
Computational Geometry Algorithms Library

Monique Teillaud

www.cgal.org

1 / 75

Outline

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

2 / 75

Introduction

Introduction

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

3 / 75

Introduction The CGAL Open Source Project

Introduction — The CGAL Open Source Project

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

4 / 75

Introduction The CGAL Open Source Project

Goals

• Promote the research in Computational Geometry (CG)

• “make the large body of geometric algorithms developed in the field of

CG available for industrial applications”

) robust programs

5 / 75

Introduction The CGAL Open Source Project

History

• Development started in 1995

6 / 75

Introduction The CGAL Open Source Project

History

• Development started in 1995

• January, 2003: creation of Geometry Factory
INRIA startup
sells commercial licenses, support, customized developments

• November, 2003: Release 3.0 - Open Source Project
new contributors

• September, 2017: Release 4.11

6 / 75

Introduction The CGAL Open Source Project

License

a few basic packages under LGPL
most packages under GPLv3+
� free use for Open Source code
� commercial license needed otherwise

7 / 75

Introduction The CGAL Open Source Project

Distribution

• from github

• included in Linux distributions (Debian, etc)
• available through macport

• 2009: CGAL triangulations integrated in Matlab

• CGAL-bindings
CGAL triangulations, meshes, etc,
can be used in Java or Python
implemented with SWIG

8 / 75

Introduction The CGAL Open Source Project

CGAL in numbers

• N00,000 lines of C++ code

• several platforms
g++ (Linux MacOS Windows), clang, VC++, etc

• > 1,000 downloads per month

• 50 developers registered on developer list
(⇠ 20 active)

9 / 75

Introduction The CGAL Open Source Project

Development process

• New contributions must be submitted to the Editorial board
and reviewed.

• Automatic test suites running on all supported compilers/platforms

10 / 75

Introduction The CGAL Open Source Project

Users

List of identified users in various fields
• Art

• Architecture, Buildings Modeling, Urban Modeling

• Astronomy

• Computational Geometry and Geometric Computing

• Computer Graphics

• Computational Topology and Shape Matching

• Computer Vision, Image Processing, Photogrammetry

• Games, Virtual Worlds

• Geographic Information Systems

• Geology and Geophysics

• Geometry Processing

• Medical Modeling and Biophysics

• Mesh Generation and Surface Reconstruction

• 2D and 3D Modelers

• Molecular Modeling

• Motion Planning

• Particle Physics, Materials, Nanostructures, Microstructures, Fluid Dynamics

• Peer-to-Peer Virtual Environment

• Sensor Networks

More non-identified users. . .
11 / 75

Introduction The CGAL Open Source Project

Customers of Geometry Factory

(2013)

12 / 75

Introduction Contents of CGAL

Introduction — Contents of CGAL

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

13 / 75

Introduction Contents of CGAL

Structure

Kernels
Various packages
Support Library

STL extensions, I/O, generators, timers. . .

14 / 75

Introduction Contents of CGAL

Some packages

15 / 75

Introduction The CGAL Kernels

Introduction — The CGAL Kernels

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

16 / 75

Introduction The CGAL Kernels

2D, 3D, dD “rational” kernels
2D circular and 3D spherical kernels

17 / 75

Introduction The CGAL Kernels

In the kernels

Elementary geometric objects
Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Circle
. . .

18 / 75

Introduction The CGAL Kernels

Affine geometry

Point - Origin ! Vector
Point - Point ! Vector
Point + Vector ! Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)

19 / 75

Introduction The CGAL Kernels

Kernels and number types

Cartesian representation

Point

����
x = hx

hw

y = hy

hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0

a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����
a1 c1
a2 c2

���� ,
����
a1 b1
a2 b2

����

◆

Field operations Ring operations

20 / 75

Introduction The CGAL Kernels

Kernels and number types

Cartesian representation

Point

����
x = hx

hw

y = hy

hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0

a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����
a1 c1
a2 c2

���� ,
����
a1 b1
a2 b2

����

◆

Field operations Ring operations

20 / 75

Introduction The CGAL Kernels

Kernels and number types

Cartesian representation

Point

����
x = hx

hw

y = hy

hw

Homogeneous representation

Point

������

hx
hy
hw

- ex: Intersection of two lines -
⇢

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

(x , y) =0

BB@

������

b1 c1
b2 c2

������
������

a1 b1
a2 b2

������

,�

������

a1 c1
a2 c2

������
������

a1 b1
a2 b2

������

1

CCA

⇢
a1hx + b1hy + c1hw = 0

a2hx + b2hy + c2hw = 0

(hx , hy , hw) =✓����
b1 c1
b2 c2

���� ,�
����
a1 c1
a2 c2

���� ,
����
a1 b1
a2 b2

����

◆

Field operations Ring operations

20 / 75

Introduction The CGAL Kernels

The “rational” Kernels

CGAL::Cartesian< FieldType >

CGAL::Homogeneous< RingType >

�! Flexibility

typedef double NumberType;

typedef Cartesian< NumberType > Kernel;

typedef Kernel::Point_2 Point;

21 / 75

Introduction The CGAL Kernels

Arithmetic robustness issues

Rational Kernels:
Predicates = signs of polynomial expressions

Exact Geometric Computation
6= exact arithmetics

Predicates evaluated exactly
Filtering Techniques (interval arithmetics, etc)

exact arithmetics only when needed

CGAL::Exact_predicates_inexact_constructions_kernel

22 / 75

Introduction The CGAL Kernels

Arithmetic robustness issues

typedef CGAL::Cartesian<NT> Kernel;

NT sqrt2 = sqrt(NT(2));

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);

Kernel::Circle_2 C(p,2); // squared radius 2

assert(C.has_on_boundary(q));

OK if NT gives exact sqrt
assertion violation otherwise

23 / 75

Introduction The CGAL Kernels

Arithmetic robustness issues

typedef CGAL::Cartesian<NT> Kernel;

NT sqrt2 = sqrt(NT(2));

Kernel::Point_2 p(0,0), q(sqrt2,sqrt2);

Kernel::Circle_2 C(p,2); // squared radius 2

assert(C.has_on_boundary(q));

OK if NT gives exact sqrt
assertion violation otherwise

23 / 75

Introduction The CGAL Kernels

The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
= roots of polynomials of degree 2

