Phase Semantics and the Undecidability of Boolean BI

(presented in LICS'10)

Dominique Larchey-Wendling & Didier Galmiche

TYPES team, LORIA - CNRS

Nancy, France

GEOCAL-LAC, LORIA, Nancy

Separation Logic

- Introduced by Reynolds&O'Hearn 01 to model:
 - a resource logic
 - properties of the memory space (cells)
 - aggregation of cells into heaps: Loc \longrightarrow_f Val
 - heaps can be combined: \emptyset , $A \uplus B = C$
- Combines:
 - classical logic connectives: \land , \lor , \rightarrow ...
 - multiplicative conjunction: *
- Defined via Kripke semantics extended by:

 $m \Vdash A * B$ iff $\exists a, b \text{ s.t. } a, b \triangleright m \text{ and } a \Vdash A \text{ and } b \Vdash B$

Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
 - stacks in pointer logic (Reynolds&O'Hearn&Yang 01), $a \uplus b \sqsubseteq m$
 - but also $a \boxplus b = m$ (Calcagno&Yang&O'Hearn 01)
 - trees in spatial logics (Calcagno&Cardelli&Gordon 02) $a \mid b \equiv m$
 - resource trees in Bl-Loc (Biri&Galmiche07)

• Additive → can be Boolean (pointwise) or intuitionistic

Bunched Implication logic (BI)

- Introduced by Pym 99, 02
 - intuitionistic logic connectives: \land , \lor , \rightarrow ...
 - multiplicative connectives of MILL: *, →, I
 - sound and complete bunched sequent calculus, with cut elimination
- Kripke semantics (Pym&O'Hearn 99, Galmiche&Mery&Pym 02)
 - partially ordered partial commutative monoids (M, \circ, \leq)
 - intuitionistic Kripke semantics for additives
 - relevant Kripke semantics for multiplicatives
 - sound and complete Kripke semantics for BI

Bl Logic continued

- In BI, decomposition interpreted by $a \circ b \leq m$:
 - resource monoids (partial, ordered)
 - intuitionistic additives and relevant multiplicatives
- Bl has proof systems:
 - cut-free bunched sequent calculus (Pym 99)
 - resource tableaux (Galmiche&Mery&Pym 05)
 - inverse method (Donnelly&Gibson et al. 04)
- Additives intuitionistic in BI, mostly Boolean in Separation Logic

Boolean BI (BBI)

- Loosely defined by Pym as $BI + {\neg \neg A \rightarrow A}$
 - cut elimination lost, no "nice" sequent calculus
 - Kripke sem. by relational monoids (Larchey&Galmiche 06)
 - Display Logic based cut-free proof-system (Brotherston 09)
- Other definition (logical core of Separation and Spatial logics)
 - additive implication → Kripke interpreted pointwise
 - based on (commutative) partial monoids (M, ∘)
 - has a sound and complete (labelled tableaux) proof-system

Proof theory for BBI

- Compared to (intuitionistic) BI: much less satisfying situation
 - BI has Bunched sequent calculus (O'Hearn&Pym 99)
 - with cut-elimination from its inception
 - BI is decidable (Galmiche et al. 05)
- Hilbert system s/c for relational BBI (LW.&Galmiche 06, Yang)
- Semantic tableaux s/c for (partial) monoidal BBI
 - (unexpected) embedding of BI into BBI (LW.&Galmiche 09)
- Display calculi s/c for relational BBI (Brotherston 09, 10)

Kripke semantics of BBI (i)

- Non-deterministic(/relational) monoid (ND) (M, \circ, ϵ)
 - $\circ : M \times M \longrightarrow \mathbb{P}(M)$ and $\epsilon \in M$
 - $-\text{ for }X,Y\in\mathbb{P}(M), \ \overline{X\circ Y=\{z\mid \exists x\in X,\exists y\in Y,z\in x\circ y\}}$
 - $-\epsilon \circ x = \{x\}$ (neutrality), $x \circ y = y \circ x$ (commutativity)
 - $-x\circ(y\circ z)=(x\circ y)\circ z$ (associativity)
 - $(\mathbb{P}(M), \circ, \{\epsilon\})$ is a (usual) commutative monoid
 - residuation: $X \multimap Y = \{z \mid z \circ X \subseteq Y\}$

