: the direction
of the bisector of the angle formed by the corner, and
the direction of the segment representing the wall,
respectively. In other terms, the rotation induced by
the �rst match must be the same as that induced by
the second match.

The largest maximal clique, i.e. the largest completely
connected subgraph that can be extracted from the com-
patibility graph, represents the best match between the
two current
oors. Computing maximal cliques is a well-
known NP-complete problem, and a lot of more or less
sophisticated algorithms have been developed to use this
technique for all kinds of applications. However, in our
case we do not need any sophisticated method, as the
size of our compatibility graph is generally small. A sim-
ple and straightforward algorithm, like the one described
by Bolles and Cain [5], has proved its eÆciency on var-
ious applications, for example stereo-vision [14], so we
implemented this algorithm.

A con�dence rate is assigned to each clique, de�ned
as the sum of the � con�dence rates of all the elements
of the clique. It is used when several largest cliques of
the same size are supplied: the clique having the lowest
rate is supposed to represent the best match.

14 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

The resulting clique is �nally used to compute the
transformation that aligns
oor F1 to
oor F2. The co-
ordinates of the points of
oor F2, according to the coor-
dinates of points in
oor F1, are computed through least
squares minimization of the error on the transformation.
The precision of the solution increases with the number
of available matched points.

4.3 Results

Figure 20 shows some experimental results obtained with
a small building, a private house two stories high. The 3D
reconstruction has been generated from the architectural
drawings of the �rst and second
oor.

The 3D structures of the two
oors conform to the
drawings. The di�erent construction components (bear-
ing walls, dividing walls, doors and windows) have been
correctly recognized and precisely located (Figs. 20.a and
20.b).

The upper
oor has been aligned to the lower
oor
thanks to the transformation computed after matching
the
oors. The result does not seem very precise: the
upper
oor is slightly misplaced on the lower
oor, gen-
erating a step on the surface of the outer walls, which is
particularly visible on the angles of the front part of the
house. Actually, the matching itself is not the reason for
these problems. As said previously (Sect. 2.5), the dis-
torsion of junction points by the vectorization process is
the main reason for the poor alignment.

The �rst
oor contains 79 architectural entities and
the second 125, from which respectively 53 and 51 fea-
tures have been selected. A compatibility graph with 15
nodes and 36 edges gave a largest maximal clique of 5
nodes. The whole process, from the determination of the
features to the generation of the full 3D structure, takes
less than 0.3 s on a Sun Ultra 1 workstation.

5 The user interface

Any particular application has to deal with many prob-
lems like noise, the many ways of representing architec-
tural components (doors, windows, etc.), and, of course,
the very limitations of the methods that are applied.
In this context, we have to consider the whole analysis
process as a human-computer cooperation. Our system
must be able to o�er interactions, thus allowing the user
to correct the intermediate results of the automatic pro-
cesses. It must also be able to provide help by propos-
ing contextual options according to the progress of the
analysis. Thus, all the processes presented in the previ-
ous sections are incorporated into a user interface, called
Mica, providing visual feedback on the working of the
graphics processes. Mica typically allows the user to:

{ display the content of all kinds of �les which are han-
dled by the analysis, with common editor functional-
ities like multi-�le editing, zooming, and so on;

{ tune parameter and threshold values, as explained
previously, after examination of the results of the cur-
rent application;

{ interactively manipulate resulting data, i.e. add miss-
ing results, delete or alter erroneous results|in par-
ticular, special editing operations are supported for
both raster and vector images: cut and paste of raster
images, creation and modi�cation of components of
a vector image, etc.

{ backtrack to any previous step of the analysis to pro-
ceed processing with a di�erent tuning, and easily
compare the di�erent results obtained.

Fig. 21 shows an example of data manipulation with
Mica, to interactively correct the results of the segmen-
tation process (Sect. 2.2).

6 Software architecture

We have also focused on the software architecture of the
system, as it is an essential consideration in order to
integrate a set of stable software components, reusable
from one application to the other, and to add
exibility
to the analysis of various architectural drawings.

