
Model Checking: A Tutorial Overview

Stephan Merz

Institut für Informatik, Universiẗat München
merz@informatik.uni-muenchen.de

Abstract. We survey principles of model checking techniques for the automatic
analysis of reactive systems. The use of model checking is exemplified by an
analysis of the Needham-Schroeder public key protocol. We then formally de-
fine transition systems, temporal logic,ω-automata, and their relationship. Basic
model checking algorithms for linear- and branching-time temporal logics are de-
fined, followed by an introduction to symbolic model checking and partial-order
reduction techniques. The paper ends with a list of references to some more ad-
vanced topics.

1 Introduction

Computerized systems pervade more and more our everyday lives. We rely on digital
controllers to supervise critical functions of cars, airplanes, and industrial plants. Dig-
ital switching technology has replaced analog components in the telecommunication
industry, and security protocols enable e-commerce applications and privacy. Where
important investments or even human lives are at risk, quality assurance for the under-
lying hardware and software components becomes paramount, and this requires formal
models that describe the relevant part of the systems at an adequate level of abstrac-
tion. The systems we are focussing on are assumed to maintain an ongoing interaction
with their environment (e.g., the controlled system or other components of a communi-
cation network) and are therefore calledreactive systems[60, 94]. Traditional models
that describe computer programs as computing some result from given input values
are inadequate for the description of reactive systems. Instead, the behavior of reactive
systems is usually modelled by transition systems.

The term model checking designates a collection of techniques for the automatic
analysis of reactive systems. Subtle errors in the design of safety-critical systems that
often elude conventional simulation and testing techniques can be (and have been)
found in this way. Because it has been proven cost-effective and integrates well with
conventional design methods, model checking is being adopted as a standard procedure
for the quality assurance of reactive systems.

The inputs to a model checker are a (usually finite-state) description of the system to
be analysed and a number of properties, often expressed as formulas of temporal logic,
that are expected to hold of the system. The model checker either confirms that the
properties hold or reports that they are violated. In the latter case, it provides a counter-
example: a run that violates the property. Such a run can provide valuable feedback
and points to design errors. In practice, this view turns out to be somewhat idealized:
quite frequently, available resources only permit to analyse a rather coarse model of

the system. A positive verdict from the model checker is then of limited value because
bugs may well be hidden by the simplifications that had to be applied to the model.
On the other hand, counter-examples may be due to modelling artefacts and no longer
correspond to actual system runs. In any case, one should keep in mind that the object
of analysis is always anabstract modelof the system. Standard procedures such as
code reviews are necessary to ensure that the abstract model adequately reflects the
behavior of the concrete system in order for the properties of interest to be established
or falsified. Model checkers can be of some help in this validation task because it is
possible to perform “sanity checks”, for example to ensure that certain runs are indeed
possible or that the model is free of deadlocks.

This paper is intended as a tutorial overview of some of the fundamental princi-
ples of model checking, based on a necessarily subjective selection of the large body of
model checking literature. We begin with a case study in section2 where the application
of model checking is considered from a user’s point of view. Section3 reviews transi-
tion systems, temporal logics, and automata-theoretic techniques that underly some ap-
proaches to model checking. Section4 introduces basic model checking algorithms for
linear-time and branching-time logics. Finally, section5 collects some rather sketchy
references to more advanced topics. Much more material can be found in other contri-
butions to this volume and in the textbooks and survey papers [27, 28, 69, 97, 124] on
the subject. The paper contains many references to the relevant literature, in the hope
that this survey can also serve as an annotated bibliography.

2 Analysis of a Cryptographic Protocol

2.1 Description of the Protocol

Let us first consider, by way of example, the analysis of a public-key authentication pro-
tocol suggested by Needham and Schroeder [104] using the model checker SPIN [65].
Two agents A(lice) and B(ob) try to establish a common secret over an insecure channel
in such a way that both are convinced of each other’s presence and no intruder can get
hold of the secret without breaking the underlying encryption algorithm. This is one of
the fundamental problems in cryptography: for example, a shared secret could be used
to generate a session key for subsequent communication between the agents.

The protocol is pictorially represented in Fig.1.1 It requires the exchange of three
messages between the participating agents. Notation such as〈M 〉C denotes that mes-
sageM is encrypted using agentC ’s public key. Throughout, we assume the underlying
encryption algorithm to be secure and the private keys of the honest agents to be un-
compromised. Therefore, only agentC can decrypt〈M 〉C to learnM .

1. Alice initiates the protocol by generating a random numberNA and sending the
message〈A,NA〉B to Bob (numbers such asNA are callednoncesin cryptographic
jargon, indicating that they should be used only once by any honest agent). The first

1 The original protocol includes communication between the agents and a central key server to
distribute the public keys of the agents. We concentrate on the core authentication protocol,
assuming all public keys to be known to all agents.

"!

A "!

B
s

1. 〈A,NA〉B

� 2. 〈NA,NB 〉A

3

3. 〈NB 〉B

Fig. 1.Needham-Schroeder public-key protocol.

component of the message informs Bob of the identity of the initiator. The second
component represents “one half” of the secret.

2. Bob similarly generates a nonceNB and responds with the message〈NA,NB 〉A.
The presence of the nonceNA generated in the first step, which only Bob could
have decrypted, convinces Alice of the authenticity of the message. She therefore
accepts the pair〈NA,NB 〉 as the common secret.

3. Finally, Alice responds with the message〈NB 〉B . By the same argument as above,
Bob concludes that this message must originate with Alice, and therefore also ac-
cepts〈NA,NB 〉 as the common secret.

We assume all messages to be sent over an insecure medium. Attackers may inter-
cept messages, store them, and perhaps replay them later. They may also participate in
ordinary runs of the protocol, initiate runs or respond to runs initiated by honest agents,
who need not be aware of their partners’ true identity. However, even an attacker can
only decrypt messages that were encrypted with his own public key.

The protocol contains a severe flaw, and the reader is invited to find it before con-
tinuing. The error was discovered some 17 years after the protocol was first published,
using model checking technology [91].

2.2 A PROMELA Model

We represent the protocol in PROMELA (“protocol meta language”), the input language
for the SPIN model checker.2 In order to make the analysis feasible, we make a number
of simplifying assumptions:

– We consider a network of only three agents: A, B, and I(ntruder).
– The honest agents A and B can only participate in one protocol run each. Agent A

can only act as initiator, and agent B as responder. It follows that A and B need to
generate at most one nonce.

– The memory of agent I is limited to a single message.

2 The full code is available from the author.

Although the protocol is very small, our simplifications are quite typical of the
analysis of “real-world” systems via model checking: models are usually required to
be finite-state, and the complexity of analysis typically depends exponentially on the
size of those models. (Esparza’s contribution to this volume surveys the state of the
art concerning model checking techniques for infinite-state models.) Of course, our as-
sumptions imply that certain errors such as “confusion” that could arise when multiple
runs of the protocol interfere will go undetected in our model. This explains why model
checking is considered a debugging rather than a verification technique. When no errors
have been found on a small model, one can consider somewhat less stringent restric-
tions, as far as available resources permit. In any case, it is important to clearly identify
the assumptions that underly the system model in order to assess the coverage of the
analysis.

With these caveats, it is quite straightforward to write a model for the honest agents
A and B from the informal description of section2.1. PROMELA is a guarded-command
language with C-like syntax; it provides primitives for message channels and operations
for sending and receiving messages. We first declare an enumeration type that contains
symbolic constants to make the model more readable. Because one nonce suffices for
each agent, we simply assume that these have been precomputed and refer to them by
symbolic names.

mtype = { ok, err, msg1, msg2, msg3, keyA, keyB, keyI,
agentA, agentB, agentI, nonceA, nonceB, nonceI };

We represent encrypted messages as records that contain akey and twodata
entries. Decryption can then be modelled as pattern-matching on thekey entry.

typedef Crypt { mtype key, data1, data2 };

The network is modelled as a single message channel shared by all three agents.
For simplicity, we assume synchronous communication on the network, indicated by a
buffer length of0; this does not affect the possible communication patterns but helps
to reduce the size of the model. A message on the network is modelled as a triple
consisting of an identification tag (the message number), the intended receiver (which
the intruder is free to ignore), and an “encrypted” message body.

chan network = [0] of { mtype, /* msg# */
mtype, /* receiver */
Crypt };

Figure2 contains the PROMELA code3 for agent A. Initially, a partner (either B or
I) is chosen nondeterministically for the subsequent run (the token:: introduces the
different alternatives of nondeterministic selection), and its public key is looked up. A
message of type 1 is then sent to the chosen partner, after which agent A waits for a mes-
sage of type 2 intended for her to arrive on the network. She verifies that the message
body is encrypted with her key and that it contains the nonce sent in the first message.
(PROMELA allows Boolean conditions to appear as statements; such a statement blocks
if the condition is found to be false.) If so, she extracts the partner’s nonce, responds
3 In actual PROMELA, record formation is not available as a primitive operation, but must be

simulated by a series of assignments.

mtype partnerA;
mtype statusA = err;

active proctype Alice() {
mtype pkey, pnonce;
Crypt data;

if /* choose a partner for this run */
:: partnerA = agentB; pkey = keyB;
:: partnerA = agentI; pkey = keyI;
fi;
network ! (msg1, partnerA, Crypt{pkey, agentA, nonceA});

network ? (msg2, agentA, data);
(data.key == keyA) && (data.info1 == nonceA);
pnonce = data.info2;

network ! (msg3, partnerA, Crypt{pkey, pnonce, 0});
statusA = ok;

}

Fig. 2. PROMELA code for agent A.

with a message of type 3, and declares success. (The variablestatusA will be used
later to express correctness statements about the model.)

The code for agent B is similar, exchanging sending and reception of messages.

In contrast, the intruder cannot be modelled using a fixed protocol—the purpose of
the analysis is to let SPIN find the attack if one exists at all. Instead, agent I is modelled
highly nondeterministically: we describe the actions that are possible at any given state
and let SPIN choose among them. The overall structure of the code shown in Fig.3 is
an infinite loop that offers a choice between receiving and sending of messages on the
network.

The first alternative models the reception or interception of a message (the “don’t
care” variable “_” reflects the fact that the intruder need not respect the intended recip-
ient of a message). The message body may be stored in the variableintercepted ,
even if it cannot be decrypted. If, moreover, the message has been encrypted for agent I,
it can be analyzed to extract nonces; since the model is based on a fixed set of nonces,
it is enough to set Boolean flags for nonces that the intruder has learnt so far.

