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/ Separation Logic I \

e Introduced by Reynolds&O’Hearn 01 to model:
— a resource logic
— properties of the memory space (cells)
— aggregation of cells into heaps: Loc —y¢ Val

— heaps can be combined: @, A B =C

e Combines:
— classical logic connectives: A, V, — ...

— multiplicative conjunction: x

e Defined via Kripke semantics extended by:

\ mirA+«B 1ff da,bst.a,bbmandat+Aandbdbir+ B /
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/ Separation models I

e Decomposition a,b > m interpreted in various structures:

— stacks in pointer logic (Reynolds&O’Hearn& Yang 01),

aHbC m
— but also a b = m (Calcagno& Yang& O’Hearn 01)
— trees in spatial logics (Calcagno&Cardelli&Gordon 02)

alb=m

— resource trees in Bl-Loc (Biri&GalmicheQ7)

\o Additive — can be Boolean (pointwise) or intuitionistic
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/ Bunched Implication logic (BI) I \

e Introduced by Pym 99, 02
— intuitionistic logic connectives: A, vV, — ...
— multiplicative connectives of MILL: %, -, |

— sound and complete bunched sequent calculus, with cut

elimination

e Kripke semantics (Pym&QO’Hearn 99, Galmiche&Mery&Pym 02)
— partially ordered partial commutative monoids (M, o, <)
— 1ntuitionistic Kripke semantics for additives

— relevant Kripke semantics for multiplicatives

\ — sound and complete Kripke semantics for Bl /
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Bl Logic continued'

e In Bl, decomposition interpreted by a o b < m:
— resource monoids (partial, ordered)

— Intuitionistic additives and relevant multiplicatives

e Bl has proof systems:
— cut-free bunched sequent calculus (Pym 99)
— resource tableaux (Galmiche&Mery&Pym 05)
— inverse method (Donnelly&Gibson et al. 04)

e Additives intuitionistic in Bl, mostly Boolean in Separation Logic
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Boolean BI (BBI)I

e Loosely defined by Pym as Bl + {—-—-A — A}
— cut elimination lost, no “nice” sequent calculus
— Kripke sem. by relational monoids (Larchey&Galmiche 06)
— Display Logic based cut-free proof-system (Brotherston 09)

e Other definition (logical core of Separation and Spatial logics)
— additive implication — Kripke interpreted pointwise
— based on (commutative) partial monoids (M, o)

— has a sound and complete (labelled tableaux) proof-system
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Proof theory for BBII

e Compared to (intuitionistic) Bl: much less satisfying situation

— Bl has Bunched sequent calculus (O’Hearn&Pym 99)
— with cut-elimination from its inception

— Bl is decidable (Galmiche et al. 05)
e Hilbert system s/c for relational BBl (LW.&Galmiche 06, Yang)

e Semantic tableaux s/c for (partial) monoidal BBI

— (unexpected) embedding of Bl into BBl (LW.&Galmiche 09)

e Display calculi s/c for relational BBI (Brotherston 09, 10)

N /
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Kripke semantics of BBI (i) I

e Non-deterministic(/relational) monoid (ND) (M, o, €)

o:MXM-—P(M)and ec M

for X, Y e P(M),| XoY ={2|dze X,JycY,zcxo0y)

€ oz = {z} (neutrality), z o y = y o  (commutativity)
ro(yoz)=(zxoy)oz (associativity)
(P(M), o,{€}) 1s a (usual) commutative monoid

residuation: X oY ={z|z0X CY}
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Kripke semantics of BBI (ii) I

e Boolean (pointwise) Kripke semantics extended by:

mi-FAxB
mi-A-xB

m I |

iff da,bst. meaobandar+rAandbr+ B
iff Va,b (beaomandat+ A)=5br B

if m=c¢

e Decision problems:

— checking a particular model (m I+ A), Calcagno et al. 01 (SL)

— validity in a particular interpretation (Ym,m + A)

univ. validity

w.r.t. class of models (YMVFVYm,m I A)
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e Obviously: TD ¢ PD ¢ ND

e Validity defines different logics:

N

Classes of models for BBII

e Partial (deterministic) monoids (PD): a o b C {k}

e Total (deterministic) monoids (TD): aob = {k}

e Separation models are in HM (Brotherston&Kanovich 10):
— Heaps monoids: (L —¢ V, 1, @), sub-class of PD
— RAM-domain model: (P¢(N),w,0) =~ (N —¢ {x}, 4, @)

e Free monoids: (M¢(X), +,0), sub-class of TD

BBIxp € BBlpp € BBlrp

~
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/ Overview of the main steps' \

e The map denoted !(-) ~» | A (+):
— is a (sound) embedding from ILL to BBI (not faithful)
— 1s faithful for Trivial Phase Semantics