Algebraic methods reduce comparisons to
computations of signs of polynomial expressions

24 / 75

Introduction The CGAL Kernels

Application of the 2D circular kernel

Computation of arrangements
of 2D circular arcs and line segments

Pedro M.M. de Castro, Master internship

25 / 75

Introduction The CGAL Kernels

Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Sébastien Loriot, PhD thesis

26 / 75

2D, 3D Triangulations in CGAL

2D, 3D Triangulations in CGAL

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

27 / 75

2D, 3D Triangulations in CGAL Introduction

2D, 3D Triangulations in CGAL — Introduction

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

28 / 75

2D, 3D Triangulations in CGAL Introduction

Simplicial complex

= set K of 0,1,2,. . . d-faces such that
each face is a simplex
� 2 K, ⌧  �) ⌧ 2 K
�,�0 2 K) � \ �0  �,�0

29 / 75

2D, 3D Triangulations in CGAL Introduction

Various triangulations

2D, 3D, dD Basic triangulations
2D, 3D, dD Delaunay triangulations
2D, 3D, dD Regular triangulations

Triangulation

Delaunay Regular

30 / 75

2D, 3D Triangulations in CGAL Introduction

Basic and Delaunay triangulations

(figures in 2D)

p

Basic triangulations : incremental construction
Delaunay triangulations: empty sphere property

31 / 75

2D, 3D Triangulations in CGAL Introduction

Regular triangulations

weighted point p(w) = (p,w
p

), p 2 R3,w
p

2 R
p(w) = (p,w

p

) ' sphere of center p and radius pw
p

.
power product between p(w) and z(w)

⇧(p(w), z(w)) = kp � zk2 � w
p

� w
z

p(w) and z(w) orthogonal iff ⇧(p(w), z(w)) = 0

(2D) p q

p
wp

p
wq

32 / 75

2D, 3D Triangulations in CGAL Introduction

Regular triangulations

Power sphere of 4 weighted points in R3 =
unique common orthogonal weighted point.

z(w) is regular iff 8p(w),⇧(p(w), z(w)) � 0

(2D)

Regular triangulations: generalization of Delaunay triangulations to
weighted points. Dual of the power diagram.

The power sphere of all simplices is regular.

33 / 75

2D, 3D Triangulations in CGAL Functionalities

2D, 3D Triangulations in CGAL — Functionalities

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

34 / 75

2D, 3D Triangulations in CGAL Functionalities

General functionalities

• Traversal of a 2D (3D) triangulation

- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells)

incident to a vertex
- circulators to visit all cells around an edge

• Point location query

• Insertion, removal, flips

• is_valid
checks local validity (sufficient in practice)
not global validity

35 / 75

2D, 3D Triangulations in CGAL Functionalities

General functionalities

• Traversal of a 2D (3D) triangulation

- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells)

incident to a vertex
- circulators to visit all cells around an edge

• Point location query

• Insertion, removal, flips

• is_valid
checks local validity (sufficient in practice)
not global validity

35 / 75

2D, 3D Triangulations in CGAL Functionalities

General functionalities

• Traversal of a 2D (3D) triangulation

- passing from a face (cell) to its neighbors
- iterators to visit all faces (cells) of a triangulation
- circulators (iterators) to visit all faces (cells)

incident to a vertex
- circulators to visit all cells around an edge

• Point location query

• Insertion, removal, flips

• is_valid
checks local validity (sufficient in practice)
not global validity

35 / 75

2D, 3D Triangulations in CGAL Functionalities

Traversal of a 3D triangulation

Iterators
All_cells_iterator Finite_cells_iterator
All_faces_iterator Finite_faces_iterator
All_edges_iterator Finite_edges_iterator
All_vertices_iterator Finite_vertices_iterator

Circulators
Cell_circulator : cells incident to an edge
Facet_circulator : facets incident to an edge

All_vertices_iterator vit;
for (vit = T.all_vertices_begin();

vit != T.all_vertices_end(); ++vit)
...

36 / 75

2D, 3D Triangulations in CGAL Functionalities

Traversal of a 3D triangulation

Around a vertex

incident cells and facets, adjacent vertices

template < class OutputIterator >
OutputIterator

t.incident_cells
(Vertex_handle v, OutputIterator cells)

37 / 75

2D, 3D Triangulations in CGAL Functionalities

Point location, insertion, removal

basic triangulation:

Delaunay triangulation :

38 / 75

2D, 3D Triangulations in CGAL Functionalities

3D Flip

if convex position

3 tetrahedra 2 tetrahedra

39 / 75

2D, 3D Triangulations in CGAL Functionalities

Additional functionalities for Delaunay triangulations

Nearest neighbor queries
Voronoi diagram

40 / 75

2D, 3D Triangulations in CGAL Representation

2D, 3D Triangulations in CGAL — Representation

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

41 / 75

2D, 3D Triangulations in CGAL Representation

The main algorithm

Incremental algorithm

fully dynamic (point insertion, vertex removal)
any dimension
easier to implement
efficient in practice
. . .

42 / 75

2D, 3D Triangulations in CGAL Representation

Needs

Walking in a triangulation

Access to
vertices of a simplex
neighbors of a simplex

in constant time

43 / 75

2D, 3D Triangulations in CGAL Representation

2D - Representation based on faces

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))

Vertex

Face_handle v_face

Face

Vertex_handle vertex [3]
Face_handle neighbor [3]

Edges are implicit: std::pair< f , i >

where f = one of the two incident faces.
more efficient than half-edges

From one face to another
n = f ! neighbor(i)

j = n ! index(f)

44 / 75

2D, 3D Triangulations in CGAL Representation

2D - Representation based on faces

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))

Vertex

Face_handle v_face

Face

Vertex_handle vertex [3]
Face_handle neighbor [3]

Edges are implicit: std::pair< f , i >

where f = one of the two incident faces.
more efficient than half-edges

From one face to another
n = f ! neighbor(i)

j = n ! index(f)

44 / 75

2D, 3D Triangulations in CGAL Representation

3D - Representation based on cells

v0

v1

v2

v3

n0

n1

n2

n3

Vertex

Cell_handle v_cell

Cell

Vertex_handle vertex [4]
Cell_handle neighbor [4]

Faces are implicit: std::pair< c , i >

where c = one of the two incident cells.