The second alternative represents agent I sending a message. There are two sub-
cases: either replay a previously intercepted message or construct a new message from
the information learnt so far. Note that we allow arbitrary (“type-correct”) entries for
the unencrypted fields of a message. Of course, most of the resulting combinations can
be immediately recognized as inappropriate by the honest agents. Our model therefore
contains many deadlocks, which we ignore during the following analysis.

bool knows_nonceA, knows_nonceB;

active proctype Intruder() {
mtype msg, recpt;
Crypt data, intercepted;
do
:: network ? (msg, _, data) ->

if /* perhaps store the message */
:: intercepted = data;
:: skip;
fi;
if /* record newly learnt nonces */
:: (data.key == keyI) ->

if
:: (data.info1 == nonceA) || (data.info2 == nonceA)

-> knows_nonceA = true;
:: else -> skip;
fi;
/* similar for knows_nonceB */

:: else -> skip;
fi;

:: /* Replay or send a message */
if /* choose message type */
:: msg = msg1;
:: msg = msg2;
:: msg = msg3;
fi;
if /* choose recipient */
:: recpt = agentA;
:: recpt = agentB;
fi;
if /* replay intercepted message or assemble it */
:: data = intercepted;
:: if

:: data.info1 = agentA;
:: data.info1 = agentB;
:: data.info1 = agentI;
:: knows_nonceA -> data.info1 = nonceA;
:: knows_nonceB -> data.info1 = nonceB;
:: data.info1 = nonceI;
fi;
/* similar for data.info2 and data.key */

fi;
network ! (msg, recpt, data);

od;
}

Fig. 3. PROMELA code for agent I.

Alice:0
�

8

Intruder:2

9

1!msg1,intruder,keyI,alice,nonceA

23

Bob:1

24

1!msg1,bob,keyB,alice,nonceA

32

33

1!msg2,alice,keyA,nonceA,nonceB

39

40

1!msg2,alice,keyA,nonceA,nonceB

48

49

1!msg3,intruder,keyI,nonceB,0

63

64

1!msg3,bob,keyB,nonceB,0

80

80

80

Fig. 4.Message sequence chart visualizing the attack.

2.3 Model Checking the Protocol

The purpose of the protocol is to ensure mutual authentication (of honest agents) while
maintaining secrecy. In other words, whenever both A and B have successfully com-
pleted a run of the protocol, then A should believe her partner to be B if and only if
B believes to talk to A. Moreover, if A successfully completes a run with B then the
intruder should not have learnt A’s nonce, and similarly for B. These properties are can
be expressed in temporal logic (cf. section3.2) as follows:

G(statusA = ok ∧ statusB = ok ⇒
(partnerA = agentB ⇔ partnerB = agentA))

G(statusA = ok ∧ partnerA = agentB ⇒ ¬knows nonceA)
G(statusB = ok ∧ partnerB = agentA⇒ ¬knows nonceB)

We present SPIN with the model of the protocol and the first formula. In a fraction of
a second, SPIN declares the property violated and outputs a run that contains the attack.
The run is visualized as a message sequence chart, shown in Fig.4: Alice initiates a

protocol run with Intruder who in turn (but masquerading as A) starts a run with Bob,
using the nonce received in the first message. Bob replies with a message of type 2 that
contains both A’s and B’s nonces, encrypted for A. Although agent I cannot decrypt
that message itself, it forwards it to A. Unsuspecting, Alice finds her nonce, returns
the second nonce to her partner I, and declares success. This time, agent I can decrypt
the message, extracts B’s nonce and sends it to B who is also satisfied. As a result,
we have reached a state where A correctly believes to have completed a run with I,
but B is fooled into believing to talk to A. The same counterexample will be produced
when analysing the third formula, whereas the second formula is declared to hold of the
model.

The counterexample produced by SPIN makes it easy to trace the error in the proto-
col to a lack of explicitness in the second message: the presence of the expected nonce
is not sufficient to prove the origin of the message. To avoid the attack, the second
message should therefore be replaced with〈B ,NA,NB 〉. After this modification, SPIN

confirms that all three formulas hold of the model—which of course does not prove
the correctness of the protocol (see, e.g., [106] for work on the formal verification of
cryptographic protocols using interactive theorem proving).

3 Systems and Properties

Reactive systems can be broadly classified asdistributedsystems whose subcompo-
nents are spatially separated andconcurrentsystems that share resources such as pro-
cessors and memories. Distributed systems communicate bymessage passing, whereas
concurrent systems may useshared variables. Concurrent processes may share a com-
mon clock and execute in lock-step (time-synchronoussystems, typical for hardware
verification problems) or operate asynchronously, sharing a common processor. In the
latter case, one will typically assumefairness conditionsthat ensure processes that
could execute are eventually scheduled for execution. A common framework for the
representation of these different kinds of systems is provided by the concept oftran-
sition systems. Properties of (runs of) transition systems are conveniently expressed in
temporal logic.

3.1 Transition Systems

Definition 1. A transition systemT = (S , I ,A, δ) is given by a setS of states, a non-
empty subsetI ⊆ S of initial states, a setA of actions, and a totaltransition relation
δ ⊆ S × A × S (that is, we require that for every states ∈ S there existA ∈ A and
t ∈ S such that(s,A, t) ∈ δ).

An actionA ∈ A is calledenabledat states ∈ S iff (s,A, t) ∈ δ holds for some
t ∈ S .

A runof T is an infinite sequenceρ = s0s1 . . . of statessi ∈ S such thats0 ∈ I and
for all i ∈ N, (si ,Ai , si+1) ∈ δ holds for someAi ∈ A.

A transition system specifies the allowed evolutions of the system: starting from
some initial state, the system evolves by performing actions that take the system to

a new state. Slightly different definitions of transition systems abound in the literature.
For example, actions are sometimes not explicitly identified. We have assumed the tran-
sition relation to be total in order to simplify some of the definitions below. Totality can
be ensured by including astuttering actionthat does not change the state; only the stut-
tering action is enabled in deadlock or quiescent states. Definition1 is often augmented
by fairness conditions, see section4.2. Some papers use the termKripke structurein-
stead of transition system, in honor of the logician Saul A. Kripke who used transition
systems to define the semantics of modal logics [78].

In practice, reactive systems are described using modelling languages, including
(pseudo) programming languages such as PROMELA, but also process algebras or Petri
nets. The operational semantics of these formalisms is conveniently defined in terms of
transition systems. However, the transition system that corresponds to such a descrip-
tion is typically of size exponential in the length of the description. For example, the
state space of a shared-variable program is the product of the variable domains. Mod-
elling languages and their associated model checkers are usually optimized for partic-
ular kinds of systems such as synchronous shared-variable programs or asynchronous
communication protocols. In particular, for systems composed of several processes it
is advantageous to exploit the process structure and avoid the explicit construction of
a single transition system that represents the joint behavior of processes. This will be
further explored in section4.4.

3.2 Properties and Temporal Logic

Given a transition systemT , we can ask questions such as the following:

– Are any “undesired” states reachable inT , such as states that represent a deadlock,
a violation of mutual exclusion etc.?

– Are there runs ofT such that, from some point onwards, some “desired” state is
never reached or some action never executed? Such runs may represent livelocks
where, for example, some process is prevented from entering its critical section,
although other components of the system may still make progress.

– Is some initial system state ofT reachable from every state? In other words, can
the system be reset?

Temporal logic [45, 79, 94, 95, 117] is a convenient language to formally express
such properties. Let us first consider temporal logic of linear time whose formulas ex-
press properties of runs of transition systems. Assume given a denumerable setV of
atomic propositions, which represent properties of individual states.

Definition 2. Formulas of propositional temporal logicPTL of linear time are induc-
tively defined as follows:

– Every atomic propositionv ∈ V is a formula.
– Boolean combinations of formulas are formulas.
– If ϕ andψ are formulas then so areXϕ (“ nextϕ”) and ϕ U ψ (“ ϕ until ψ”).

PTL formulas are interpreted overbehaviors, that is,ω-sequences of states. We
assume that atomic propositionsv ∈ V can be evaluated at statess ∈ S and writes(V)
to denote the set of propositions true at states. For a behaviorσ = s0s1 . . ., we letσi

denote the statesi andσ|i the suffixsisi+1 . . . of σ.

Definition 3. The relationσ |= ϕ (“ ϕ holds ofσ”) is inductively defined as follows:

– σ |= v (for v ∈ V) iff v ∈ σ0(V).
– The semantics of boolean combinations is defined as usual.
– σ |= Xϕ iff σ|1 |= ϕ.
– σ |= ϕ U ψ iff for somek ≥ 0, σ|k |= ψ andσ|j |= ϕ holds for all0 ≤ j < k .

Other usefulPTL formulas can be introduced as abbreviations:Fϕ (“finally ϕ”,
“eventuallyϕ”) is defined astrue U ϕ; it asserts thatϕ holds of some suffix. The dual
formulaGϕ ≡ ¬F¬ϕ (“globallyϕ”, “ alwaysϕ”) requiresϕ to hold of all suffixes.
The formulaϕ W ψ (“ϕ waits forψ”, “ϕ unlessψ”) is defined as(ϕ U ψ)∨Gϕ and
requiresϕ to hold for as long asψ does not hold; unlikeϕ U ψ, it does not requireψ
to become true eventually.

The following formulas are examples for typical correctness assertions about a two-
process resource manager. We assumereqi andownsi to be atomic propositions true
when processi has requested the resource or when it owns the resource.

G¬(owns1 ∧ owns2) : It is never the case that both processes own the resource. In
general, properties of the formG p, for non-temporal formulasp, expresssystem
invariants.

G(req1 ⇒ F owns1) : Whenever process 1 has requested the resource, it will eventu-
ally obtain it. Formulas of this form are often calledresponse properties[93].

G F(req1 ∧ ¬(owns1 ∨ owns2))⇒ G F owns1 : If it is infinitely often the case that
process 1 has requested the resource when the resource is free, then process 1 in-
finitely often owns the resource. This formula expresses a (strong) fairness condi-
tion for process 1.

G(req1 ∧ req2 ⇒ (¬owns2 W (owns2 W (¬owns2 W owns1)))) :
Whenever both processes compete for the resource, process 2 will be granted the
resource at most once before it is granted to process 1. This property, known as “1-
bounded overtaking”, is an example for aprecedence property. It is best understood
as asserting the existence of four, possibly empty or right-open, intervals that satisfy
the respective conditions.

PTL formulas assert properties of single behaviors, but we are interested insystem
validity: we say that formulaϕ holds ofT (writtenT |= ϕ) if ϕ holds of all runs ofT .
In this sense,PTL formulas expresscorrectness propertiesof a system. The existence
of a run satisfying a certain property cannot be expressed inPTL . Suchpossibility
propertiesare the domain of branching-time logics such as the logicCTL (computation
tree logic[25]).

Definition 4. Formulas of propositionalCTL are inductively defined as follows:

– Every atomic propositionv ∈ V is a formula.
– Boolean combinations of formulas are formulas.
– If ϕ andψ are formulas thenEXϕ, EGϕ, andϕ EU ψ are formulas.

CTL formulas are interpreted at the states of a transition system. Apath in T is an
ω-sequenceσ = s0s1 . . . of states related byδ; it is ans-path if s = s0.

��
��

p
s0 ��
��
¬p

s1 ��
��

p
s2

- - -
� �

Fig. 5.A transition systemT such thatT |= F G p butT 6|= AF AG p.