For the data stream, we have chosen a \batch sequen-
tial" architectural style [29], where all graphics recogni-
tion applications are independent programs, communi-
cating through �les. The interface is added as a layer,
calling these independent application programs with the
right �les, in a uni�ed framework for �le naming and pa-
rameter passing. Despite a relatively poor interactivity
between the di�erent application modules, this choice
gives us great
exibility for replacing some parts with
more up-to-date algorithms or applications. As interme-
diate results are stored in �les, it is easy to come back
to the results of any analysis step.

The system includes three layers (Fig. 22): a library
of C++ classes, called Isadora, implementing basic gra-
phics recognition methods, a set of graphics recognition
modules (GRMs), implementing useful graphics recog-
nition applications designed from Isadora components,
and the Mica interface, to monitor the analysis of an
image of a drawing, and to take corrective action when-
ever necessary. Each step of the analysis can easily be
performed by a GRM.

The interface is designed to be independent of the
analysis processes. It is connected to the graphical recog-
nition modules through simple links, which are used to
transmit the values of the parameters to the processing
modules: names of images to process, options, thresh-
olds, etc. A processing module can be directly invoked
by a command line and parameters are set with default
values which can be customized by the user [10]. In this
way, a graphical recognition module can be easily sub-
stituted for another, or can be upgraded when necessary.

7 Conclusion and perspectives

In this paper, we have presented a complete system built
for the analysis of architectural drawings, with the aim of
reconstructing in 3D the represented buildings. The sys-
tem is based on a number of automated graphics recogni-
tion processes, integrated through a user interface which
\puts man in the loop" throughout the analysis.

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 15

(a) 3D structure of the 1st
oor. (b) 3D structure of the 2nd
oor.

(c) 3D structure of the whole building.

Fig. 20. 3D reconstruction of a private house from the architectural drawings of its
oors.

16 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

(a) Original Image. (b) Raw graphics layer.

(c) Raw text layer. (d) Graphics layer after correction.

(e) Text layer after correction.

Fig. 21. Interactive correction using Mica: some dashes are misinterpreted as characters in the text layer and are moved to
the graphics layer by the user, and some characters (like I), misinterpreted as dashes in the graphics layer, are moved to the
text layer by the user.

Philippe Dosch et al.: A complete system for the analysis of architectural drawings 17

tiling

binarization

segmentation

vectorization

fusion

symbol recognition

texture analysis

etc.

dashed lines detection
binary
images

vectorial
images

grey levels
images

linked to library link to program data stream

I
S
A
D
O
R
A

M
 I
C
A

Fig. 22. Software architecture: a three-layer system.

Although we have interesting results on a number
of drawings, we are aware of the fact that the di�erent
components of the system are not at the same level of
achievement.

1. The image processing and feature extraction tools are
quite mature. They implement in most cases state of
the art graphics recognition methods. As previously
mentioned, there is of course still room for improve-
ments, especially with respect to the precision of vec-
torization and to the robustness and stability of arc
detection.

2. Among the 2D modeling methods, the dashed line
extraction must be considered to be quite mature
and stable. The staircase recognition relies on very
simple, ad hoc rules, but this proves to be suÆcient,
when coupled with the user interface, for this kind
of speci�c architectural elements. The main remain-
ing research topic at this level is symbol recognition.
The results of our method are comparable to those
of other structural symbol recognition methods [20,
22,33], but have also the same kind of weakness: it is
diÆcult to assess how scalable the approach is, when
the number of symbols to recognize grows from 10{15
to 100 or 500. We plan to investigate this scalability
issue in the coming years.

3. The 3D reconstruction process works reasonably well,
but is of course very speci�c to the kind of draw-
ings we work on. We have still to prove its validity
on much larger buildings, where the complexity of
the matching process might increase too much for
the maximal clique approach to remain reasonable.
However, another solution would be to provide a sim-
ple interactive method for matching in 3D the re-
constructed levels. Also to be proven on larger-scale
drawings is the validity of the simple elevation pro-
cedure used to reconstruct the single
oors. Another
possibility would be to match the
oor drawing with

elevation drawings, as we have experimented some
years ago in mechanical engineering [2].

4. In our opinion, the user interface proves the impor-
tance of putting man in the loop in an intelligent
way. We plan to continue our parallel development of
this interface, which will progressively integrate new
graphics recognition modules, whenever they become
mature enough.