Kripke semantics of BBI (ii)

• Boolean (pointwise) Kripke semantics extended by:

$$m \Vdash A * B$$
 iff $\exists a, b \text{ s.t. } m \in a \circ b \text{ and } a \Vdash A \text{ and } b \Vdash B$ $m \Vdash A \twoheadrightarrow B$ iff $\forall a, b \ (b \in a \circ m \text{ and } a \Vdash A) \Rightarrow b \Vdash B$ $m \Vdash I$ iff $m = \epsilon$

- Decision problems:
 - checking a particular model $(m \Vdash A)$, Calcagno et al. 01 (SL)
 - validity in a particular interpretation $(\forall m, m \Vdash A)$
 - $-\mid \text{univ. validity} \mid \text{w.r.t. class of models } (\forall \mathcal{M} \forall \Vdash \forall m, m \Vdash A)$

Classes of models for BBI

- Partial (deterministic) monoids (PD): $a \circ b \subseteq \{k\}$
- Total (deterministic) monoids (TD): $a \circ b = \{k\}$
- Obviously: $TD \subseteq PD \subseteq ND$
- Separation models are in HM (Brotherston&Kanovich 10):
 - Heaps monoids: $(L \longrightarrow_{\mathrm{f}} V, \boxplus, \varnothing)$, sub-class of PD
 - RAM-domain model: $(\mathcal{P}_f(\mathbb{N}), \uplus, \emptyset) \simeq (\mathbb{N} \longrightarrow_f \{\star\}, \uplus, \emptyset)$
- Free monoids: $(M_f(X), +, 0)$, sub-class of TD
- Validity defines different logics: $|BBI_{ND} \subsetneq BBI_{PD} \subsetneq BBI_{TD}$

Overview of the main steps

- The map denoted $!(\cdot) \rightsquigarrow ! \land (\cdot)$:
 - is a (sound) embedding from ILL to BBI (not faithful)
 - is faithful for Trivial Phase Semantics
 - is faithful for fragments which are complete for TPS
- Search a fragment both complete for TPS and undecidable:
 - ILL undecidable but IMALL is, hence! is needed
 - $-(!,\oplus)$ -Horn fragment (Kanovich 95) not complete for TPS
 - s-IMELL⁻ fragment (De Groote et al 04) is complete for TPS
 - s-IMELL $_0^{-\circ}$ decidability is equiv. to MELL (still open problem)
 - eILL extends s-IMELL[→] and fulfills the requirements

Kripke vs. Phase semantics for BBI

- Change of notation: $m \Vdash A \text{ iff } m \in [A]$
- The interpretation of multiplicative conjunction *

$$m \Vdash A * B$$
 iff $\exists a, b \text{ s.t. } a \circ b = m \text{ and } a \Vdash A \text{ and } b \Vdash B$
$$\llbracket A * B \rrbracket = \llbracket A \rrbracket \circ \llbracket B \rrbracket$$

• Phase semantics for BBI (equiv. to Kripke sem.):

Phase semantics for ILL

- Intuitionistic phase space $(M, \circ, \epsilon, (\cdot)^{\diamond}, K)$:
 - (M, \circ, ϵ) in ND (usually TD)
 - $-(\cdot)^{\diamond}$ is a closure operator with $A^{\diamond} \circ B^{\diamond} \subseteq (A \circ B)^{\diamond}$ (stability)
 - -K sub-monoid of $M: \epsilon \in K$ and $K \circ K \subseteq K$
 - $K \subseteq \{\epsilon\}^{\diamond} \cap \{x \in M \mid x \in (x \circ x)^{\diamond}\}$
- Phase interpretation of ILL operators:

Trivial phase semantics for ILL

- Intuitionistic phase space $(M, \circ, \epsilon, (\cdot)^{\diamond}, K)$:
 - $\ (\cdot)^{\diamond}$ is the identity closure : $A^{\diamond} = A$
 - and as a consequence $K = \{\epsilon\}$
- Trivial phase interpretation of ILL operators:

ILL vs. BBI phase semantics

Trivial	phase	sem.	for	ILL
---------	-------	------	-----	-----

$$\llbracket \bot \rrbracket = \emptyset$$

$$\llbracket au
rbracket = M$$

$$\llbracket 1
rbracket = \{\epsilon\}$$

$$\llbracket ! A
rbracket = \{\epsilon\} \cap \llbracket A
rbracket$$

$$[\![A \oplus B]\!] = [\![A]\!] \cup [\![B]\!]$$

$$[\![A \& B]\!] = [\![A]\!] \cap [\![B]\!]$$

$$[\![A\otimes B]\!] = [\![A]\!] \circ [\![B]\!]$$

$$[A \multimap B] = [A] \multimap [B]$$

$$\llbracket \bot \rrbracket = \emptyset$$

$$\llbracket au
rbracket = M$$

$$\llbracket \mathsf{I}
rbracket = \{\epsilon\}$$

$$[\![\mathsf{I} \wedge A]\!] = \{\epsilon\} \cap [\![A]\!]$$

$$[A \lor B] = [A] \cup [B]$$

$$[\![A \wedge B]\!] = [\![A]\!] \cap [\![B]\!]$$

$$\llbracket A*B \rrbracket = \llbracket A \rrbracket \circ \llbracket B \rrbracket$$

ILL as a fragment of BBI_x $(x \in \{ND, PD, TD\})$

Phase Sem.

Phase Sem. (x)

- Define a map denoted $!(\cdot) \rightsquigarrow ! \land (\cdot)$
 - replace 1/I, ⊕/∨, &/∧, ⊗/*, -∞/-*
 - replace ! A by $I \wedge A$
- Result: | Sound embedding | for phase semantics (but not faithful)

 ILL_x^t as a fragment of BBI_x $(x \in \{\mathsf{ND}, \mathsf{PD}, \mathsf{TD}\})$

Triv. Ph. Sem. (x)

Phase Sem. (x)

• Result: $!(\cdot) \rightsquigarrow ! \land (\cdot)$ is faithful for Trivial Phase Semantics

Towards the undecidability of BBI_x

Phase Sem.

Phase Sem. (x)

- Among the known/unkown fragments of ILL, find F
 - s.t. F is complete for trivial phase semantics (in class x)
 - s.t. |F| is undecidable

The elementary fragment ell of ILL

- Extension of s-IMELL $_0^{-\circ}$ (De Groote et al. 04)
- Elementary sequents: $!\Sigma, g_1, \ldots, g_k \vdash d \quad (g_i, a, b, c, d \text{ variables})$
 - In Σ : $a \multimap (b \multimap c)$, $(a \multimap b) \multimap c$ or $(a \& b) \multimap c$
 - where a, b and c variables
- G-ell, goal directed rules for ell:

$$\frac{|\Sigma, \Gamma \vdash a| |\Sigma, \Delta \vdash b|}{|\Sigma, \Gamma, \Delta \vdash c|} \quad a \multimap (b \multimap c) \in \Sigma$$

$$\frac{|\Sigma, \Gamma, a \vdash b|}{|\Sigma, \Gamma \vdash c|} \quad (a \multimap b) \multimap c \in \Sigma \quad \frac{|\Sigma, \Gamma \vdash a| |\Sigma, \Gamma \vdash b|}{|\Sigma, \Gamma \vdash c|} \quad (a \& b) \multimap c \in \Sigma$$