Definition 5. The relationT , s |= ϕ is inductively defined as follows:

– T , s |= v (for v ∈ V) iff v ∈ s(V).
– The semantics of boolean combinations is defined as usual.
– T , s |= EXϕ iff there exists ans-paths0s1 . . . such thatT , s1 |= ϕ.
– T , s |= EGϕ iff there is ans-paths0s1 . . . such thatT , si |= ϕ holds for alli .
– T , s |= ϕ EU ψ iff there exist ans-paths0s1 . . . andk ≥ 0 such thatT , sk |= ψ

andT , sj |= ϕ holds for all0 ≤ j < k .

Derived CTL -formulas includeEFϕ ≡ true EU ϕ, AXϕ ≡ ¬EX¬ϕ, and
AGϕ ≡ ¬EF¬ϕ. For example, the formulaAG¬(owns1 ∧ owns2) expresses mu-
tual exclusion for the two-process resource manager, whereasAG(req1 ⇒ EF owns1)
asserts that whenever process 1 requests the resource, itcan eventually obtain the re-
source, although there may be executions that do not honor the request. The formula
AG EF init (for a suitable predicateinit) asserts that the system is resettable.

System validity forCTL -formulas is defined byT |= ϕ if T , s |= ϕ holds for
all initial statess of T . The expressiveness ofPTL and CTL can be compared by
analyzing which properties of transition systems can be formulated. It turns out that
neither logic subsumes the other one [84, 41, 43]: whereasPTL is clearly incapable
of expressing possibility properties, fairness properties cannot be stated inCTL . More
specifically, there is noCTL formula that is system valid iff thePTL formulaF Gϕ
is. In particular, it does not correspond toAF AGϕ, as shown in Fig.5: every run of
the transition systemT satisfiesF G p (either it stays in states0 forever or it ends in
states2), butT , s0 6|= AF AG p (for the run that stays in states0 there is always the
possibility to move to states1).

Extensions and variations.The lack of expressiveness ofCTL is due to the requirement
that path quantifiers (E, A) and temporal operators (X, G, U) alternate. The logic
CTL ∗ [41, 43] removes this restriction and (strictly) subsumes bothPTL andCTL .
For example, theCTL ∗ formulaAFG p is system valid iff thePTL formulaF G p is.

Thepropositionalµ-calculus[77], also known asµTL , allows properties to be de-
fined as smallest or greatest fixed points, generalizing recursive characterizations of
temporal operators such as

EGϕ ≡ ϕ ∧EX EGϕ

It strictly subsumes the logicCTL ∗. For example, the formulaνX . ϕ ∧ AX AX X
asserts thatϕ holds at every state with even distance from the current state.

Alternating-time temporal logic[6] refines the path quantifiers of branching time
temporal logics by allowing references to different processes (or agents) of a reactive

-��
��

q0 -b ��
��
��
��

q1

a,b

b

Fig. 6.A Büchi automaton.

system. One can, for example, assert that the resource manager can ensure mutual ex-
clusion between the clients, or that the manager and client 1 can cooperate to prevent
client 2 to access the resource.

3.3 ω-Automata

We have seen how to interpret temporal logic formulas over transition systems. On the
other hand, one can construct a finite automaton that represents the models of a given
PTL formula. This close connection between temporal logic and automata is the basis
for PTL decision procedures and model checking algorithms because many properties
of finite automata are decidable, even when applied toω-words. The theory of automata
over infinite words and trees was initiated by Büchi [19], Muller [101], and Rabin [110].
We present some of its basic elements; for more comprehensive expositions see the
excellent survey articles by Thomas [120, 121].

Definition 6. A Büchi automatonB = (Q , I , δ,F) over an alphabetΣ is given by
a finite setQ of locations4, a non-empty setI ⊆ Q of initial locations, a transition
relationδ ⊆ Q ×Σ ×Q , and a setF ⊆ Q of accepting locations.

A runofB over anω-wordw = a0a1 . . . ∈ Σω is an infinite sequenceρ = q0q1 . . .
of locationsqi ∈ Q such thatq0 ∈ I and (qi , ai , qi+1) ∈ δ holds for all i ∈ N. The
run ρ is acceptingiff there exists someq ∈ F such thatqi = q holds for infinitely many
i ∈ N.

ThelanguageL(B) ⊆ Σω is the set ofω-words for which there exists some accept-
ing run ρ of B. A languageL ⊆ Σω is calledω-regulariff L = L(B) for some B̈uchi
automatonB.

Büchi automata are presented just as ordinary (non-deterministic) finite automata
over finite words [68]. The notion of “final locations”, which obviously does not apply
to ω-words, is replaced by the requirement that a run passes infinitely often through an
accepting location. Figure6 shows a two-location B̈uchi automaton with initial location
q0 and accepting locationq1 whose language is the set ofω-words over{a,b} that
contain only finitely manya’s.

Many properties of classical finite automata carry over to Büchi automata. For ex-
ample, the emptiness problem is decidable.
4 We use the termlocationsrather than the conventionalstatesto avoid confusion with the states

of transition systems and temporal logic.

Theorem 7. For a Büchi automatonB with n locations, it is decidable in timeO(n)
whetherL(B) = ∅.

Proof. BecauseQ is finite,L(B) 6= ∅ iff there exist locationsq0 ∈ I , q ∈ F and finite
wordsx ∈ Σ∗ andy ∈ Σ+ such thatq0

x⇒ q andq
y⇒ q (whereq w⇒ q ′ means that

there is a path inB from locationq to q ′ labelled withw). The existence of such paths
can be decided in linear time using the Tarjan-Paige algorithm [119] that enumerates
the strongly connected components ofB reachable from locations inI , and checking
whether some SCC contains some accepting location. ut

Observe that the construction used in the proof of theorem7 implies that anω-
regular language is non-empty iff it contains some word of the formxyω wherex ∈ Σ∗
andy ∈ Σ+.

Unlike the case of standard finite automata, deterministic Büchi automata are strictly
weaker than non-deterministic ones. For example, there is no deterministic Büchi au-
tomaton that accepts the same language as the automatonB of Fig. 6. Intuitively, the
reason is thatB uses unbounded non-determinism to “guess” when it has seen the last
input a (for a rigorous proof see e.g. [120]). It is therefore impossible to prove closure
of the class ofω-regular languages under complement in the standard way (first con-
struct a deterministic B̈uchi automaton equivalent to the initial one, then complement
the set of accepting locations). Nevertheless, Büchi [19] has shown that the comple-
ment of anω-regular language is againω-regular. His proof relied on combinatorial
arguments (Ramsey’s theorem) and was non-constructive. A succession of papers has
replaced this argument with explicit constructions, culminating in the following result
due to Safra [111] of essentially optimal complexity; Thomas [121, 122] explains dif-
ferent strategies for proving closure under complement.

Proposition 8. For a Büchi automatonB with n locations over alphabetΣ there is a
Büchi automatonB with 2O(n log n) locations such thatL(B) = Σω \ L(B).

Other types ofω-automata have also been considered.Generalized B̈uchi automata
define the acceptance condition by a (finite) setF = {F1, . . . ,Fn} of sets of loca-
tions [126]. A run is accepting if some location from everyFi is visited infinitely often.
Using a counter modulon, it is not difficult to simulate a generalized Büchi automaton
by a standard one. The algorithm for checking nonemptiness can be adapted by search-
ing some strongly connected component that contains some location from everyFi .
Muller automataalso specify the acceptance condition as a setF of set of locations; a
run is accepting if the set of locations that appears infinitely often is an element ofF .
Rabin and Streett automata use pairs of sets of locations to define even more elaborate
acceptance conditions, such as requiring that if locations in a setR ⊆ Q are visited in-
finitely often then there are also infinitely many visits to locations in another setG ⊆ Q .
Streett automata can be exponentially more succinct than Büchi automata, and deter-
ministic Rabin and Streett automata are at the heart of Safra’s proof. It is also possible
to place acceptance conditions on the transitions rather than the locations [7, 36].

Alternating automata[102] present a more radical departure from the format of
Büchi automata and have attracted considerable interest in recent years. The basic idea
is to allow the automaton to make a transition from one location to several successor

locations that are simultaneously active. One way to define such a relation is to let
δ(q , a) be a positive Boolean formula with the locations as atomic propositions. For
example,

δ(q1, a) = (q2 ∧ q3) ∨ q4

specifies that whenever locationq1 is active and input symbola ∈ Σ is read, the au-
tomaton moves to locationsq2 andq3 in parallel, or to locationq4. Runs of alternating
automata are no longer infinite sequences, but rather infinite trees or dags of locations.
Although they also define the class ofω-regular languages, alternating automata can be
exponentially more succinct than Büchi automata, due to their inherent parallelism. On
the other hand, checking for nonemptiness is normally of exponential complexity.

3.4 Temporal Logic and Automata

We can consider a behavior as anω-word over the alphabet2V , identifying a system
states and the sets(V) of atomic propositions thats satisfies. From this perspective,
PTL formulas andω-automata are two different formalisms to describeω-words, and
it is interesting to compare their expressiveness. For example, the Büchi automaton of
Fig. 6 can be identified with thePTL formulaF G b.

We outline a construction of a generalized Büchi automatonBϕ for a givenPTL
formulaϕ such thatBϕ accepts precisely those runs over whichϕ holds. In view of the
high complexity of complementation (cf. Prop.8), the construction is not defined by
induction on the structure ofϕ but is based on a “global” construction that considers all
subformulas ofϕ simultaneously. TheFischer-Ladner closureC(ϕ) of formulaϕ is the
set of subformulas ofϕ and their complements, identifying¬¬ψ andψ. The locations
of Bϕ are subsets ofC(ϕ), with the intuition that an accepting run ofBϕ from location
q satisfies the formulas inq . More precisely, the locationsq of Bϕ are all subsets of
C(ϕ) that satisfy the followinghealthiness conditions:

– For allψ ∈ C(ϕ), eitherψ ∈ q or¬ψ ∈ q , but not both.
– If ψ1 ∨ ψ2 ∈ C(ϕ) thenψ1 ∨ ψ2 ∈ q iff ψ1 ∈ q orψ2 ∈ q .
– Conditions for other boolean combinations are similar.
– If ψ1 U ψ2 ∈ q , thenψ2 ∈ q orψ1 ∈ q .
– If ψ1 U ψ2 ∈ C(ϕ) \ q , thenψ2 /∈ q .

The initial locations ofBϕ are those locations containingϕ. The transition relation
δ of Bϕ is defined such that(q , s, q ′) ∈ δ iff all of the following conditions hold:

– s = q ∩ V is the set of atomic propositions that appear inV; these must obviously
be satisfied immediately by any run starting inq .

– q ′ containsψ (resp., does not containψ) if Xψ ∈ q (resp.,Xψ ∈ C(ϕ) \ q).
– If ψ1 U ψ2 ∈ q andψ2 /∈ q thenψ1 U ψ2 ∈ q ′.
– If ψ1 U ψ2 ∈ C(ϕ) \ q andψ1 ∈ q thenψ1 U ψ2 /∈ q ′.