— 1s faithful for fragments which are complete for TPS

e Search a fragment both complete for TPS and undecidable:
— |LL undecidable but IMALL 1s, hence ! is needed
— (!, ®)-Horn fragment (Kanovich 95) not complete for TPS
— s-IMELL,® fragment (De Groote et al 04) is complete for TPS
— s-IMELL,® decidability is equiv. to MELL (still open problem)

\ — elLL extends s-IMELL;® and fulfills the requirements /
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/ Kripke vs. Phase semantics for BBII

e Change of notation: m I+ A iff m € [A]

e The interpretation of multiplicative conjunction x

mirA«B iff da,bst.acb=mandar+rAandbr B
[A«B] = [A]<[B]

e Phase semantics for BBl (equiv. to Kripke sem.):

[L] =0 [Av B]=[Alv[B]

[T] =M [AAB] =[A]n[B]

[ = {e} [A* B] = [A] o [[B]
\ [-A] = M\[A] A~ B] = [A] —[B]

~

/
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— (M, o0,€) in ND (usually TD)

Phase semantics for ILL'

e Intuitionistic phase space (M, o,¢,(-)°, K):

— (+)° is a closure operator with A° o B® C (A o B)® (stability)
— K sub-monoid of M: ee K and Ko K C K
— Kc{e)’N{fzeM|ze(zox)’)

e Phase interpretation of ILL operators:

[L]
[T

[1]

['Al

=
=M
= {e}”
= (K n[A])

[

[A® B]

[A® B
[A & B]
| = ([A] ° [B])’

A — B]

= ([Alv Bl
= [Aln[B]

= [A] -~ [B]

~

/
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— (+)° is the | identity closure |

[L] =0
[T]=M

[1] = {e}
['A] = {e} 0 [A]

A=A

— and as a consequence K = {¢}

e Trivial phase interpretation of ILL operators:

4@ B] =
A& B] =
4 B] =
[A— B] = [

ESESIENES

Trivial phase semantics for ILLI

e Intuitionistic phase space (M, o,¢,(-)°, K):

| — [B]

~
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ILL vs. BBI phase semantics'

Trivial phase sem. for ILL

Phase sem. for BBI

[L] =0

[Tl =M

[1] = {e}

['A] = {e} N [A]
[A® B] = [A]V[B]
[A& B = [A]
[A® B] = [A] - [B]
[A— B] = [4]

[L] =0
[Tl =M
[ = {e}

[t A Al = te} N [A]
[Av B]=[A]v[B]
AAB] = [4]
[Ax B] = [A] o [B]
[A~B] = [4]

1
| S—

D
3

~
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Phase Sem.

— replace ' A by A A

e Result: | Sound embedding

N

/ ILL as a fragment of BBI, (z ¢ {ND,PD,TD})I \

Phase Sem. (z)

e Define a map denoted !(:) »» I A (+)
— replace 1/, &/V, & /A, ®/*, —o /-

for phase semantics (

but not faithful)

_/
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ILL’ as a fragment of BBI, (z ¢ {ND,PD,TD})I

BBI,
> > > > >
ILLY, (:) ~ T A(9)
> > > > >
Triv. Ph. Sem. (z) Phase Sem. (z)

e Result: |!(:) »» | A (-) is faithful | for Trivial Phase Semantics

~
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— s.t.

— s.t.

Towards the undecidability of BBI, I

Phase Sem.

F' is complete

Phase Sem. (z)

e Among the known/unkown fragments of ILL, find F

for trivial phase semantics (in class )

F' 1s undecidable
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o Extension of s-IMELL;* (De Groote et al. 04)

The elementary fragment elLL of ILLI

(g:,a,b,c,d variables)

e Elementary sequents: !'>,91,...,9x +d
—In¥:a—-o(b—oc),(a—ob)—ocor|(a&d)—oc
— where a, b and c variables
e G-ellLL, goal directed rules for ellL:
13, I'Fa 12, ArD
12, ara (AX) 12TV Arc
12,1 arb 12, I'ka 12,1k b
D Trc (@°b—ced IS TFc

N

~

a—o(b—oc)el

(a&b) oceX

/
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Completeness results for eILLI

G-elLL 1s sound for ND phase semantics | on ellLL

— hence sound w.r.t. any class of models

free monoidal trivial phase sem. (FM) is complete for G-elLL

— hence G-elLL is complete for ellLL
— hence trivial phase sem. (z € {ND, PD, TD}) is also complete

e we can also prove elLL is complete for class HM (bisimulation)