Edges are implicit: std::pair< u, v >

where u, v = vertices.

45 / 75

2D, 3D Triangulations in CGAL Representation

3D - Representation based on cells

v0

v1

v2

v3

n0

n1

n2

n3

Vertex

Cell_handle v_cell

Cell

Vertex_handle vertex [4]
Cell_handle neighbor [4]

From one cell to another

n = c ! neighbor(i)

j = n ! index(c)

45 / 75

2D, 3D Triangulations in CGAL Representation

The infinite region

Triangulation of a set of points =
partition of the convex hull into simplices.

The infinite region has
non-constant size

Add a bounding box?

requires to know points in
advance
creates ugly simplices

Triangulation of Rd

'
Triangulation of the topological sphere Sd .

46 / 75

2D, 3D Triangulations in CGAL Representation

The infinite region

Triangulation of a set of points =
partition of the convex hull into simplices.

The infinite region has
non-constant size

Add a bounding box?

requires to know points in
advance

creates ugly simplices

Triangulation of Rd

'
Triangulation of the topological sphere Sd .

46 / 75

2D, 3D Triangulations in CGAL Representation

The infinite region

Triangulation of a set of points =
partition of the convex hull into simplices.

The infinite region has
non-constant size

Add a bounding box?

requires to know points in
advance
creates ugly simplices

Triangulation of Rd

'
Triangulation of the topological sphere Sd .

46 / 75

2D, 3D Triangulations in CGAL Representation

The infinite region

Triangulation of a set of points =
partition of the convex hull into simplices.

Add an infinite vertex
�! “triangulation”

of the infinite region

- Every cell is a “simplex”.
- Any facet is incident to two cells.

1

1

1

1
1

1

1

1

Triangulation of Rd

'
Triangulation of the topological sphere Sd .

46 / 75

2D, 3D Triangulations in CGAL Representation

The infinite region

Triangulation of a set of points =
partition of the convex hull into simplices.

Add an infinite vertex
�! “triangulation”

of the infinite region

- Every cell is a “simplex”.
- Any facet is incident to two cells.

1

1

1

1
1

1

1

1

Triangulation of Rd

'
Triangulation of the topological sphere Sd .

46 / 75

2D, 3D Triangulations in CGAL Representation

Geometry vs. combinatorics

Each finite vertex stores a point

There is NO point in the infinite vertex

infinite simplex = half-space

47 / 75

2D, 3D Triangulations in CGAL Representation

Geometry vs. combinatorics

Each finite vertex stores a point

There is NO point in the infinite vertex

infinite simplex = half-space

47 / 75

2D, 3D Triangulations in CGAL Representation

Dimensions in a 3D triangulation

triangulated
a 4-dimensional

dim 0

dim 2

sphere

dim 1

dim 3

48 / 75

2D, 3D Triangulations in CGAL Representation

Dimensions

Adding a point outside the current affine hull:
From d = 1 to d = 2

1 1

1 1 1

p

1

v(1) v(p)

49 / 75

2D, 3D Triangulations in CGAL Robustness

2D, 3D Triangulations in CGAL — Robustness

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

50 / 75

2D, 3D Triangulations in CGAL Robustness

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation

3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel 2D 3D
Cartesian < double >

may loop (or crash) !

Exact_predicates_inexact_constructions_kernel 10.6 sec 82 sec

51 / 75

2D, 3D Triangulations in CGAL Robustness

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation

3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel 2D 3D
Cartesian < double >

may loop (or crash) !

9.7 sec 75 sec
Exact_predicates_inexact_constructions_kernel 10.6 sec 82 sec

51 / 75

2D, 3D Triangulations in CGAL Robustness

Arithmetic robustness

see above

Benchmarks
2.3 GHz, 16 GByte workstation

3.9 (Release mode)

Delaunay triangulation - 10 Mpoints

Kernel 2D 3D
Cartesian < double > may loop (or crash) !
Exact_predicates_inexact_constructions_kernel 10.6 sec 82 sec

51 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Cospherical points

Any triangulation is a Delaunay triangulation

52 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Vertex removal

1- remove the tetrahedra incident to v �! hole

2- retriangulate the hole

53 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Vertex removal

1- remove the tetrahedra incident to v �! hole
2- retriangulate the hole

53 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Vertex removal Cocircular points

Several possible Delaunay triangulations of a facet of the hole

Triangulation of the hole must be
compatible with the rest of the triangulation

54 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Remark on the general question:

H given polyhedron with triangulated facets.
Find a Delaunay triangulation of H keeping its facets ?

Not always possible:

55 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Allowing flat tetrahedra?
k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole
.

.

.

sequence of O(k2) edge flips
.

.

.

2D triangulation of the facet induced by tetrahedra outside the hole

edge flip ! flat tetrahedron

Unacceptable

56 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Allowing flat tetrahedra?
k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole
.

.

.

sequence of O(k2) edge flips
.

.

.

2D triangulation of the facet induced by tetrahedra outside the hole

edge flip ! flat tetrahedron

Unacceptable

56 / 75

2D, 3D Triangulations in CGAL Robustness

Degenerate cases

Symbolic perturbation of in_sphere predicate

see course robustness

Algorithm working even in degenerate situations
No flat tetrahedra
Perturbed predicate easy to code

CGAL : only publicly available software
proposing a fully dynamic 3D Delaunay/regular triangulation.