Acknowledgements. This work was partly funded by a re-
search contract with France Telecom CNET and by �nancial
support from R�egion Lorraine. The authors are also grateful
to Gemma S�anchez and Josep Llad�os for giving them ac-
cess to the structural texture detection method mentioned in
Sect. 3.2.

References

1. G. Agam, H. Luo, and I. Dinstein. Morphological Ap-
proach for Dashed Lines Detection. In Kasturi and
Tombre [17], pages 92{105.

2. C. Ah-Soon and K. Tombre. A Step Towards Reconstruc-
tion of 3-D CAD Models from Engineering Drawings.
In Proceedings of 3rd International Conference on Doc-
ument Analysis and Recognition, Montr�eal (Canada),
pages 331{334, August 1995.

3. C. Ah-Soon and K. Tombre. Network-Based Recognition
of Architectural Symbols. In A. Amin, D. Dori, P. Pudil,
and H. Freeman, editors, Advances in Pattern Recog-
nition (Proceedings of Joint IAPR Workshops SSPR'98
and SPR'98, Sydney, Australia), volume 1451 of Lecture
Notes in Computer Science, pages 252{261, August 1998.

4. T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota.
Practical Use of Bucketing Techniques in Computational
Geometry. In G. T. Toussaint, editor, Computational
Geometry, pages 153{195. North-Holland, 1985.

5. R. C. Bolles and R. A. Cain. Recognizing and Locat-
ing Partially Visible Objects: The Local-Feature-Focus

18 Philippe Dosch et al.: A complete system for the analysis of architectural drawings

Method. In A. Pugh, editor, Robot Vision, pages 43{82.
IFS Publications Ltd. (United Kingdom) and Springer-
Verlag (Berlin), 1983.

6. G. Borgefors. Distance Transforms in Digital Im-
ages. Computer Vision, Graphics and Image Processing,
34:344{371, 1986.

7. G. Sanniti di Baja. Well-Shaped, Stable, and Reversible
Skeletons from the (3,4)-Distance Transform. Jour-
nal of Visual Communication and Image Representation,
5(1):107{115, 1994.

8. D. Dori, L. Wenyin, and M. Peleg. How to Win a Dashed
Line Detection Contest. In Kasturi and Tombre [17],
pages 286{300.

9. Dov Dori and Wenyin Liu. Stepwise recovery of arc seg-
mentation in complex line environments. International
Journal on Document Analysis and Recognition, 1(1):62{
71, February 1998.

10. Ph. Dosch, C. Ah-Soon, G. Masini, G. S�anchez, and
K. Tombre. Design of an Integrated Environment for the
Automated Analysis of Architectural Drawings. In S.-
W. Lee and Y. Nakano, editors, Proceedings of 3rd IAPR
International Workshop on Document Analysis Systems,
Nagano (Japan), pages 366{375, November 1998.

11. Ph. Dosch and G. Masini. Reconstruction of the 3D
Structure of a Building from the 2D Drawings of its
Floors. In Proceedings of 5th International Conference
on Document Analysis and Recognition, Bangalore (In-
dia), pages 487{490, September 1999.

12. Ph. Dosch, G. Masini, and K. Tombre. Improving Arc
Detection in Graphics Recognition. In Proceedings of the
15th International Conference on Pattern Recognition,
Barcelona (Spain), September 2000.

13. L. A. Fletcher and R. Kasturi. A Robust Algorithm for
Text String Separation from Mixed Text/Graphics Im-
ages. IEEE Transactions on PAMI, 10(6):910{918, 1988.

14. R. Horaud and T. Skordas. Stereo Correspondance
Through Feature Grouping and Maximal Cliques. IEEE
Transactions on PAMI, 11(11):1168{1180, 1989.

15. R. D. T. Janssen and A. M. Vossepoel. Adaptive Vector-
ization of Line Drawing Images. Computer Vision and
Image Understanding, 65(1):38{56, January 1997.

16. X. Y. Jiang and H. Bunke. An Optimal Algorithm for
Extracting the Regions of a Plane Graph. Pattern Recog-
nition Letters, 14:553{558, 1993.