Completeness results for ellL

- G-ell is sound for ND phase semantics on ell
 - hence sound w.r.t. any class of models
- free monoidal trivial phase sem. (FM) is complete for G-eILL
 - hence G-eILL is complete for eILL
 - hence trivial phase sem. $(x \in \{ND, PD, TD\})$ is also complete
- we can also prove eILL is complete for class HM (bisimulation)

Undecidability results for ellL/BBI

- encode two counter Minsky machines acceptance in eILL
 - compared to Kanovich 95: forking with & instead of ⊕
 - faithfullness proof by semantic argument like Lafont 96
 - Kanovich 95 was through normalization (i.e. cut-elimination)
 - Rem: Okada 02 proved cut-elim. through phase semantics
- obtain $\mathsf{eILL}^t_{\mathbb{N} \times \mathbb{N}}$ is undecidable, deduce $\boxed{\mathsf{eILL}}$ is undecidable
- Consequence: $|BBI_x|$ is undecidable $(x \in \{ND, PD, TD, HM, FM\})$

Two counter Minsky Machines

- Two counters, a and b, values in \mathbb{N}
- l+1 positions, 0 is terminal position, l instructions
- State (i, x, y): i position, x value of a, y value of b
- Two kinds of instructions: "add 1" & "z.t./sub 1"

$$i: a := a + 1 \; ; \; \text{goto} \; j$$
 $(i, x, y) \rightarrow (j, x + 1, y)$ $i: \text{ if } a = 0 \text{ then goto} \; j$ $(i, 0, y) \rightarrow (j, 0, y)$ else $a := a - 1 \; ; \; \text{goto} \; k$ $(i, x + 1, y) \rightarrow (k, x, y)$

- Acceptance: (x, y) accepted if $(1, x, y) \rightarrow^* (0, 0, 0)$
- Minsky: there exists a MM with non-recursive acceptance

Encoding acceptance of two counter MM

- Build a sequent $!\Sigma, a^x, b^y \vdash q_i$ for state (i, x, y)
 - variables a and b for the two counters, plus \underline{a} and \underline{b} (z.t.)
 - variables $q_0, \dots q_l$ represents the l+1 positions of the MM
 - instructions encoding in Σ , a and b never in goal position
 - acceptance as (universal) validity:

$$(i, x, y) \rightarrow^* (0, 0, 0)$$
 iff $!\Sigma, a^x, b^y \vdash q_i$ univ. valid

- Encode zero test on b: Σ , a^x , $b^y + a$ iff y = 0
- Prove soundness: $(i, x, y) \rightarrow^r (0, 0, 0) \Rightarrow ! \Sigma, a^x, b^y \vdash q_i$
- Prove completeness: $!\Sigma, a^x, b^y \vdash q_i \Rightarrow (i, x, y) \rightarrow^* (0, 0, 0)$

Encoding zero test on b (soundness)

• With $(a \multimap a) \multimap \underline{a}$ and $a \multimap (\underline{a} \multimap \underline{a})$ in Σ

• is the only possible proof, and only when y=0

Ground case of the recursion r = 0 (soundness)

- Corresponds to 0 transitions: $(i, x, y) \rightarrow^0 (0, 0, 0)$
- In this case, i = x = y = 0
- With $(a \multimap a) \multimap q_0$ in Σ

• We have our (unique) G-elLL proof

Encoding add 1 to a (soundness)

- With $(a \multimap q_i) \multimap q_i$ in Σ
- "add 1" instruction: i: a := a + 1; goto j
- Operational semantics: $(i, x, y) \rightarrow (j, x + 1, y) \rightarrow^r (0, 0, 0)$
- Recursively built (unique) G-ell proof to establish validity:

. . .

$$\frac{! \Sigma, \mathbf{a}^x, \mathbf{a}, \mathbf{b}^y + \mathbf{q}_j}{! \Sigma, \mathbf{a}^x, \mathbf{b}^y + \mathbf{q}_i} (\mathbf{a} \multimap \mathbf{q}_j) \multimap \mathbf{q}_i \in \Sigma$$