57 / 75

2D, 3D Triangulations in CGAL Robustness

Robustness

Dassault Systèmes

58 / 75

2D, 3D Triangulations in CGAL Robustness

Robustness

Pictures by Pierre Alliez

58 / 75

2D, 3D Triangulations in CGAL Software Design

2D, 3D Triangulations in CGAL — Software Design

1 Introduction
The CGAL Open Source Project
Contents of CGAL
The CGAL Kernels

2 2D, 3D Triangulations in CGAL
Introduction
Functionalities
Representation
Robustness
Software Design

59 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

Triangulation_2<Traits, TDS>

Geometric traits classes provide:
Geometric objects + predicates + constructors

Flexibility:
• The Kernel can be used as a traits class for several algorithms
• Otherwise: Default traits classes provided
• The user can plug his/her own traits class

60 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

Generic algorithms

Delaunay_Triangulation_2<Traits, TDS>

Traits parameter provides:
• Point
• orientation test, in_circle test

61 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

2D Kernel used as traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2< K > Delaunay;

• 2D points: coordinates (x, y)
• orientation, in_circle

62 / 75

2D, 3D Triangulations in CGAL Software Design

Traits class

Changing the traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Projection_traits_xy_3< K > Traits;

typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

• 3D points: coordinates (x, y, z)
• orientation, in_circle:

on x and y coordinates only

63 / 75

2D, 3D Triangulations in CGAL Software Design

Layers

Triangulation_3< Traits, TDS >

Vertex Cell

Vertex
-base

Cell
-base

Geometric information
Additional information

Data Structure

Combinatorics
insertion

Triangulation

Geometry
location

Triangulation_data_structure_3< Vb, Cb> ;
Vb and Cb have default values.

64 / 75

2D, 3D Triangulations in CGAL Software Design

Layers

The base level
Concepts VertexBase and CellBase.

Provide
- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the traits class.

65 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base

Optional
User

Additions
UserVB UserCB

Derivation

Template
Parameters

Types
Tr

ia
ng

ul
at

io
n

Tr
ia

ng
ul

at
io

n
D

at
a

St
ru

ct
ur

e

Geometric
Functionality

Combinatorial
Functionality

Geometric
Traits

Vertex Cell

CellBaseVertexBase

66 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_with_info_3
<CGAL::Color,K> Vb;

typedef CGAL::Triangulation_data_structure_3<Vb> Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;

typedef Delaunay::Point Point;

67 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

int main()
{

Delaunay T;
T.insert(Point(0,0,0)); T.insert(Point(1,0,0));
T.insert(Point(0,1,0)); T.insert(Point(0,0,1));
T.insert(Point(2,2,2)); T.insert(Point(-1,0,1));

// Set the color of finite vertices of degree 6 to red.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin();

vit != T.finite_vertices_end(); ++vit)
if (T.degree(vit) == 6)

vit->info() = CGAL::RED;

return 0;
}

68 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Third option: write new models of the concepts

69 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

• Vertex and cell base classes:
initially given a dummy TDS template parameter:

dummy TDS provides the types that can be used
by the vertex and cell base classes (such as handles).

• inside the TDS itself,
vertex and cell base classes are
rebound to the real TDS type

! the same vertex and cell base classes are now
parameterized with the real TDS instead of the dummy one.

70 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

Derivation

Optional User
and/or Geometric

Additions

Tr
ia

ng
ul

at
io

n
D

at
a

St
ru

ct
ur

e
Vertex CellTypes

Derivation

Template parameters

DSVertexBase<TDS=Dummy> DSCellBase<TDS=Dummy>

UserVB<...,DSVB<TDS=Self> > UserCB<...,DSCB<TDS=Self> >

Rebind_TDS

UserVB<...,DSVB<TDS=Dummy> > UserCB<...,DSCB<TDS=Dummy> >

71 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

template< class GT, class Vb= Triangulation_vertex_base<GT> >
class My_vertex : public Vb
{
typedef typename Vb::Point Point;
typedef typename Vb::Cell_handle Cell_handle;

template < class TDS2 >
struct Rebind_TDS {
typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex<GT, Vb2> Other;

};

My_vertex() {}
My_vertex(const Point&p) : Vb(p) {}
My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}

...
}

72 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

Example

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>

73 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

Example

template < class GT, class Vb=CGAL::Triangulation_vertex_base_3<GT> >
class My_vertex_base : public Vb {
typedef typename Vb::Vertex_handle Vertex_handle;
typedef typename Vb::Cell_handle Cell_handle;
typedef typename Vb::Point Point;

template < class TDS2 > struct Rebind_TDS {
typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex_base<GT, Vb2> Other; };

My_vertex_base() {}
My_vertex_base(const Point& p) : Vb(p) {}
My_vertex_base(const Point& p, Cell_handle c) : Vb(p, c) {}

Vertex_handle vh;
Cell_handle ch;

};

74 / 75

2D, 3D Triangulations in CGAL Software Design

Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

Example
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::

Triangulation_data_structure_3< My_vertex_base<K> > Tds;
typedef CGAL::

Delaunay_triangulation_3< K, Tds > Delaunay;
typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point Point;

int main()
{ Delaunay T;

Vertex_handle v0 = T.insert(Point(0,0,0));
... v1; v2; v3; v4; v5;
// Now we can link the vertices as we like.

v0->vh = v1; v1->vh = v2;
v2->vh = v3; v3->vh = v4;
v4->vh = v5; v5->vh = v0;
return 0;

} 75 / 75

1

Algorithms

Basic incremental algorithm

Locate by walk

Locate using randomized data structures

Vertex removal in 2D

Conclusions

2

Locate by walk

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Algorithms

Basic incremental algorithm

3 - 1

Algorithms Incremental algorithm

3 - 2

Algorithms Incremental algorithm

3 - 3

Locate

GeometryGeometryGeometry

Algorithms Incremental algorithm

3 - 4

Find conflicts

Geometry

Algorithms Incremental algorithm

3 - 5

Remove triangles

Combinatorics

Algorithms Incremental algorithm

3 - 6

Star the hole

Combinatorics

Algorithms Incremental algorithm

4

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Algorithms

Locate by walk
Straight walk

Visibility walk

Structural filtering

Walk shape

5

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Algorithms

Visibility walk

Structural filtering

Walk shape

Locate by walk
Straight walk

6 - 1

straight walk
Algorithms Locate by walk

6 - 2

straight walk
Algorithms Locate by walk

6 - 3

straight walk
Algorithms Locate by walk

6 - 4

straight walk
Algorithms Locate by walk

6 - 5

straight walk
Algorithms Locate by walk

6 - 6

straight walk
Algorithms Locate by walk

6 - 7

Exit edge ?
One orientation predicate

Algorithms Locate by walk

straight walk

6 - 8

straight walk

Exit edge ?
One orientation predicate

Algorithms Locate by walkAlgorithms Locate by walk

straight walk

6 - 9

End of walk ?
A second orientation predicate

Algorithms Locate by walk
straight walk

6 - 10

straight walk

End of walk ?
A second orientation predicate

Algorithms Locate by walkAlgorithms Locate by walk
straight walk

6 - 11

straight walk
Algorithms Locate by walk

degeneracies

6 - 12

straight walk
Algorithms Locate by walk

degeneracies
(imagine 3D...)