The healthiness and next-state conditions are justified by propositional consistency
and by the “recursion law”

ψ1 U ψ2 ≡ ψ2 ∨ (ψ1 ∧X(ψ1 U ψ2))

~(p U q),
~(~p U q),
~p, ~q, ~F

~(p U q),
~(~p U q),
p, ~q, ~F

p U q,
~p U q,
~p, q, F

p U q,
~(~p U q),

p, ~q, F

p U q,
~p U q,
p, q, F

~(p U q),
~p U q,

~p, ~q, F

q1 q2

q3 q4

q5 q6

Fig. 7.Büchi automaton forF ≡ (p U q) ∨ (¬p U q).

In particular, they ensure that whenever some location containsψ1 U ψ2, subsequent
locations containψ1 for as long as they do not containψ2.

It remains to define the acceptance conditions ofBϕ, which must ensure that every
location containing some formulaψ1 U ψ2 will be followed by some location contain-
ing ψ2. Let ψ1

1 U ψ1
2 , . . . ,ψk

1 U ψk
2 be all subformulas of this form inC(ϕ). Then

Bϕ has the acceptance conditionF = {F1, . . . ,Fk} whereFi is the set of locations
that do not containψi

1 U ψi
2 or that containψi

2. As an example, Fig.7 shows the au-
tomatonBF for the formulaF ≡ (p U q) ∨ (¬p U q). For clarity, we have omitted
the edge labels, which are simply the set of atomic propositions contained in the source
location. The acceptance sets corresponding to the subformulasp U q and¬p U q are
{q1, q3, q4, q5, q6} and{q1, q2, q3, q5, q6}. For example, they ensure that no accepting
run remains forever in locationq2.

This construction, which is very similar to a tableau construction [128], implies the
existence of a B̈uchi automaton that accepts precisely the models of any givenPTL
formula. The following proposition is due to [87, 126].

Proposition 9. For everyPTL formulaϕ of lengthn there exists a B̈uchi automaton
Bϕ with 2O(n) locations that accepts precisely the behaviors of whichϕ holds.

Combining proposition9 and theorem7, it follows that the satisfiability problem
for PTL is solvable in exponential time by checking whetherL(Bϕ) = ∅; in fact, Sistla
and Clarke [114] have shown that thePTL satisfiability problem is PSPACE-complete.
Note that the above construction invariably produces a Büchi automatonBϕ whose
size is exponential in the length of the formulaϕ. Constructions that try to avoid this
exponential blow-up [56, 38, 36] are the basis for actual implementations.

On the other hand, it is not the case that everyω-regular language can be defined
by a PTL formula: Kamp [74] has shown thatPTL formulas can define exactly the
same behaviors as first-order logic formulas of themonadic theory of linear orders,
that is, formulas built from=, <, and unary predicatesPv (x), for v ∈ V, interpreted
over the natural numbers, see also [54]. This fragment of first-order logic is known to
define the set ofstar-freeω-regular languages, a result due to McNaughton and Pa-
pert [98, 121]. For example, the set of behaviors such that propositionp is true at the
even positions (and may be true or false elsewhere) is notPTL -definable [128]. To at-
tain the level of expressiveness ofω-regular languages (which, by Büchi’s theorem, is
that of the monadic second order theory of linear orders),PTL can be augmented by so-
called “automaton operators” [128], by fixed-point formulas [117] or by quantification
over atomic propositions. Unfortunately, the satisfiability problem for some of these
logics is of non-elementary complexity; moreover, few applications seem to require the
added expressiveness. Nevertheless, such a decision procedure has been implemented
in MONA [76] and performs surprisingly well on practical examples.

Automata for other temporal logics.Automata-theoretic characterizations of branching-
time logics [80] are based on tree automata [120, 121], which again define a notion of
regular tree languages. Alternating automata allow for a rather uniform presentation of
decision procedures for linear-time, branching-time, and alternating-time temporal log-
ics [103, 125, 82], based on different restrictions on the automaton format. An essen-
tially equivalent approach that does not mention automata can be formulated in terms
of logical games [118]. In particular, winning strategies replace the traditional presenta-
tion of counter-examples; this can give better feedback to the user who can then explore
different scenarios that violate a property. The model checkers Truth [85] and CWB-
NC [31] are based on these concepts.

4 Algorithms for Model Checking

Given a transition systemT and a formulaϕ, the model checking problem is to decide
whetherT |= ϕ holds or not. If not, the model checker should provide an explanation
why, in the form of a counterexample (i.e., a run ofT that violatesϕ). For this to be
feasible,T is usually required to be finite-state.

In accordance with the two parameters of the model checking problem (T andϕ),
there are two basic strategies when designing a model checking algorithm: “global”
algorithms recurse on the structure ofϕ and evaluate each of its subformulas over all
of T . “Local” algorithms, in contrast, explore only parts of the state space ofT , but
check all subformulas ofϕ in the process. The choice between global and local model
checking algorithms does not affect the worst-case complexity of model checking al-
gorithms, but the average behavior on practical examples can differ greatly. Observe
that local algorithms may even be able to find errors of infinite-state systems; this is
also true for global algorithms that represent the state space ofT in an implicit form,
as considered in section4.3. Traditionally,PTL model checking has been based on the
local approach, while model checkers forCTL and other branching-time logics have
used global algorithms.

dfs(boolean search_cycle) {
p = top(stack);
foreach (q in successors(p)) {

if (search_cycle and (q == seed))
report acceptance cycle and exit;

if ((q, search_cycle) not in visited) {
push q onto stack;
enter (q, search_cycle) into visited;
dfs(search_cycle);
if (not search_cycle and (q is accepting)) {

seed = q; dfs(true);
} } }
pop(stack);

}
// initialization
stack = emptystack(); visited = emptyset(); seed = nil;
foreach initial pair p {

push p onto stack;
enter (p, false) into visited;
dfs(false)

}

Fig. 8.On-the-flyPTL model checking algorithm.

4.1 Local PTL Model Checking

The model checking problem forPTL can be restated as follows: givenT andϕ, does
there exist a run ofT that does not satisfyϕ? This is a refinement of the satisfiability
problem considered in section3.4: instead of asking whetherL(B¬ϕ) = ∅, we now ask
whether the language defined by the product ofT andB¬ϕ is empty or not.

Formally, assume given a finite transition systemT = (S , I ,A, δT) and a B̈uchi
automatonB¬ϕ = (Q , J , δB,F) that accepts precisely those behaviors that do not
satisfyϕ. The model checking algorithm operates on pairs(s, q) of system states and
automaton locations. A pair(s0, q0) is initial if s0 ∈ I andq0 ∈ J are initial for T
andB¬ϕ, respectively. A pair(s ′, q ′) is a successorof (s, q) if both (s,A, s ′) ∈ δT
(for someA ∈ A) and (q , s(V), q ′) ∈ δB hold: T andB¬ϕ make joint transitions,
the input forB¬ϕ being determined by the values of the atomic propositions at the
current system state. A pair(s, q) is acceptingif q ∈ F is an accepting automaton
location; recall thatT does not define an accepting condition. In particular, we assume
any fairness conditions to be expressed as part of the formulaϕ.

As in the proof of theorem7, T andB¬ϕ admit a joint execution iff there is some ac-
cepting pair that is reachable from some initial pair and from itself. The model checking
algorithm shown in Fig.8 is due to Courcoubetis et al [34]. It is called an “on-the-fly”
algorithm because the exploration of reachable pairs is interleaved with the search for
acceptance cycles. The algorithm maintains a stack of pairs whose successors need to
be explored (resulting in a depth-first search) and a set of pairs that have already been
visited. Starting from the initial pairs, the proceduredfs generates reachable pairs until

some accepting pair is found. At this point, the search switches to cycle search mode
(indicated by the boolean parametersearch cycle) and tries to find a path that leads
back to the accepting pair. Pairs that have already been encountered in the current search
mode are not explored further. Courcoubetis et al. [34] have shown that the algorithm
will find some acceptance cycle if one exists, although it is not guaranteed to find all
cycles (even if the search were continued instead of exiting).

When an acceptance cycle is found, the sequence of system states contained in the
stack represents a run ofT that violates formulaϕ and can be displayed to the user as
a counter-example. Observe that the algorithm of Fig.8 needs to store only the path
back from the current pair back to the initial pair that it started from, and the set of
visited pairs. In particular, it does not have to construct the entire product automaton.
Of course, when no acceptance cycle is found (and the system is declared error-free),
all reachable pairs will have to be explored eventually. However, state exploration stops
as soon as an error has been detected. This can be an important practical advantage:
the state space of a correct system is constrained by its invariants, which are usually
broken when errors are introduced. It is therefore quite common for buggy systems to
have many more reachable states, and resources could easily be exhausted if all of them
had to be explored.

For large models, storing the set of visited pairs may become a problem. If one is
willing to trade complete coverage for the ability to analyze systems that would other-
wise be unmanageable, one can instead maintain a set ofhash codesof visited pairs,
possibly using several hashing functions [66].

The model checking algorithm of Fig.8 has time complexity linear in the product
of the sizes ofT and ofB¬ϕ; by proposition9 the latter can be exponential in the
size ofϕ. However, correctness assertions are often rather short, and as we mentioned
in section3.1, the size ofT can be exponential in the size of the description input
to the model checker. Therefore, in practice the size of the transition system is the
limiting factor. Given current technology, the analysis of systems on the order of106–
107 reachable states is feasible. Techniques that try to overcome this limit are described
in section4.4.

4.2 Global CTL Model Checking

Let us now consider global model checking algorithms for the logicCTL . By [[ψ]]T (for
a CTL formulaψ) we denote the set of statess of T such thatT , s |= ψ. The model
checking problem can then be rephrased as deciding whetherI ⊆ [[ϕ]]T holds. The
satisfaction sets[[ψ]]T can be computed by induction on the structure ofψ, as follows:

[[v]]T = {s : v ∈ s(V)} (for v ∈ V)

[[¬ψ]]T = S \ [[ψ]]T
[[ψ1 ∨ ψ2]]T = [[ψ1]]T ∪ [[ψ2]]T

[[EXψ]]T = δ−1([[ψ]]T) = {s : t ∈ [[ψ]]T for someA, t s.t.(s,A, t) ∈ δ}
[[EGψ]]T = gfp(λX .[[ψ]]T ∩ δ−1(X))

[[ψ1 EU ψ2]]T = lfp(λX .[[ψ2]]T ∪ ([[ψ1]]T ∩ δ−1(X)))

wherelfp(f) andgfp(f), for a functionf : 2S → 2S , denote the least and greatest
fixed points off . (These fixed points exist and can be computed effectively becauseS
is finite.) The clauses for theEG andEU connectives are justified from the recursive
characterizations

EGψ ≡ ψ ∧EX EGψ

ψ1 EU ψ2 ≡ ψ2 ∨ (ψ1 ∧EX(ψ1 EU ψ2))

The clause forEU calls for the computation of a least fixed point. Intuitively, this is
becauseψ2 has to become true eventually, and thus the unfolding of the fixed point must
eventually terminate. On the other hand, the greatest fixed point is required in the com-
putation of[[EGψ]] becauseψ has to hold arbitrarily far down the path. Observe that
the least fixed point of the function corresponding toEGψ is the empty set, whereas
the greatest fixed point in the case ofEU computes[[ψ1 EW ψ2]].