Encoding sub 1/zero test on a (soundness) (i)

- "sub 1/zero t.": i: if a = 0 then goto j else a := a 1; goto k
- Case x = 0, with $(\underline{b} \& q_j) \multimap q_i$ in Σ
- Operational semantics: $(i,0,y) \rightarrow (j,0,y) \rightarrow^r (0,0,0)$
- Corresponding (unique) G-eILL proof:

z.t. on a ...
$$\frac{|\Sigma, \mathbf{b}^y| + \underline{\mathbf{b}}| |\Sigma, \mathbf{b}^y| + \mathbf{q}_j}{|\Sigma, \mathbf{b}^y| + \mathbf{q}_i} (\underline{\mathbf{b}} \& \mathbf{q}_j) \multimap \mathbf{q}_i \in \Sigma$$

Encoding sub 1/zero test on a (soundness) (ii)

- "sub 1/zero t.": i: if a = 0 then goto j else a := a 1; goto k
- Case x + 1 > 0, with a $\multimap (q_k \multimap q_i)$ in Σ
- Operational semantics: $(i, x+1, y) \rightarrow (k, x, y) \rightarrow^r (0, 0, 0)$
- Corresponding (unique) G-elLL proof:

$$\frac{|\Sigma, \mathbf{a} + \mathbf{a}|}{|\Sigma, \mathbf{a} + \mathbf{a}|} \frac{\langle A\mathbf{x} \rangle}{|\Sigma, \mathbf{a}^x, \mathbf{b}^y + \mathbf{q}_k|} = \frac{|\Sigma, \mathbf{a} + \mathbf{a}|}{|\Sigma, \mathbf{a}, \mathbf{a}^x, \mathbf{b}^y + \mathbf{q}_i|} = \frac{|\nabla, \mathbf{a} - \mathbf{a}|}{|\Sigma, \mathbf{a}, \mathbf{a}^x, \mathbf{b}^y + \mathbf{q}_i|} = \frac{|\nabla, \mathbf{a} - \mathbf{a}|}{|\nabla, \mathbf{a}, \mathbf{a}|} = \frac{|\nabla, \mathbf{a} - \mathbf{a}|}{|\nabla, \mathbf{a}|} = \frac{|\nabla, \mathbf{a}|}{|\nabla, \mathbf{a}|} = \frac{|\nabla,$$

Summary of the encoding and soundness

• Start with
$$\Sigma = \begin{cases} a \multimap (\underline{a} \multimap \underline{a}), b \multimap (\underline{b} \multimap \underline{b}), \\ (a \multimap a) \multimap \underline{a}, (a \multimap a) \multimap \underline{b}, (a \multimap a) \multimap q_0 \end{cases}$$

- For instruction i : a := a + 1; goto j
 - $ext{ add } \left\{ (\mathtt{a} \multimap \mathtt{q}_j) \multimap \mathtt{q}_i \right\} ext{ to } \Sigma$
- For instruction i: if a=0 then goto j else a:=a-1; goto k $\operatorname{add} \left\{ (\underline{b} \& q_j) \multimap q_i, a \multimap (q_k \multimap q_i) \right\} \text{ to } \Sigma$
- Soundness theorem:

if
$$(i, x, y) \rightarrow^* (0, 0, 0)$$
 then $! \Sigma, a^x, b^y \vdash q_i$ has a G-elLL proof

• as a consequence, $!\Sigma, a^x, b^y \vdash q_i$ is univ. valid

Completeness of the encoding (summary)

- Let us suppose $!\Sigma, a^x, b^y \vdash q_i$ is univ. valid, $\Sigma = \sigma_1, \ldots, \sigma_r$
- By trivial phase interpretation in $\mathbb{N} \times \mathbb{N}$ (class FM)

$$[\![a]\!] = \{(1,0)\} \quad [\![b]\!] = \{(0,1)\} \quad [\![\underline{a}]\!] = \mathbb{N} \times \{0\} \quad [\![\underline{b}]\!] = \{0\} \times \mathbb{N}$$

$$[\![q_i]\!] = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid (i,x,y) \to^* (0,0,0)\}$$