7

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Algorithms

Straight walk

Structural filtering

Walk shape

Locate by walk

Visibility walk

8 - 1

visibility walk
Algorithms Locate by walk

8 - 2

visibility walk
Algorithms Locate by walk

8 - 3

visibility walk
Algorithms Locate by walk

8 - 4

visibility walk
Algorithms Locate by walk

8 - 5

visibility walk
Algorithms Locate by walk

8 - 6

visibility walk
Algorithms Locate by walk

8 - 7

visibility walk

Triangle with two exits
One orientation predicate

Algorithms Locate by walk

8 - 8

visibility walk

Triangle with one exit
1.5 orientation predicate

One predicate

Two predicates

if this neighbor tried first

if this neighbor tried first

Algorithms Locate by walk

8 - 9

visibility walk

1.25 orientation predicate ?

Algorithms Locate by walk

9 - 1

Visibility vs straight walk

Algorithms Locate by walk

9 - 2

Visibility vs straight walk

fewer predicates per crossed edge

similar number of crossed edges

2D and 3D

experimental / theoretical

Algorithms Locate by walk

9 - 3

Visibility vs straight walk

Speed improvement ?

Algorithms Locate by walk

9 - 4

Visibility vs straight walk

Speed improvement ?

Walk in Delaunay 1 Mpoints

Straight: 324 µs

Visibility: 285 µs

3D: 97 µs

Algorithms Locate by walk

9 - 5

Visibility vs straight walk

Speed improvement ?

Much easier to code

Walk in Delaunay 1 Mpoints

Straight: 324 µs

Visibility: 285 µs

3D: 97 µs

Algorithms Locate by walk

no degeneracies to handle!

10 - 1

Algorithms Locate by walk

#include

<CGAL/Exact predicates inexact constructions kernel.h>

#include <CGAL/Triangulation 3.h>

#include <iostream> #include <fstream>

#include <cassert>

#include <list> #include <vector>

typedef

CGAL::Exact predicates inexact constructions kernel K;

typedef CGAL::Triangulation 3<K> Triangulation;

typedef Triangulation::Cell handle Cell handle;

typedef Triangulation::Vertex handle Vertex handle;

typedef Triangulation::Locate type Locate type;

typedef Triangulation::Point Point;

10 - 2

Algorithms Locate by walk

int main()

{
std::list<Point> L;

L.push front(Point(0,0,0));

L.push front(Point(1,0,0));

L.push front(Point(0,1,0));

Triangulation T(L.begin(), L.end());

int n = T.number of vertices();

std::vector<Point> V(3);

V[0] = Point(0,0,1);

V[1] = Point(1,1,1);

V[2] = Point(2,2,2);

n = n + T.insert(V.begin(), V.end());

assert(n == 6);

assert(T.is valid());

10 - 3

Algorithms Locate by walk

Locate type lt;

int li, lj;

Point p(0,0,0);

Cell handle c = T.locate(p, lt, li, lj);

assert(lt == Triangulation::VERTEX);

assert(c->vertex(li)->point() == p);

Vertex handle v = c->vertex((li+1)&3);

Cell handle nc = c->neighbor(li);

int nli;

assert(nc->has vertex(v, nli));

10 - 4

Algorithms Locate by walk

std::ofstream oFileT("output",std::ios::out);

oFileT << T;

Triangulation T1;

std::ifstream iFileT("output",std::ios::in);

iFileT >> T1;

assert(T1.is valid());

assert(T1.number of vertices() == T.number of vertices());

assert(T1.number of cells() == T.number of cells());

return 0;

}

11

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Algorithms

Straight walk

Visibility walk

Walk shape

Locate by walk

Structural filtering

12 - 1

visibility walk - structural filtering
Algorithms Locate by walk

12 - 2

visibility walk - structural filtering
Algorithms Locate by walk

12 - 3

visibility walk - structural filtering

Walk may loop (not in Delaunay)

Algorithms Locate by walk

12 - 4

visibility walk - structural filtering

Walk may loop (not in Delaunay)

Robustness issue:

Non certified arithmetic

Rounding errors

Wrong decisions
during walk

Algorithms Locate by walk

12 - 5

visibility walk - structural filtering

Walk may loop (not in Delaunay)

Robustness issue:

even in Delaunay

may loop

Algorithms Locate by walk

12 - 6

visibility walk - structural filtering

Walk may loop (not in Delaunay)

Robustness issue:

even in Delaunay

But only in very

special configurations

may loop

Algorithms Locate by walk

12 - 7

visibility walk - structural filtering

Orientation predicates

Certify all along the walk

Certify after a while, just in case

285 µseconds

220 µseconds

2D

Walk in Delaunay 1 Mpoints

Algorithms Locate by walk

12 - 8

visibility walk - structural filtering

Orientation predicates

Certify all along the walk

Certify after a while, just in case

285 µseconds

220 µseconds

97 µseconds

81 µseconds

2D 3D

Walk in Delaunay 1 Mpoints

Algorithms Locate by walk

13

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Conclusions

Algorithms

Straight walk

Visibility walk

Structural filtering

Locate by walk

Walk shape

14 - 1

visibility walk - walk shape
Algorithms Locate by walk

14 - 2

visibility walk - walk shape

Rightmost

Algorithms Locate by walk

14 - 3

visibility walk - walk shape

Leftmost

Algorithms Locate by walk

14 - 4

visibility walk - walk shape

In between

Algorithms Locate by walk

14 - 5

visibility walk - walk shape
Algorithms Locate by walk

15 - 1

visibility walk - walk shape

Turn counterclockwise from previous

Rightmost

1

2

Algorithms Locate by walk

15 - 2

visibility walk - walk shape

Leftmost

Turn clockwise from previous

1

2

Algorithms Locate by walk

15 - 3

visibility walk - walk shape

first with proba 1
3

first with proba 2
3

Balance left and right turns

Algorithms Locate by walk

15 - 4

visibility walk - walk shape

220 µseconds

Walk in Delaunay 1 Mpoints

Leftmost

188 µsecondsBalanced

Algorithms Locate by walk

16

220 µsecondsStructural filtering

188 µsecondsBalanced walk

Straight walk

Visibility walk

324 µseconds

285 µseconds

Walk in Delaunay 1 Mpoints

Algorithms Locate by walk

17

Locate by walk

Vertex removal in 2D

Conclusions

Algorithms

Basic incremental algorithm

Locate using randomized data structures

Biased randomized insertion order

The Delaunay tree

The Delaunay hierarchy

18

Locate by walk

Vertex removal in 2D

Conclusions

Algorithms

Basic incremental algorithm

Biased randomized insertion order

The Delaunay hierarchy

Locate using randomized data structures

The Delaunay tree

19 - 1

the Delaunay tree
Algorithms Locate using data structures

19 - 2

the Delaunay tree
Algorithms Locate using data structures

19 - 3

the Delaunay tree
Algorithms Locate using data structures

19 - 4

the Delaunay tree
Algorithms Locate using data structures

19 - 5

the Delaunay tree
Algorithms Locate using data structures

19 - 6

the Delaunay tree
Algorithms Locate using data structures

19 - 7

the Delaunay tree
Algorithms Locate using data structures

19 - 8

the Delaunay tree
Algorithms Locate using data structures

19 - 9

the Delaunay tree
Algorithms Locate using data structures

19 - 10

the Delaunay tree
Algorithms Locate using data structures

19 - 11

the Delaunay tree
Algorithms Locate using data structures

19 - 12

the Delaunay tree

locate based on incircle predicate

] triangles in the Delaunay tree

Algorithms Locate using data structures

19 - 13

the Delaunay tree

How many triangles created by the last point ?

Algorithms Locate using data structures

19 - 14

the Delaunay tree

How many triangles created by the last point ?

Algorithms Locate using data structures

19 - 15

the Delaunay tree

How many triangles created by the last point ?

Algorithms Locate using data structures

19 - 16

the Delaunay tree

locate based on incircle predicate

] triangles in the Delaunay tree

= 6n (randomized)

Algorithms Locate using data structures

20

Locate by walk

Vertex removal in 2D

Conclusions

Algorithms

Basic incremental algorithm

Biased randomized insertion order

The Delaunay tree

Locate using randomized data structures

The Delaunay hierarchy

21 - 1

the Delaunay hierarchy
Algorithms Locate using data structures

21 - 2

the Delaunay hierarchy
Algorithms Locate using data structures

21 - 3

the Delaunay hierarchy
Algorithms Locate using data structures

21 - 4

the Delaunay hierarchy

Nearest Neighbor

Query

Algorithms Locate using data structures

21 - 5

the Delaunay hierarchy

Nearest Neighbor

Query

Algorithms Locate using data structures

21 - 6

the Delaunay hierarchy
Algorithms Locate using data structures

21 - 7

the Delaunay hierarchy
Algorithms Locate using data structures

21 - 8

the Delaunay hierarchy
Algorithms Locate using data structures

21 - 9

The Delaunay tree

locate based on incircle predicate

] triangles in the Delaunay tree

= 6n (randomized)

Algorithms Locate using data structures

21 - 10

The Delaunay tree

locate based on incircle predicate

] triangles in the Delaunay tree

= 6n (randomized)

based on orientation predicate

] triangles in the hierarchy

= 1.03⇥ 2n (expected)

can be chosen

The Delaunay hierarchy

Algorithms Locate using data structures

21 - 11

The Delaunay tree

locate based on incircle predicate

] triangles in the Delaunay tree

= 6n (randomized)

based on orientation predicate

] triangles in the hierarchy

= 1.03⇥ 2n (expected)

can be chosen

O(n log n)

The Delaunay hierarchy

Algorithms Locate using data structures

21 - 12

The Delaunay tree

locate based on incircle predicate

] triangles in the Delaunay tree

= 6n (randomized)

based on orientation predicate

] triangles in the hierarchy

= 1.03⇥ 2n (expected)

can be chosen

17 seconds2.3 seconds

50000 random points (original benchmarks in 2000).

The Delaunay hierarchy

Algorithms Locate using data structures

22 - 1

Algorithms Locate using data structures

#include

<CGAL/Exact predicates inexact constructions kernel.h>

#include <CGAL/Delaunay triangulation 3.h>

#include <CGAL/Random.h>

#include <vector>

#include <cassert>

typedef

CGAL::Exact predicates inexact constructions kernel K;

typedef CGAL::Delaunay triangulation 3<K,

CGAL::Fast location> Delaunay;

typedef Delaunay::Point Point;

22 - 2

Algorithms Locate using data structures

int main()

{ Delaunay T;

std::vector<Point> P;

for (int z=0 ; z<20 ; z++)

for (int y=0 ; y<20 ; y++)

for (int x=0 ; x<20 ; x++)

P.push back(Point(x,y,z));

Delaunay T(P.begin(), P.end());

assert(T.number of vertices() == 8000);

for (int i=0; i<10000; ++i)

T.nearest vertex

(Point(CGAL::default random.get double(0,20),

CGAL::default random.get double(0,20),

CGAL::default random.get double(0,20)));

return 0; }

23

Locate by walk

Vertex removal in 2D

Conclusions

Algorithms

Basic incremental algorithm

The Delaunay tree

The Delaunay hierarchy

Locate using randomized data structures

Biased randomized insertion order

24 - 1

Algorithms Locate using data structures

E�ciency of incremental algorithms
depends on the order of insertion

24 - 2

Locate is easy if you know a vertex nearby

Natural idea: sort the points, locate from previous

Algorithms Locate using data structures

E�ciency of incremental algorithms
depends on the order of insertion

24 - 3

Algorithms Locate using data structures

24 - 4

x-order

Algorithms Locate using data structures

24 - 5

biased random insertion order
Algorithms Locate using data structures

Hilbert curve
(picture from Wikipedia)