/
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e Consequence:

N

e obtain eILLtNxN 1s undecidable, deduce | elLL is undecidable

BBI. 1s undecidable

Undecidability results for elLL/ BBII

e encode two counter Minsky machines acceptance in ellLL
— compared to Kanovich 95: forking with & instead of &
— faithfullness proof by semantic argument like Lafont 96
— Kanovich 95 was through normalization (i.e. cut-elimination)

— Rem: Okada 02 proved cut-elim. through phase semantics

(z € (ND, PD, TD, HM, FM})

/
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Two counter Minsky Machines'

Two counters, a and b, values in N

[ + 1 positions, 0 is terminal position, ! instructions

State (z,z,y): ¢ position, z value of a, y value of b

Two kinds of instructions: “add 1” & “z.t./sub 1”

11 a:=a-+1;gotoy
2: 1if a = 0 then goto 3

elsea:=a—-1; goto k

(v,2z,y) = (5,2 + 1,9)
(2,0,9) — (7,0,9)
(1,2 +1,y) = (k,z,y)

Acceptance: (z,y) accepted if (1,z,y) —»* (0,0,0)

\o Minsky: there exists a MM with non-recursive acceptance

~

/
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/ Encoding acceptance of two counter MMI \

e Build a sequent !, a%, b? + q; for state (2, z,y)
— variables a and b for the two counters, plus a and b (z.t.)
— varlables qg, ... q; represents the [ + 1 positions of the MM
— 1nstructions encoding in %, a and b never in goal position

— acceptance as (universal) validity:

(z,z,y) »* (0,0,0) iff !'%,a% bY+Fq; univ. valid

e Fncode zero test on b: 12,a%,bY a1l y =0

e Prove soundness: (z,z,y) —»" (0,0,0) = !%,a%,bY +q;

\o Prove completeness: !X, a*,bY+q; = (z,z,y) —* (0,0,0) /
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Encoding zero test on b (soundness) I

e With (a—oa)—oaanda—o(a—a)in X

(Ax)
120,a,bY a

(Ax) (a—oa)—oacek

12,aFa 12,bY +a

a—o(a—oa)el
applied z — 1 times

(AX)
13, arFa 13,a* 1, bYra

a—o(a—oa)el
13,a%,bYFa

e 1s the only possible proof, and only when y = 0

~

/
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Ground case of the recursion » = 0 (soundness) I

e Corresponds to 0 transitions: (z,z,y) —° (0,0, 0)

e Inthiscase, 21 =2 =y =0

e With (a—a)—oqgin X

(AX)
12,ara

(a—a)—oqoeX
!El—qo

e We have our (unique) G-elLL proof

N /
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Encoding add 1 to a (soundness)'

o With (a—q;) —oq; in &

e “add 1” instruction: |7 : a:=a+ 1 ; goto J

e Operational semantics: (z,2,y) = (5,2 + 1,y) —»" (0,0,0)

e Recursively built (unique) G-elLL proof to establish validity:

12,a%,a,bY I q;

(@a—q;) 2q €X
135,a%,bY +q;

26



-

~

Encoding sub 1/zero test on a (soundness) (i) I

“sub 1/zero t.”: |1 : if a = 0 then goto j else a := a—1; goto k

Case z =0, with (b& q;) < q; in &
Operational semantics: (z,0,y) — (7,0,y) —=" (0,0,0)

Corresponding (unique) G-elLL proof:

z.t. on a

12,bY b 1%,bY+q;

(b&q;) ~aq €X
!E,by Fq;
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Encoding sub 1/zero test on a (soundness) (ii)I

e “sub 1/zerot.”: |2: if a = 0 then goto j elsea:=a—-1; goto k

e Casez+1>0,witha—o(qx —oq;) inXZ
e Operational semantics: (z,z + 1,y) — (k,z,y) =" (0,0,0)

e Corresponding (unique) G-elLL proof:

(AX)
12,atra 12, a%, by +ae
a—o(qy—oq;) €L

13,a,a% bY+q;

N /
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/ Summary of the encoding and soundness' \

. a—o(a—a),b—o(b—ob),
e Start with X = - -
(a—~a)—oa(a—oa)—ob,(a—~a)—oqg
e For instructionz: a:=a+1; gotoy
— add {(a - q;) —~ q;} to T
e For instruction 2 : if a = 0 then goto 7 else a :=a -1 ; goto &