For an implementation, we need to be able to efficiently calculate theinverse image
functionδ−1. Sets[[ψ]]T that have already been computed can be memorized in order
to avoid recomputation of common subformulas. In order to assess the complexity of
the algorithm, first note that computation of the fixed points is at most cubic in|S | (if
the computation has not stabilized, at least one state is added to or removed from the
current approximation per iteration, and every iteration may need to search the entire
set of transitions, which may be quadratic in|S |). Second, there are as many recursive
calls asϕ has subformulas, so the overall complexity is linear in the length ofϕ and
cubic in|S |.

Clarke, Emerson, and Sistla [29] have proposed a less naive algorithm whose com-
plexity is linear in the product of the sizes of the formula and the model. For formulas
ψ1 EU ψ2, the idea is to apply backward breadth-first search. ForEGψ, first the
model is restricted to states satisfyingψ (which have already been computed recur-
sively), and the strongly connected components of this restricted graph are enumerated.
The set[[EGψ]]T consists of all states of the restricted model from which some SCC
can be reached; these states are again found using breadth-first search.

Because fairness assumptions can not be formulated inCTL , they must be specified
as part of the model, and the model checking algorithm needs to be adapted accordingly.
For example, the SMV model checker [97] allows to specify fairness constraints via
CTL formulas. We define fair variantsEGf andEUf of the CTL operators whose
semantics is as in definition5, except that quantifiers are restricted to fair paths, i.e.,
paths that contain infinitely many states satisfying the constraints. Let us call a state
s fair iff there is some fairs-path; this is the case iffT , s |= EGf true holds. It is
easy to see thatψ1 EUf ψ2 is equivalent toψ1 EU (ψ2 ∧ EGf true), hence we need
only define an algorithm to compute[[EGf ψ]]T . The algorithm of Clarke, Emerson,
and Sistla can be modified by restricting to those SCCs that for each fairness constraint
ζi contain some state satisfyingζi . The complexity of fairCTL model checking is
thus still linear in the sizes of the formula and the model. For more information on
different kinds of fairness constraints and their associated model checking algorithms
see [42, 44, 81].

A global model checking algorithm for the branching-time fixed point logicµTL
can be defined along the same lines. The complexity is then of the order|ϕ| · |S |qd(ϕ)

whereqd(ϕ) denotes the nesting depth of the fixed point operators in the formulaϕ.
However, Emerson and Lei [44] observed that the computation of fixed points can be
optimized for blocks of fixed point operators of the same type, resulting in a complexity
of order|ϕ| · |S |ad(ϕ) wheread(ϕ) is the alternation depth of fixed point operators of
different type inϕ. In particular, the complexity of model checkingalternation-free
µTL is the same as forCTL [42, 32].

4.3 Symbolic model checking

The ability to analyze systems of relevant size using model checking requires efficient
data structures to represent objects such as transition systems and sets of system states.
Any finite-state system can be encoded using a set{b1, . . . , bn} of binary variables, just
as ordinary data types of programming languages are represented in binary form on a
digital computer. Sets of states, for example the set of initial states, can then be repre-
sented as propositional formulas over{b1, . . . , bn}, and sets of pairs of states, such as
the pairs(s, t) related byδ (for some action) can be represented as propositional formu-
las over{b1, . . . , bn , b′1, . . . , b

′
n} where the unprimed variables represent the pre-state

s and the primed variables represent the post-statet . The size of the representing for-
mula depends on the structure of the represented set rather than on its size: for example,
the empty set and the set of all states are represented byfalse and true, both of size
1. For this reason, such representations are often calledsymbolic, and model checking
algorithms that work on symbolic representations are calledsymbolic model checking
techniques [20, 97].

Binary decision diagrams[16, 18] (more precisely, reduced ordered BDDs) are a
data structure for the symbolic representation of sets that have become very popular for
model checking because they offer the following features:

– Every boolean function has a unique, canonical BDD representation. If sharing of
BDD nodes is enforced, equality of two functions can be decided in constant time
by checking for pointer equality.

– Boolean operations such as negation, conjunction, implication etc. can be imple-
mented with complexity proportional to the product of the inputs.

– Projection (quantification over one or several boolean variables) is easily imple-
mented; its complexity is exponential in the worst case but tends to be well behaved
in practice.

BDDs can be understood as compact representations of ordered decision trees. For
example, Fig.9 shows a decision tree for the formula

(x1 ∧ y1) ∨ ((x1 ∨ y1) ∧ (x0 ∧ y0))

which is the characteristic function for the carry bit produced by an addition of the two-
bit numbersx1x0 andy1y0. To find the result for a given input, follow the path labelled
with the bit values for each of the inputs. The label of the leaf indicates the value of the
function. The tree is ordered because the variables appear in the same order along every
branch.

y1 y1 y1 y1 y1 y1 y1 y1

x0

x1

y0 y0 y0

x1

y0

0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1

0 1

0 1

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

0 1 0 01 1

Fig. 9.Ordered decision tree for 2-bit carry.

x0

x1 x1

y0 y0

y1

1

0 1

1 0 1

0
1

1

1

x0

y0

x1 x1

y1

1

0 1

0 1

1

1

0 1

Fig. 10.BDDs for carry from 2-bit adder.

The decision tree of Fig.9 contains many redundancies. For example, the values of
y0 andy1 are irrelevant ifx0 andx1 are both0. Similarly, y0 is irrelevant in casex0

is 0 andx1 is 1. The redundancies can be removed by combining isomorphic subtrees
(producing a directed acyclic graph from the tree) and eliminating nodes with identical
subtrees. In our example, we obtain the BDD shown on the left-hand side of Fig.10,
where the leaf labelled0 and all edges leading into it have been deleted for clarity. In an
actual implementation, all BDD nodes that have been allocated are kept in a hash table
indexed by the top variable and the two sub-BDDs, in order to avoid identical BDDs to
be created twice. This ensures that two BDDs are functionally equivalent if and only if
they are identical.

For a fixed variable ordering the BDD representing any given propositional formula
is uniquely determined (and equivalent formulas are represented by the same BDD), but
BDD sizes can vary greatly for different variable orderings. For example, the right-hand
side of Fig.10shows a BDD for the same formula as before, but with the variable order-
ing x0, y0, x1, y1. When considering the carry forn-bit addition, the BDD sizes for the
variable orderingx0, . . . , xn−1, y0, . . . , yn−1 grow exponentially withn, whereas they
grow only linearly for the orderingx0, y0, . . . , xn−1, yn−1. It is usually a good heuristic
to group “dependent” variables closely together [53, 47]. In general, however, the prob-
lem of finding an optimal variable ordering is NP-hard [17], and existing BDD libraries
offer automatic reordering strategies based on steepest-ascent heuristics [51, 10]. There
are also functions (such as multiplication) for which no variable ordering can avoid
exponential growth. This is also a problem when representing queues, frequently nec-
essary for the analysis of communication protocols, and special-purpose data structures
have been suggested [13, 57].

Given two BDDsf andg (w.r.t. some fixed variable ordering) the BDD that corre-
sponds to Boolean combinations such asf ∧ g , f ∨ g etc. can be constructed as follows:

– If f andg are both terminal BDDs (0 or 1), return the terminal BDD for the result
of applying the operation.

– Otherwise, letv be the smaller of the variables at the root off andg . Recursively
apply the operation to the sub-BDDs that correspond tov being 0 and 1 (often
called the “co-factors” off andg for variablev). The resultsl andr correspond to
the left- and right-hand branches of the result BDD. Ifl = r , returnl , otherwise
return a BDD with top variablev and childrenl andr .

When recursive calls to this “apply” function are memorized in a hash table, the num-
ber of subproblems to be solved is at most the number of pairs of nodes inf andg .
Assuming perfect hashing, the complexity is therefore linear in the product of the sizes
of f andg .

Observing that existential quantification over propositional variables can be com-
puted as

(∃v : f) ≡ f |v=0 ∨ f |v=1

the computation of a BDD corresponding to the quantified formula can be reduced to
calculating co-factors and disjunction, and in fact quantification over a set of variables
can be performed in a single pass over the BDD.

SymbolicCTL model checking.The naiveCTL model checking algorithm of sec-
tion 4.2is straightforward to implement based on a BDD representation of the transition
systemT . It computes BDDs for the sets[[ψ]]T ; in particular, the inverse imageδ−1(X)
of a setX that is represented as a BDD is computed as the BDD

∃b′1, . . . , b′n : δ ∧X ′

whereX ′ is a copy ofX in which all variables have been primed, andb′1, . . . , b
′
n are all

the primed variables. Naive computation of fixed points is also very simple using BDDs
because equality of BDDs can be decided in constant time.

It is interesting to compare the complexity of this BDD-based algorithm with that of
explicit-stateCTL model checking: Because the representation of the transition relation
using BDDs can be exponentially more succinct than an explicit enumeration, the sym-
bolic algorithm has exponential worst-case complexity in terms of the BDD sizes for
the transition relation. First, the number of iterations required for the calculation of the
fixed points may be exponential in the number of the input variables, and secondly, the
computation of the inverse image may produce BDDs exponential in the size of their
inputs. In practice, however, the number of iterations required for stabilization is of-
ten quite small, and the inverse image operation is well-behaved. This holds especially
for hardware verification problems of “regular” structure and with short data paths. (A
precise definition of “regular” is, however, very difficult.) For this class of problems,
symbolic model checking has been successfully applied to the analysis of systems with
10100 states and more [30]. The main problem is then to find a variable ordering that
yields a small representation of the transition system.

Symbolic model checking for other logics.The approach used for symbolicCTL model
checking extends basically unchanged for propositionalµTL . An extension for the
richer relational µ-calculus[105] has been described by Burch et al. [20] and imple-
mented in the model checkerµcke [12].

Symbolic model checking forPTL has been considered in [24, 112]. The basic idea
is to represent each formula inC(ϕ) by a boolean variable and to define the transi-
tion relation and acceptance condition ofB¬ϕ in terms of these variables rather than
constructing the automaton explicitly.