24 - 6

biased random insertion order

Hilbert order

Algorithms Locate using data structures

24 - 7

biased random insertion order

Hilbert order

Algorithms Locate using data structures

close geometrically () close in the insertion order
with high probability

=) point location
• previous cell in cache memory ! faster start
• previous point close ! shorter walk

=) memory locality improved
! speed-up in data structure

24 - 8

biased random insertion order

Biased order (Spatial sorting)

Algorithms Locate using data structures

24 - 9

biased random insertion order

Biased order (Spatial sorting)

Algorithms Locate using data structures

24 - 10

biased random insertion order

Biased order (Spatial sorting)

Algorithms Locate using data structures

24 - 11

biased random insertion order

Biased order (Spatial sorting)

Algorithms Locate using data structures

Hilbert sort + std::random shuffle

• points still close enough for speed-up
• some randomness for randomized algorithms

24 - 12

biased random insertion order

Biased order (Spatial sorting)

Algorithms Locate using data structures

Hilbert sort + std::random shuffle

• points still close enough for speed-up
• some randomness for randomized algorithms

template < class InputIterator >
int

t.insert (InputIterator first, InputIterator last)

24 - 13

random order

x-order

Hilbert order

Biased order (Spatial sorting)

locate using Delaunay hierarchy

0.7 seconds

157 seconds

3 seconds

0.8 seconds

6 seconds

Delaunay 2D 1M random points

Algorithms Locate using data structures

24 - 14

random order

x-order

Hilbert order

Biased order (Spatial sorting)

locate using Delaunay hierarchy

Delaunay 2D 100K parabola points

128 seconds

632 seconds

46 seconds

0.3 seconds

0.3 seconds

Algorithms Locate using data structures

25

10.6 secondsBiased random order

Delaunay tree

Delaunay hierarchy

⇠ 10 mn (estimate)