— add {(b& q;) — qi,a — (qx — q;)} to T

e Soundness theorem:

if (z,z,y) »* (0,0,0) then !X, a%,b¥ + q; has a G-elLL proof

\o as a consequence, ! 3, a*, b¥ + q; 1s univ. valid /
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/ Completeness of the encoding (summary) I \

e Let us suppose !X, a%,b¥Y +q; 1s univ. valid, ¥ =o4,...,0,

e By trivial phase interpretation in N X N (class FM)

[a] = {(1,0)} [b] ={(0,1)} [a] =Nx{0} [b]={0}xN
[a:] = {(z,y) e NxN| (¢,z,y) -»* (0,0,0)}

e We will show | (0,0) € [o;] | for any ¢ (completeness Lemma)

e By universal validity of !X, a*, b¥ + q;, we derive:
['o1]o---oftor]ofa]o---ofa]o[b]o---ofb] ca]

o I—Ience {(01 O)} ©---0 {(07 O)} O {("E7 O)} O {(07 y)} - [[qz]]
\o Thus (z,y) € [q;]], and as a consequence (z,z,y) —* (0,0,0) /
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Inside the proof of the Completeness Lemma (i) I

e Case of instructionz: a:=a+1; gotoy

e X contains (a —q;) —o q;

e Completeness Lemma condition: (0,0) € [[(a — q;) — q;]

e Interpreted by [a] —o [a;] <€ [a:]

e Translates into Vz,y (z,v)+(1,0) € [q;] = (z,v) € [[ai]
e Thus Vz,y (j,z+1,y) =*(0,0,0) = (3,z,y) =* (0,0,0)

e This is exactly the operational semantics of “add 1 to a”

N /
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Inside the proof of the Completeness Lemma (ii) I

Case ¢ = 0 of instruction 2 : if a = 0 then goto j else ...
2. contains (b & q;) — q;
Completeness Lemma condition: (0,0) € [[(b & q;) — q;]

Interpreted by [b] N [a;] < [a:]

or Vz,y (z=0and (j,z,y) >* (0,0,0)) = (i,z,y) >* (0,0,0)

Thus  Vy (7,0,y) =*(0,0,0) = (2,0,y) —* (0,0,0)

This 1s exactly the operational semantics of the “then” branch

/
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Inside the proof of the Completeness Lemma (iii) I

e Casez+1>0o0f2:1fa=0then...elsea:=a—-1; goto k

e ¥ contains a — (qx — q;)

e Completeness Lemma condition: (0,0) € [[a — (qx — q;)]

e Interpreted by [a] o [ax] < [[a:]
e Becomes Vz,y (k,z+1,y)—>*(0,0,0) = (¢,z,y) »*(0,0,0)

e This is exactly the operational semantics of the “else” branch

N /
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Consequences of the encoding of MMI

e An encoding suitable for classes ND, PD, TD and FM
— NxNeFMcTD cCPDCND

— obtain for undecidability of eILLtNxN and also for ellLL
e Also of BB'ND, BBlpD, BB'TD, BB'FM and BBINXN

e Undecidability for BBlygy through bisimulation

N
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/ Conclusion, related works, perspectives I \

e Encoding suitable for class FM and thus, all classes

— undecidability of elLL, BBI,, Yz € {ND, PD, TD,HM, FM}

e Encoding adapted for class of groups (LW., MFPS 10)
— another proof of undecidability of Classical Bl (CBI)

e Similar results by Brotherston&Kanovich (LICS 10)
— focus on Separation Logic (RAM-domain model)

— obtained completely independently, also applies to CBI

e What about decidability of BBI restricted to N 7
— l-counter MM are decidable (Bouajjani et al. 99)

\o Complete the classification of BBI, /
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/Bisimulation vs. Kripke/phase semantics of BBI I\

e (M,o,€) and (N, %, 7) two ND monoids

e Bisimulation relation ~ C M x N checks:

( .
m=¢ f m=7x

Yaobomda ' xb' >am’ a~a and b~ b
m~m =14 Va'xb>m’Jaoboma~a andb~ ¥

Vobeaomdb ea’«m’ a~a’ and b~ b

\ Vo ea’xm'dbeaoma~a and b~ b

e if m ~m’ then for any F of BBI, |m € [F] iff m’ € [F]'’
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Bisimulating N X N in $%(N) I

e (P¢(N),w,0) and (NX N, +,(0,0)) are two ND monoids

e Let N=EwWO (e.g. even/odd numbers)

o For X € P¢(N), let ¢(X) = (card(X NE), card(X N 0))

e p:Ps(N) — NxN is a projection (surjective)

o p CPr(N)x (NxN) is a bisimulation

e Use ¢ to transform the N X N model into a $¢(IN) model
— simply define [x]" = cp‘l([[x]])

N /
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