Bounded model checking.Although symbolic model checking has traditionally been
associated with BDDs, other representations of boolean functions have also attracted
interest. A recent example is thebounded model checkingtechnique described in [11].
It relies on the observation that state sequences of fixed length, sayk , can be represented
usingk copies of the variables used to represent a single state. The set of fixed-length
sequences that represent terminating or looping runs of a given finite-state transition
systemT can therefore be encoded by formulas of (non-temporal) propositional logic,
as well as the semantics ofPTL formulasϕ over such sequences. For any given length
k , the existence of a state sequence of lengthk that represents a run ofT satisfyingϕ
can thus be reduced to the satisfiability of a certain propositional formula, which can be
decided using efficient algorithms such as Stålmarck’s algorithm [115] or SATO [130].
On the other hand, thesmall model propertyof PTL (which follows from the tableau-
based decision procedure discussed in section3.4) implies that there is a run ofT

�
��s0 �
��s1

�
��s2

- -A

Q
Q
Q
QQs

C

	

B

	

B

I
B

�
��t0 �
��t1 �
��t2- -B -C
	

D

	

D

	

D

Fig. 11.Transition systems for two processes.

satisfyingϕ if and only if there is some such run that can be represented by a sequence
of length at most|S | · 2|ϕ|. A model checking algorithm is therefore obtained by enu-
merating all finite executions up to this bound.

4.4 Partial-order Reductions

Whereas symbolic model checking derives its power from efficient data structures for
the representation and manipulation of large sets of sufficiently regular structure, al-
gorithms based on explicit state enumeration can be improved if only a fraction of the
reachable pairs need to be explored. This idea has been applied most successfully in the
case of asynchronous systems that are composed of concurrent processes with relatively
little interaction. The full transition system has as its runs all possible interleavings of
the actions of the individual processes. For many properties, however, the relative order
of concurrent actions is irrelevant, and it suffices to consider only a few sequentializa-
tions. More sophisticated models than simple interleaving-based representations have
been considered in concurrency theory. In particular,Mazurkiewicz tracesmodel runs
as partial orders of events. Reduction techniques that take advantage of the commutativ-
ity of actions are therefore often calledpartial-order reductions, although the analogy
to Mazurkiewicz traces is usually rather superficial.

The main problem in the design of a practical algorithm is to detect when two ac-
tions commute, given only the “local” knowledge available at a given system state. For
example, consider the transition systems for two processes represented in Fig.11. The
left-hand process has a choice between executing actionsA andC , whereas the right-
hand process must perform actionB before actionC . Assuming that processes synchro-
nize on common actions, actionC is disabled at the global state(s0, t0), whereasA,
B , andD could be performed. Moreover, all these actions commute at state(s0, t0). In
particular,A andB can be executed in either order, resulting in the global state(s1, t1).
However, it would be an error to conclude that only the successors of state(s0, t0) with
respect to actionA need be considered, because actionC can then never be taken. The
lesson is that actions that are currently disabled must nevertheless be taken into account
when constructing a reduced state space.

There is also a danger of prematurely stopping the state exploration because actions
are delayed forever along a loop. For an extreme example, consider again the transition

systems of Fig.11 at the global state(s0, t0). The local actionD of the right-hand pro-
cess is certainly independent of all other actions. The only successor with respect to that
action is again state(s0, t0). A naive modification of the model checking algorithm of
Fig. 8 would stop generating further states at that point, which is obviously inadequate.

Partial-order reduction algorithms [123, 58, 67, 48, 108] differ in how these prob-
lems are dealt with in order to arrive at a reasonably efficient algorithm that is adequate
for the given task. The general idea is to approximate the semantic notion of commu-
tativity of actions using syntactic criteria. For example, for a language based on shared
variables, two actions of different processes are certainly independent if they do not
update the same variable. For message passing communication, send and receive op-
erations over the same channel are independent at those states where the channel is
neither empty nor full. Second, the formulaϕ being analysed must be taken into ac-
count: call an actionA visiblefor ϕ if A may change the value of a variable that occurs
in ϕ. Holzmann and Peled [67] define an action to besafeif it is not visible and if it
is provably independent (with the help of syntactic criteria) of all actions of different
processes, even if these actions are currently disabled. The depth-first search algorithm
shown in figure8 can then be modified so that only successor states are considered for
some process that can only perform safe actions at the current state. Consideration of
the actions of other processes is thus delayed. However, the delayed actions must be
considered before a loop is completed. This rather simple heuristic can already lead to
substantial savings and carries almost no overhead because the set of safe actions can
be determined statically.

More elaborate reduction techniques are considered, for example, in [58, 107, 124].
There is always a tradeoff between the potential effectiveness of a reduction method and
the overhead involved in computing a sufficient set of actions that must be explored at
a given state. Moreover, the effectiveness of partial-order reductions in general depends
on the structure of the system: while they are useless for tightly synchronized systems,
they may dramatically reduce the numbers of states and transitions explored during
model checking for loosely coupled, asynchronous systems.

5 Further topics

We conclude this survey with brief references to some more advanced topics in the
context of model checking. Several of these issues are addressed in detail in other con-
tributions to this volume.

Abstraction. Although techniques such as symbolic model checking and partial-order
reduction attempt to battle the infamous state explosion problem, the size of systems
that can be analysed using model checking remains relatively limited: even astronom-
ical numbers such as10100 states are generated by systems with a few hundred bits,
which is a far cry from realistic hardware or software systems. Model checking must
therefore be performed on rather abstract models. It is often advocated that model
checking be applied to high-level designs during the early stages of system develop-
ment because the payoff of finding bugs at that level is high whereas the costs are low.

For example, Lilius and Paltor [88] describe a tool for model checking UML state ma-
chine diagrams [14], and model checking of system specifications of similar degrees of
abstraction has been considered in [5, 52].

When the analysis of big models cannot be avoided, it is rarely necessary to con-
sider them in full detail in order to verify or falsify some given property. This idea can
be formalized as an abstraction function (or relation) that induces some abstract sys-
tem model such that the property holds of the original, “concrete” model if it can be
proven for the abstract model. (Dually, abstractions can be set up such that failure of
the property in the abstract model implies failure in the concrete model.) In general, the
appropriate abstraction relation depends on the application and has to be defined by the
user. Abstraction-based approaches are therefore not entirely automatic “push-button”
methods in the same way that standard model checking is. Given a concrete model and
an abstraction relation, one can either attempt to construct the abstract model using
techniques of abstract interpretation [35] or verify the correctness of a proposed ab-
stract model using theorem proving. There is a large body of literature on abstraction
techniques, including [26, 37, 89, 90, 99].

A particularly attractive way of presenting abstractions is in the form ofpredicate
abstractionswhere predicates of interest at the concrete level are mapped to Boolean
variables at the abstract level. The abstract models can then be presented asverification
diagrams, which are intuitively meaningful to system designers and can be used to
(interactively) verify systems of arbitrary complexity [39, 92, 113, 75, 22].

For restricted classes of systems, it may be possible to apply fixed abstraction map-
pings (an example is provided by parameterized systems with simple communication
patterns [9]) and thus obtain completely automatic methods. Valmari, in his contribu-
tion to this volume, also considers a fixed notion of abstraction that is amenable to full
automation.

Symmetry reductions.Informal correctness arguments are often simplified by appeal-
ing to some form of symmetry in the system. For examples, components may be repli-
cated in a regular manner, or data may be processed such that permuting individual
values does not affect the overall behavior. More formally, a transition systemT is
said to be invariant under a permutationπ of its states and actions if(s,A, t) ∈ δ iff
(π(s), π(A), π(t)) ∈ δ ands ∈ I iff π(s) ∈ I holds for all statess, t and all actionsA.
T is invariant under a groupG of permutations if it is invariant under every permutation
in the group. Such a groupG induces an equivalence relation on the set of states defined
by s ∼ t iff t = π(s) for someπ ∈ G . Provided the properties are also insensitive to
the permutations inG , one can check the quotient ofT under∼ and obtain a system
that can be much smaller [116, 23, 70, 71].

Infinite-state systems.The extension of model checking techniques to infinite-state sys-
tems with sufficiently regular state spaces has been an area of active research in recent
years [21, 49, 50, 100]. See Esparza’s contribution to this volume for more details.

Parameterized systems.One is often interested in the properties of a family of finite-
state systems that differ in some parameter such as the number of processes. Although

individual members of the family can be analyzed using standard model checking tech-
niques, the verification of the entire family requires additional considerations. A natural
idea is to perform standard model checking for fixed parameter values and then establish
correctness for arbitrary parameter values by induction. In some cases, even the induc-
tion step can be justified by model checking. For example, Browne et al. [15] suggest
to model check a two-process system, and to establish a bisimulation relation between
two-process andn-process systems, ensuring that formulas expressed in a suitable logic
cannot distinguish between them. This approach has been extended in [83, 127] by us-
ing a finite-state processI that acts as an invariant in that the composition ofI with
another process is again bisimilar toI . Because bothI and the individual processes are
finite-state, this can be accomplished using (a variation of) standard model checking.
Related techniques are described in [46, 55].

Compositional verification.The effects of state explosion can be mitigated when the
overall verification effort can be subdivided by considering the components of a com-
plex system one at a time. As in the case of abstraction, compositional reasoning nor-
mally requires additional input from the user who must specify appropriate properties to
be verified of the individual components. The main problem is that components cannot
necessarily be expected to function correctly in arbitrary environments, because their
design relies on properties of the system the components are expected to be part of.
Thus, corresponding assumptions have to be introduced in the statement of the com-
ponents’ correctness properties. Early work on compositional verification [8, 109] re-
quired components to form a hierarchy with respect to their dependency. In general,
however, every component is part of every other component’s environment, and circu-
lar dependencies among components are to be expected. More recently, different for-
mulations of assumption-commitment specifications have been studied [1, 33, 96] that
can accomodate circular dependencies, based on a form of computational induction.
A collection of papers on compositional methods for specification and verification is
contained in [40]. Model checking algorithms for modular verification are described,
among others, in [59, 73, 72].

Real-time systems.Whereas temporal logics such asPTL andCTL only formalize the
relative ordering of states and events, many systems require assertions about quantita-
tive aspects of time, and adequate formal models such as timed automata [2] or timed
transition systems [62] and logics [4] have been proposed. Algorithms for the reach-
ability and model checking problems for such models include [3, 63, 64]. In general,
the complexity for the verification of real-time and hybrid systems is much higher than
for untimed systems, and tools such as KRONOS[129], UPPAAL [86] or HYTECH [61]
are restricted to relatively small systems. See the contribution by Larsen and Pettersson
to this volume for a more comprehensive presentation of the state of the art in model
checking techniques for real-time systems.

References

[1] Mart́ın Abadi and Leslie Lamport. Conjoining specifications.ACM Transactions on
Programming Languages and Systems, 17(3):507–534, May 1995.

[2] R. Alur. Timed automata. InVerification of Digital and Hybrid Systems, NATO ASI
Series. Springer-Verlag, 1998.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In5th Ann.
IEEE Symp. on Logics in Computer Science, pages 414–425. IEEE Press, 1990.

[4] R. Alur and T. A. Henzinger. Logics and models of real time: a survey. InReal Time:
Theory in Practice, volume 600 ofLecture Notes in Computer Science, pages 74–106.
Springer-Verlag, 1992.