17. R. Kasturi and K. Tombre, editors. Graphics
Recognition|Methods and Applications, volume 1072 of
Lecture Notes in Computer Science. Springer-Verlag,
May 1996.

18. B. Kong, I. T. Phillips, R. M. Haralick, A. Prasad,
and R. Kasturi. A Benchmark: Performance Evaluation
of Dashed-Line Detection Algorithms. In Kasturi and
Tombre [17], pages 270{285.

19. S. W. C. Lam and H. H. C. Ip. Structural Texture Seg-
mentation Using Irregular Pyramid. Pattern Recognition
Letters, pages 691{698, July 1994.

20. J. Llad�os and E. Mart��. A Graph-Edit Algorithm
for Hand-Drawn Graphical Document Recognition and
Their Automatic Introduction into CAD Systems. Ma-
chine Graphics & Vision, 8(2):195{211, 1999.

21. B. T. Messmer and H. Bunke. Automatic Learning and
Recognition of Graphical Symbols in Engineering Draw-
ings. In Kasturi and Tombre [17], pages 123{134.

22. B. T. Messmer and H. Bunke. A New Algorithm for
Error-Tolerant Subgraph Isomorphism Detection. IEEE
Transactions on PAMI, 20(5):493{504, May 1998.

23. B. Pasternak. Adaptierbares Kernsystem zur Interpre-
tation von Zeichnungen. Dissertation zur Erlangung
des akademischen Grades eines Doktors der Naturwis-
senschaften (Dr. rer. nat.), Universit�at Hamburg, April
1996.

24. M. R�o�osli and G. Monagan. Adding Geometric Con-
straints to the Vectorization of Line Drawings. In Kasturi
and Tombre [17], pages 49{56.

25. P. L. Rosin. Techniques for Assessing Polygonal Ap-
proximation of Curves. IEEE Transactions on PAMI,
19(6):659{666, June 1997.

26. P. L. Rosin and G. A. West. Segmentation of Edges into
Lines and Arcs. Image and Vision Computing, 7(2):109{
114, May 1989.

27. W. J. Rucklidge. EÆciently Locating Objects Using the
Hausdor� Distance. International Journal of Computer
Vision, 24(3):251{270, 1997.

28. G. S�anchez, J. Llad�os, and E. Mart��. Segmentation and
Analysis of Linial Textures in Planes. In Proceedings of
7th Spanish National Symposium on Pattern Recognition
and Image Analysis, Barcelona (Spain), volume 1, pages
401{406, 1997.

29. M. Shaw and D. Garlan. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.

30. K. Tombre, C. Ah-Soon, Ph. Dosch, A. Habed, and
G. Masini. Stable, Robust and O�-the-Shelf Methods
for Graphics Recognition. In Proceedings of the 14th In-
ternational Conference on Pattern Recognition, Brisbane
(Australia), pages 406{408, August 1998.

31. K. Tombre, C. Ah-Soon, Ph. Dosch, G. Masini, and
S. Tabbone. Stable and Robust Vectorization: How to
Make the Right Choices. In Proceedings of 3rd Inter-
national Workshop on Graphics Recognition, Jaipur (In-
dia), pages 3{16, September 1999. Revised version to
appear in a forthcoming LNCS volume.

32. K. Tombre and S. Tabbone. Vectorization in Graphics
Recognition: To Thin or not to Thin. In Proceedings of
the 15th International Conference on Pattern Recogni-
tion, Barcelona (Spain), September 2000.

33. E. Valveny and E. Mart��. Application of Deformable
Template Matching to Symbol Recognition in Hand-
written Architectural Drawings. In Proceedings of 5th
International Conference on Document Analysis and
Recognition, Bangalore (India), pages 483{486, Septem-
ber 1999.

34. A. M. Vossepoel, K. Schutte, and C. F. P. Delanghe.
Memory EÆcient Skeletonization of Utility Maps. In
Proceedings of 4th International Conference on Docu-
ment Analysis and Recognition, Ulm (Germany), pages
797{800, August 1997.

35. K. Wall and P. Danielsson. A Fast Sequential Method
for Polygonal Approximation of Digitized Curves. Com-
puter Vision, Graphics and Image Processing, 28:220{
227, 1984.