90 seconds

Construction of Delaunay 10 M random points

Algorithms Locate using data structures

26

Locate by walk

Basic incremental algorithm

Locate using randomized data structures

Conclusions

Algorithms

Vertex removal in 2D

27 - 1

Algorithms Vertex removal

27 - 2

Algorithms Vertex removal

27 - 3

Algorithms Vertex removal

27 - 4

Algorithms Vertex removal

28

Locate by walk

Basic incremental algorithm

Locate using randomized data structures

Conclusions

Algorithms

Triangulate and sew

Flip the hole

Low degree optimization

Vertex removal in 2D
Boundary expansion

29 - 1

release 3.5, 2D implementation

boundary expansion
Algorithms Vertex removal

29 - 2

release 3.5, 2D implementation

hole boundary = queue

boundary expansion
Algorithms Vertex removal

29 - 3

release 3.5, 2D implementation

find new incident triangle in linear time

boundary expansion
Algorithms Vertex removal

29 - 4

release 3.5, 2D implementation

boundary expansion
Algorithms Vertex removal

29 - 5

release 3.5, 2D implementation

boundary expansion
Algorithms Vertex removal

30

Locate by walk

Basic incremental algorithm

Locate using randomized data structures

Conclusions

Algorithms

Flip the hole

Low degree optimization

Boundary expansion
Vertex removal in 2D

Triangulate and sew

31 - 1

current implementation in 3D

triangulate and sew
Algorithms Vertex removal

31 - 2

current implementation in 3D

Delaunay of neighbors

triangulate and sew
Algorithms Vertex removal

31 - 3

current implementation in 3D

delete extra triangles and sew

triangulate and sew
Algorithms Vertex removal

31 - 4

current implementation in 3D

delete extra triangles and sew

triangulate and sew
Algorithms Vertex removal

not implemented in 2D

32

Locate by walk

Basic incremental algorithm

Locate using randomized data structures

Conclusions

Algorithms

Triangulate and sew

Low degree optimization

Boundary expansion
Vertex removal in 2D

Flip the hole

33 - 1

flip the hole
Algorithms Vertex removal

33 - 2triangulate from any vertex

flip the hole
Algorithms Vertex removal

33 - 3queue of edges to be checked

flip the hole
Algorithms Vertex removal

33 - 4

flip the hole
Algorithms Vertex removal

33 - 5

flip the hole
Algorithms Vertex removal

33 - 6

flip the hole
Algorithms Vertex removal

33 - 7

flip the hole
Algorithms Vertex removal

33 - 8

flip the hole
Algorithms Vertex removal

33 - 9

flip the hole
Algorithms Vertex removal

33 - 10

flip the hole
Algorithms Vertex removal

a bit faster

34

Locate by walk

Basic incremental algorithm

Locate using randomized data structures

Conclusions

Algorithms

Triangulate and sew

Flip the hole

Boundary expansion
Vertex removal in 2D

Low degree optimization

35 - 1

degree 3

low degree optimization
Algorithms Vertex removal

35 - 2

degree 3

almost nothing to do

low degree optimization
Algorithms Vertex removal

36 - 1

degree 4

low degree optimization
Algorithms Vertex removal

36 - 2

degree 4

just one incircle test to decide

low degree optimization
Algorithms Vertex removal

37 - 1

degree 5

low degree optimization
Algorithms Vertex removal

37 - 2

degree 5

”star” the pentagon from the right vertex

low degree optimization
Algorithms Vertex removal

37 - 3

degree 5

”star” the pentagon from the right vertex

low degree optimization
Algorithms Vertex removal

37 - 4

degree 5

”star” the pentagon from the right vertex

low degree optimization
Algorithms Vertex removal

37 - 5

degree 5

”star” the pentagon from the right vertex

low degree optimization
Algorithms Vertex removal

37 - 6

degree 5

”star” the pentagon from the right vertex

low degree optimization
Algorithms Vertex removal

37 - 7

degree 5

”star” the pentagon from the right vertex

low degree optimization
Algorithms Vertex removal

38 - 1

degree 5

Decision tree

low degree optimization
Algorithms Vertex removal

38 - 2

degree 5

Decision tree
32012

42023 42013

yesno

42123
42012

v0
v2 v1

v3

v4v4

v0

v2
v1

v3
v4

low degree optimization
Algorithms Vertex removal

39 - 1

degree 6

low degree optimization
Algorithms Vertex removal

39 - 2

degree 6

low degree optimization
Algorithms Vertex removal

39 - 3

degree 6

low degree optimization
Algorithms Vertex removal

39 - 4

degree 6

low degree optimization
Algorithms Vertex removal

39 - 5

degree 6

low degree optimization
Algorithms Vertex removal

39 - 6

degree 6

low degree optimization
Algorithms Vertex removal

39 - 7

degree 6

14 results

low degree optimization
Algorithms Vertex removal

40 - 1

degree 6
Decision tree

low degree optimization
Algorithms Vertex removal

40 - 2

degree 6
Decision tree

12230

42235

12234

12235

42013

52124

12345

star5

42013

52013

52014

antiN0

N2

antiN0

52014

52014

star1

N1

star4

antiN1

star1

N1

diamond1

42503

star3

antiN0

42235

42230

52230

42012

star0

52012

42503

42125

42502

antiN2

N0

star5

star0

52012

diamond0

N2

42015

star2

star4

N2

antiN1

v0

v1

v2v3

v5

v4

low degree optimization
Algorithms Vertex removal

40 - 3

degree 6
Decision tree

12230

42235

12234

12235

42013

52124

12345

star5

42013

52013

52014

antiN0

N2

antiN0

52014

52014

star1

N1

star4

antiN1

star1

N1

diamond1

42503

star3

antiN0

42235

42230

52230

42012

star0

52012

42503

42125

42502

antiN2

N0

star5

star0

52012

diamond0

N2

42015

star2

star4

N2

antiN1

v0

v1

v2v3

v5

v4

6 incircle predicates

low degree optimization
Algorithms Vertex removal

41 - 1

symmetric tree

degree 7
Decision tree

low degree optimization
Algorithms Vertex removal

41 - 2

symmetric tree

degree 7
Decision tree

10 incircle predicates

low degree optimization
Algorithms Vertex removal

42

degree 3 4 5 6 7 8? 9
] results 1 2 5 14 42 132 429
] leaves 1 2 6 24 130 '500

dlog2]resultse 0 1 3 4 6 8 9
tree height 0 1 3 6 10 '14

] lines of code 30 40 90 280 700 '2500

?
not implemented. The sizes of the tree and the code are estimated

low degree optimization
Algorithms Vertex removal

43 - 1

Remarks on implementation

limited memory allocation, use old faces ”in place”

re-use as many neighbor links as possible

low degree optimization
Algorithms Vertex removal

43 - 2

Remarks on implementation

limited memory allocation, use old faces ”in place”

re-use as many neighbor links as possible

tree implementation
if incircle(...)

if incircle(...)

if incircle(...) use_this_shape(face0,face1,face2...)

else use_other_shape(face2,face3,face4...)

......

low degree optimization
Algorithms Vertex removal

44 - 1

degree

small degrees

deletion time per vertex

3 4 5 6 7 8 9 10 11 � 12

10µs

Boundary expansion
Flip the hole

Algorithms Vertex removal

44 - 2

degree

3.5

small degrees

deletion time per vertex

3 4 5 6 7 8 9 10 11 � 12

10µs

Boundary expansion
Flip the hole

3.6

Algorithms Vertex removal

44 - 3

degree

init (load memory)

3.5

small degrees

deletion time per vertex

3 4 5 6 7 8 9 10 11 � 12

10µs

Boundary expansion
Flip the hole

3.6

Algorithms Vertex removal

44 - 4

degree

] points

30%

init (load memory)

3.5

small degrees

deletion time per vertex

degree distribution

3 4 5 6 7 8 9 10 11 � 12

10µs

Boundary expansion
Flip the hole

3.6

Algorithms Vertex removal

45

Locate by walk

Basic incremental algorithm

Locate using randomized data structures

Vertex removal in 2D

Algorithms

Conclusions

46

' 1µs per point

Algorithms Conclusions

47

' 8µs per point

Algorithms Conclusions

CGAL � 4.5: multicore option
10 cores 7! speed up factor ' 9

48 - 1

Algorithmic choices

Algorithms Conclusions

48 - 2

Algorithmic choices

Theoretical e�ciency

Algorithms Conclusions

48 - 3

Algorithmic choices

Theoretical e�ciency

Practical e�ciency

Algorithms Conclusions

48 - 4

Algorithmic choices

Theoretical e�ciency

Practical e�ciency

Robustness issues

Algorithms Conclusions

48 - 5

Algorithmic choices

Theoretical e�ciency

Practical e�ciency

Robustness issues

Modularity
traits classes
data structures
geometry

Algorithms Conclusions

48 - 6

Algorithmic choices

Theoretical e�ciency

Practical e�ciency

Robustness issues

Modularity
traits classes
data structures
geometry

Minimal requirements

e.g. do not use strange predicates

Algorithms Conclusions

48 - 7

Algorithms Conclusions

Usable software subsumes

• clean mathematical foundations
• good algorithms
• adapted programming choices
• (some programming tricks)

• requires people with various skills
• raises interesting research questions

49 - 1

some challenges

Practical vs worst case size of Delaunay 3D

Algorithms Conclusions

49 - 2

Known results

some challenges

Practical vs worst case size of Delaunay 3D

⇥(n2
) worst case

⇥(n) random in ball

⌦(n)O(n log n) random on polyhedron

O(n log n) good sample of smooth generic surface

⇥(n log n) random on cylinder

Algorithms Conclusions

49 - 3

Known results

some challenges

Practical vs worst case size of Delaunay 3D

⇥(n2
) worst case

⇥(n) random in ball

⌦(n)O(n log n) random on polyhedron

O(n log n) good sample of smooth generic surface

⇥(n log n) random on cylinder

Find good models of practical data

(Smooth analysis)

Algorithms Conclusions

49 - 4

some challenges

Practical vs worst case size of Delaunay 3D

Better algorithm for 3D deletion

10 µs to insert

100 µs to delete

Algorithms Conclusions

49 - 5

some challenges

Practical vs worst case size of Delaunay 3D

Better algorithm for 3D deletion

One billion points

Needs memory e�cient algorithms

Cache e↵ects are already important

Algorithms Conclusions

50

demos

web site www.cgal.org

	Introduction
	The CGAL Open Source Project
	Contents of CGAL
	The CGAL Kernels

	2D, 3D Triangulations in CGAL
	Introduction
	Functionalities
	Representation
	Robustness
	Software Design