[5] R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts. In
B. Steffen and T. Margaria, editors,Tools and Constructions for the Analysis of Sys-
tems (TACAS’96), volume 1055 ofLecture Notes in Computer Science, pages 35–48,
Passau, Germany, 1996. Springer-Verlag. See also http://cm.bell-labs.com/cm/cs/what/
ubet/index.html.

[6] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. In 38th IEEE Symposium on Foundations of Computer Science, pages 100–109.
IEEE Press, October 1997.

[7] A. Anuchitanukul. Synthesis of Reactive Programs. PhD thesis, Stanford University,
1995.

[8] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic specifica-
tions. In16th ACM Symp. on Theory of Computing, pages 51–63. ACM Press, 1984.

[9] K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S systems to verify
parameterized networks. In S. Graf and M. Schwartzbach, editors,Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2000), volume 1785 ofLecture
Notes in Computer Science, pages 188–203. Springer-Verlag, 2000.

[10] J. Bern, C. Meinel, and A. Slobodová. Global rebuilding of BDDs – avoiding the memory
requirement maxima. In P. Wolper, editor,7th Workshop on Computer Aided Verifica-
tion (CAV’95), volume 939 ofLecture Notes in Computer Science, pages 4–15. Springer-
Verlag, 1995.

[11] A. Biere, A. Cimatti, M. Fujita, and Y. Zhu. Symbolic model checking using SAT pro-
cedures instead of BDDs. In36th ACM/IEEE Design Automation Conference (DAC’99),
1999.

[12] Armin Biere.Effiziente Modellpr̈ufung desµ-Kalküls mit bin̈aren Entscheidungsdiagram-
men. PhD thesis, Univ. Karlsruhe, Germany, 1997.

[13] B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with
infinite state spaces using QDDs. In R. Alur and T. Henzinger, editors,8th Workshop
on Computer-Aided Verification (CAV’96), volume 1102 ofLecture Notes in Computer
Science, pages 1–12. Springer-Verlag, 1996.

[14] G. Booch, J. Rumbaugh, and I. Jacobson.Unified Modelling Language: User Guide.
Addison Wesley, 1999.

[15] M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with many
identical finite-state processes.Information and Computation, 81:13–31, 1989.

[16] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transac-
tions on Computers, C-35(8):677–691, 1986.

[17] R. E. Bryant. On the complexity of VLSI implementations and graph representations of
boolean functions with application to integer multiplication.IEEE Trans. on Computers,
40(2):205–213, 1991.

[18] R. E. Bryant. Symbolic boolean manipulations with ordered binary decision diagrams.
ACM Computing Surveys, 24(3):293–317, 1992.

[19] J. R. B̈uchi. On a decision method in restricted second-order arithmetics. InInternational
Congress on Logic, Method and Philosophy of Science, pages 1–12. Stanford University
Press, 1962.

[20] J. R. Burch, E. M. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang. Symbolic model
checking:1020 states and beyond.Information and Computation, 98(2):142–170, 1992.

[21] O. Burkart and J. Esparza. More infinite results.Electronic Notes in Theoretical Computer
Science, 6, 1997. http://www.elsevier.nl/locate/entcs/volume6.html.

[22] Dominique Cansell, Dominique Ḿery, and Stephan Merz. Predicate diagrams for the veri-
fication of reactive systems. In2nd Intl. Conf. on Integrated Formal Methods (IFM 2000),
Lecture Notes in Computer Science, Dagstuhl, Germany, November 2000. Springer-
Verlag. To appear.

[23] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model check-
ing. In C. Courcoubetis, editor,5th Workshop on Computer-Aided Verification (CAV’93),
volume 697 ofLecture Notes in Computer Science, Elounda, Crete, 1993. Springer-
Verlag.

[24] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
Formal Methods in System Design, 10:47–71, 1997.

[25] Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. InWorkshop on Logic of Programs, volume 131 ofLecture
Notes in Computer Science, Yorktown Heights, N.Y., 1981. Springer-Verlag.

[26] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994.

[27] Edmund M. Clarke, Orna Grumberg, and Doron Peled.Model Checking. MIT Press,
Cambridge, MA, 1999.

[28] Edmund M. Clarke and Holger Schlingloff. Model checking. In A. Voronkov, editor,
Handbook of Automated Deduction. Elsevier, 2000. To appear.

[29] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications.ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[30] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and L.A. Ness.
Verification of the Futurebus+ cache coherence protocol. In D. Agnew, L. Claesen, and
R. Camposano, editors,IFIP Conference on Computer Hardware Description Languages
and their Applications, pages 5–20, Ottawa, Canada, 1993. Elsevier Science Publishers
B.V.

[31] R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems.Science of
Computer Programming, 2000. See also http://www.cs.sunysb.edu/˜cwb/.

[32] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-
free modalµ-calculus.Formal Methods in System Design, 2:121–147, 1993.

[33] P. Collette. An explanatory presentation of composition rules for assumption-commitment
specifications.Information Processing Letters, 50(1):31–35, 1994.

[34] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithms
for the verification of temporal properties.Formal methods in system design, 1:275–288,
1992.

[35] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In4th ACM
Symposium on Principles of Programming Languages, pages 238–252, Los Angeles, Cal-
ifornia, 1977. ACM Press.

[36] J.-M. Couvreur. On-the-fly verification of linear temporal logic. In J.M. Wing, J. Wood-
cock, and J. Davies, editors,FM’99 – Formal Methods, volume 1708 ofLecture Notes in
Computer Science, pages 253–271, Toulouse, France, 1999. Springer-Verlag.

[37] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reactive sys-
tems: Abstractions preserving∀CTL∗, ∃CTL∗ and CTL∗. In Ernst-R̈udiger Olderog, ed-

itor, Programming Concepts, Methods, and Calculi (PROCOMET ’94), pages 561–581,
Amsterdam, 1994. North Holland/Elsevier.

[38] M. Daniele, F. Giunchiglia, and M. Vardi. Improved automata generation for linear tem-
poral logic. InComputer Aided Verification (CAV’99), volume 1633 ofLecture Notes in
Computer Science, pages 249–260, Trento, Italy, 1999. Springer-Verlag.

[39] Luca de Alfaro, Zohar Manna, Henny B. Sipma, and Tomás Uribe. Visual verification of
reactive systems. In Ed Brinksma, editor,Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’97), volume 1217 ofLecture Notes in Computer Science,
pages 334–350. Springer-Verlag, 1997.

[40] W.-P. de Roever, H. Langmaack, and A. Pnueli, editors.Compositionality: The Significant
Difference, volume 1536 ofLecture Notes in Computer Science. Springer-Verlag, 1998.

[41] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on branching
time vs. linear time.Journal of the ACM, 33:151–178, 1986.

[42] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for fragments of
µ-calculus. In C. Courcoubetis, editor,5th Workshop on Computer-Aided Verification
(CAV’93), volume 697 ofLecture Notes in Computer Science. Springer-Verlag, 1993.

[43] E. A. Emerson and C. L. Lei. Modalities for model checking: Branching time strikes
back. In12th Symp. on Principles of Programming Languages (POPL’85), New Orleans,
1985. ACM Press.

[44] E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the propositional
µ-calculus. In1st Symp. on Logic in Computer Science, Boston, Mass., 1986. IEEE Press.

[45] E. Allen Emerson. Handbook of theoretical computer science, chapter Temporal and
modal logic, pages 997–1071. Elsevier Science Publishers B.V., 1990.

[46] E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of parameterized syn-
chronous systems. In R. Alur and T. Henzinger, editors,8th International Conference
on Computer Aided Verification (CAV’96), Lecture Notes in Computer Science. Springer-
Verlag, 1996.

[47] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking.
Distributed Computing, 6:155–164, 1993.

[48] J. Esparza. Model checking using net unfoldings.Science of Computer Programming,
23:151–195, 1994.

[49] J. Esparza. Decidability of model-checking for infinite-state concurrent systems.Acta
Informatica, 34:85–107, 1997.

[50] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In14th
IEEE Symposium on Logic in Computer Science, pages 352–359, Trento, Italy, 1999.
IEEE Press.

[51] E. Felt, G. York, R. Brayton, and A. S. Vincentelli. Dynamic variable reordering for BDD
minimization. InEuropean Design Automation Conference, pages 130–135, 1993.

[52] T. Firley, U. Goltz, M. Huhn, K. Diethers, and T. Gehrke. Timed sequence diagrams
and tool-based analysis – a case study. In R. France and B. Rumpe, editors,2nd Intl.
Conference on the Unified Modelling Language (UML’99), volume 1723 ofLecture Notes
in Computer Science, pages 645–660. Springer-Verlag, 1999.

[53] H. Fuji, G. Oomoto, and C. Hori. Interleaving based variable ordering methods for binary
decision diagrams. InIntl. Conf. on Computer Aided Design (ICCAD’93). IEEE Press,
1993.

[54] D. Gabbay, I. Hodkinson, and M. Reynolds.Temporal Logic: Mathematical Foundations
and Computational Aspects, volume 1. Clarendon Press, Oxford, UK, 1994.

[55] S. M. German and A. P. Sistla. Reasoning about systems with many processes.Journal
of the ACM, 39:675–735, 1992.

[56] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. InProtocol Specification, Testing, and Verification, pages 3–18,
Warsaw, Poland, 1995. Chapman & Hall.

[57] P. Godefroid and D. E. Long. Symbolic protocol verification with queue BDDs. In11th
Ann. IEEE Symp. on Logic in Computer Science (LICS’96), New Brunswick, NJ, 1996.
IEEE Press.

[58] P. Godefroid and P. Wolper. A partial approach to model checking.Information and
Computation, 110(2):305–326, 1994.

[59] Orna Grumberg and David E. Long. Model checking and modular verification.ACM
Transactions on Programming Languages and Systems, 16(3):843–871, May 1994.

[60] David Harel and Amir Pnueli. On the development of reactive systems. In K. R. Apt,
editor,Logics and Models of Concurrent Systems, volume F13 ofNATO ASI Series, pages
477–498. Springer-Verlag, 1985.

[61] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid sys-
tems.Software Tools for Technology Transfer, 1:110–122, 1997.

[62] T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for timed
transition systems.Information and Computation, 112:273–337, 1994.

[63] Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. A space-efficient on-the-fly
algorithm for real-time model checking. In7th International Conference on Concurrency
Theory (CONCUR 1996), volume 1119 ofLecture Notes in Computer Science, pages
514–529. Springer-Verlag, 1996.

[64] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovin. Symbolic
model checking for real-time systems.Information and Computation, 111:193–244, 1994.

[65] Gerard Holzmann. The Spin model checker.IEEE Trans. on Software Engineering,
23(5):279–295, may 1997.

[66] Gerard Holzmann. An analysis of bitstate hashing.Formal Methods in System Design,
November 1998.

[67] Gerard Holzmann and Doron Peled. An improvement in formal verification. InIFIP WG
6.1 Conference on Formal Description Techniques, pages 197–214, Bern, Switzerland,
1994. Chapman & Hall.

[68] John E. Hopcroft and Jeffrey D. Ullman.Introduction to automata theory, languages, and
computation. Addison-Wesley, Reading, Mass., 1979.

[69] Michael Huth and Mark D. Ryan.Logic in Computer Science. Cambridge University
Press, Cambridge, U.K., 2000.

[70] C. N. Ip and D. Dill. Better verification through symmetry. In11th Intl. Symp. on Com-
puter Hardware Description Languages and their Applications, pages 87–100. North Hol-
land, 1993.

[71] C. N. Ip and D. Dill. Verifying systems with replicated components in Murphi. InIntl.
Conference on Computer-Aided Verification (CAV’96), Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1996.

[72] Bernhard Josko. Verifying the correctness of AADL modules using model checking. In
J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness, volume 430 ofLecture Notes in
Computer Science, pages 386–400. Springer-Verlag, Berlin, 1989.

[73] Bernhard Josko.Modular Specification and Verification of Reactive Systems. PhD thesis,
Univ. Oldenburg, Fachbereich Informatik, April 1993.

[74] H. W. Kamp.Tense Logic and the Theory of Linear Order. PhD thesis, Univ. of California
at Los Angeles, 1968.

[75] Yonit Kesten and Amir Pnueli. Verifying liveness by augmented abstraction. InAnnual
Conference of the European Association for Computer Science Logic (CSL’99), Lecture
Notes in Computer Science, Madrid, 1999. Springer-Verlag.

[76] Nils Klarlund. Mona & Fido: The logic-automaton connection in practice. InComputer
Science Logic, CSL ’97, volume 1414 ofLNCS, pages 311–326, Aarhus, Denmark, 1998.

[77] Dexter Kozen. Results on the propositional mu-calculus.Theoretical Computer Science,
27:333–354, 1983.

[78] Saul A. Kripke. Semantical considerations on modal logic.Acta Philosophica Fennica,
16:83–94, 1963.

[79] Fred Kr̈oger.Temporal Logic of Programs, volume 8 ofEATCS Monographs on Theoret-
ical Computer Science. Springer-Verlag, Berlin, 1987.

[80] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model checking. In6th Intl. Conf. on Computer-Aided Verification (CAV’94), Lec-
ture Notes in Computer Science. Springer-Verlag, 1994. Full version (1999) available at
http://www.cs.rice.edu/˜vardi/papers/.

[81] O. Kupferman and M. Y. Vardi. Verification of fair transition systems. In R. Alur and
T. Henzinger, editors,8th Workshop on Computer-Aided Verification (CAV’96), volume
1102 ofLecture Notes in Computer Science, pages 372–382. Springer-Verlag, 1996.

[82] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not so weak. In
5th Israeli Symposium on Theory of Computing and Systems, pages 147–158. IEEE Press,
1997.

[83] R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes. In8th
Ann. ACM Symp. on Principles of Distributed Computing. ACM Press, 1989.

[84] Leslie Lamport. ‘sometime’ is sometimes ‘not never’. InProc. 7th Ann. Symp. on Princ.
of Prog. Lang. (POPL’80), pages 174–185. ACM SIGACT-SIGPLAN, January 1980.

[85] M. Lange, M. Leucker, T. Noll, and S. Tobies. Truth – a verification platform for con-
current systems. InTool Support for System Specification, Development, and Verification,
Advances in Computing Science. Springer-Verlag Wien New York, 1999.

[86] K. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell.Software Tools for Technology
Transfer, 1, 1997.

[87] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Rohit Parikh,
editor, Logics of Programs, volume 193 ofLecture Notes in Computer Science, pages
196–218, Berlin, June 1985. Springer-Verlag.

[88] J. Lilius and I. P. Paltor. Formalising UML state machines for model checking. In
R. France and B. Rumpe, editors,UML’99 – Beyond the Standard, volume 1723 ofLec-
ture Notes in Computer Science. Springer-Verlag, 1999.

[89] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Bensalem.
Property preserving abstractions for the verification of concurrent systems.Formal Meth-
ods in System Design, 6:11–44, 1995. A preliminary version appeared as Spectre technical
report RTC40, Grenoble, France, 1993.

[90] D. E. Long. Model checking, Abstraction and Compositional Verification. PhD thesis,
CMU School of Computer Science, 1993. CMU-CS-93-178.

[91] Gavin Lowe. Breaking and fixing the Needham-Schroeder public key protocol using
FDR. InTools and Algorithms for the Construction and Analysis of Systems (TACAS’96),
volume 1055 ofLecture Notes in Computer Science, pages 147–166. Springer-Verlag,
1996.

[92] Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual abstractions for temporal ver-
ification. In A. Haeberer, editor,AMAST’98, volume 1548 ofLecture Notes in Computer
Science, pages 28–41. Springer-Verlag, 1998.

[93] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In9th. ACM Sympo-
sium on Principles of Distributed Computing, pages 377–408. ACM, 1990.

[94] Zohar Manna and Amir Pnueli.The temporal logic of reactive and concurrent systems—
Specification. Springer-Verlag, New York, 1992.

[95] Zohar Manna and Amir Pnueli.The temporal logic of reactive and concurrent systems—
Safety properties. Springer-Verlag, New York, 1995.

[96] Kenneth L. McMillan. A compositional rule for hardware design refinement. In O. Grum-
berg, editor,9th International Conference on Computer Aided Verification (CAV’97),
volume 1254 ofLecture Notes in Computer Science, pages 24–35, Haifa, Israel, 1997.
Springer-Verlag.

[97] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[98] R. McNaughton and S. Papert.Counter-Free Automata. MIT Press, Cambridge, Mass.,

1971.
[99] Stephan Merz. Rules for abstraction. In R. K. Shyamasundar and K. Ueda, editors,

Advances in Computing Science—ASIAN’97, volume 1345 ofLecture Notes in Computer
Science, pages 32–45, Kathmandu, Nepal, December 1997. Springer-Verlag.

[100] Faron Moller. Infinite results. In U. Montanari and V. Sassone, editors,7th International
Conference on Concurrency Theory (CONCUR’96), volume 1119 ofLecture Notes in
Computer Science, pages 195–216, Pisa, Italy, 1996. Springer-Verlag.

[101] D. E. Muller. Infinite sequences and finite machines. InSwitching Circuit Theory and
Logical Design: Fourth Annual Symposium, pages 3–16, New York, 1963. IEEE Press.

[102] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic
theory of the tree and its complexity. In13th ICALP, volume 226 ofLecture Notes in
Computer Science, pages 275–283. Springer-Verlag, 1986.

[103] D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a simple ex-
planation of why most temporal and dynamic logics are decidable in exponential time. In
3rd IEEE Symposium on Logic in Computer Science, pages 422–427. IEEE Press, 1988.

[104] Roger Needham and Michael Schroeder. Using encryption for authentication in large
networks of computers.Communications of the ACM, 21(12):993–999, 1978.

[105] D. M. Park. Finiteness is mu-ineffable. Theory of Computation Report 3, University of
Warwick, 1974.

[106] Lawrence C. Paulson. Proving security protocols correct. In14th IEEE Symposium on
Logic in Computer Science, pages 370–383, Trento, Italy, 1999. IEEE Press.

[107] D. Peled. Combining partial order reductions with on-the-fly model-checking.Formal
Methods in System Design, 8(1):39–64, 1996.

[108] W. Penczek, R. Gerth, and R. Kuiper. Partial order reductions preserving simulations.
Submitted for publication, 1999.

[109] Amir Pnueli. In transition from global to modular temporal reasoning about programs. In
K. R. Apt, editor,Logics and Models of Concurrent Systems, volume F 13 ofASI, pages
123–144. Springer-Verlag, Berlin, 1985.

[110] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.Trans-
actions of the American Mathematical Society, 141:1–35, 1969.

[111] Shmuel Safra. On the complexity ofω-automata. In29th IEEE Symposium on Founda-
tions of Computer Science, pages 319–327. IEEE Press, 1988.

[112] Klaus Schneider. Yet another look at LTL model checking. InIFIP Advanced Re-
search Working Conference on Correct Hardware Design and Verification Methods
(CHARME’99), Lecture Notes in Computer Science, Bad Herrenalb, Germany, 1999.

[113] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In8th International
Conference on Computer-Aided Verification, volume 1102 ofLecture Notes in Computer
Science, pages 208–219, New Brunswick, N.J., 1996. Springer-Verlag.

[114] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.Jour-
nal of the ACM, 32:733–749, 1985.

[115] G. St̊almarck. A system for determining propositional logic theorems by applying values
and rules to triplets that are generated from a formula. Swedish Patent No. 467076 (1992),
US Patent No. 5 276 897 (1994), European Patent No. 0404 454 (1995).

[116] P. H. Starke. Reachability analysis of Petri nets using symmetries.Syst. Anal. Model.
Simul., 8:293–303, 1991.

[117] Colin Stirling. Handbook of Logic in Computer Science, volume 2, chapter Modal and
temporal logics, pages 477–563. Oxford Science Publications, Clarendon Press, Oxford,
1992.

[118] Colin Stirling. Bisimulation, model checking, and other games. Mathfit instructional
meeting on games and computation, 1997. Available at http://www.dcs.ed.ac.uk/home/
cps/.

[119] R. E. Tarjan. Depth first search and linear graph algorithms.SIAM Journal of Computing,
1:146–160, 1972.

[120] Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, pages 133–
194. Elsevier, Amsterdam, 1990.

[121] Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors,Handbook of Formal Language Theory, volume III, pages 389–455. Springer-
Verlag, New York, 1997.

[122] Wolfgang Thomas. Complementation of Büchi automata revisited. In J. Karhumäki,
editor,Jewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 109–122. Springer-Verlag, 2000.

[123] A. Valmari. A stubborn attack on state explosion. In2nd International Workshop on
Computer Aided Verification, volume 531 ofLecture Notes in Computer Science, pages
156–165, Rutgers, June 1990. Springer-Verlag.

[124] A. Valmari. The state explosion problem. InLectures on Petri Nets I: Basic Models,
volume 1491 ofLecture Notes in Computer Science, pages 429–528. Springer-Verlag,
1998.

[125] Moshe Y. Vardi. Alternating automata and program verification. InComputer Science
Today, volume 1000 ofLecture Notes in Computer Science, pages 471–485. Springer-
Verlag, 1995.

[126] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information and Com-
putation, 115(1):1–37, 1994.

[127] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In J. Sifakis, editor,Intl. Workshop on Automatic Verification Methods for
Finite State Systems, volume 407 ofLecture Notes in Computer Science. Springer-Verlag,
1989.

[128] Pierre Wolper. Temporal logic can be more expressive.Information and Control, 56:72–
93, 1983.

[129] S. Yovine. Kronos: A verification tool for real-time systems.Software Tools for Technol-
ogy Transfer, 1, 1997.

[130] H. Zhang. Sato: An efficient propositional prover. InIntl. Conf. on Automated Deduc-
tion (CADE’97), number 1249 in Lecture Notes in Computer Science, pages 272–275.
Springer-Verlag, 1997.

	Model Checking: A Tutorial Overview