- We will show $[0,0) \in [\sigma_i]$ for any i (completeness Lemma)
- By universal validity of $!\Sigma, a^x, b^y \vdash q_i$, we derive:

$$\llbracket ! \, \sigma_1 \rrbracket \circ \cdots \circ \llbracket ! \, \sigma_r \rrbracket \circ \llbracket \mathsf{a} \rrbracket \circ \cdots \circ \llbracket \mathsf{a} \rrbracket \circ \llbracket \mathsf{b} \rrbracket \circ \cdots \circ \llbracket \mathsf{b} \rrbracket \subseteq \llbracket \mathsf{q}_i \rrbracket$$

- Hence $\{(0,0)\} \circ \cdots \circ \{(0,0)\} \circ \{(x,0)\} \circ \{(0,y)\} \subseteq \llbracket q_i \rrbracket$
- Thus $(x,y) \in [\![q_i]\!]$, and as a consequence $(i,x,y) \to^* (0,0,0)$

Inside the proof of the Completeness Lemma (i)

- Case of instruction i : a := a + 1; goto j
- Σ contains $(a \multimap q_j) \multimap q_i$
- Completeness Lemma condition: $(0,0) \in [(a \multimap q_j) \multimap q_i]$
- Interpreted by $[a] \rightarrow [q_j] \subseteq [q_i]$
- Translates into $\forall x, y \quad (x, y) + (1, 0) \in \llbracket \mathbf{q}_j \rrbracket \Rightarrow (x, y) \in \llbracket \mathbf{q}_i \rrbracket$
- Thus $\forall x, y \quad (j, x+1, y) \rightarrow^{\star} (0, 0, 0) \Rightarrow (i, x, y) \rightarrow^{\star} (0, 0, 0)$
- This is exactly the operational semantics of "add 1 to a"

Inside the proof of the Completeness Lemma (ii)

- Case x = 0 of instruction i: if a = 0 then goto j else ...
- Σ contains $(\underline{b} \& q_j) \multimap q_i$
- Completeness Lemma condition: $(0,0) \in [(\underline{b} \& q_i) \multimap q_i]$
- Interpreted by $[\![\underline{b}]\!] \cap [\![q_j]\!] \subseteq [\![q_i]\!]$
- or $\forall x, y \quad (x = 0 \text{ and } (j, x, y) \rightarrow^* (0, 0, 0)) \Rightarrow (i, x, y) \rightarrow^* (0, 0, 0)$
- Thus $\forall y \quad (j,0,y) \rightarrow^{\star} (0,0,0) \Rightarrow (i,0,y) \rightarrow^{\star} (0,0,0)$
- This is exactly the operational semantics of the "then" branch

Inside the proof of the Completeness Lemma (iii)

- Case x + 1 > 0 of i: if a = 0 then ... else a := a 1; goto k
- Σ contains a $\multimap (q_k \multimap q_i)$
- Completeness Lemma condition: $(0,0) \in [a \multimap (q_k \multimap q_i)]$
- Interpreted by $[a] \circ [q_k] \subseteq [q_i]$
- Becomes $\forall x, y \quad (k, x+1, y) \rightarrow^* (0, 0, 0) \Rightarrow (i, x, y) \rightarrow^* (0, 0, 0)$
- This is exactly the operational semantics of the "else" branch

Consequences of the encoding of MM

- An encoding suitable for classes ND, PD, TD and FM
 - $\mathbb{N} \times \mathbb{N} \in FM \subseteq TD \subseteq PD \subseteq ND$
 - obtain for undecidability of $\mathsf{eILL}^t_{\mathbb{N}\times\mathbb{N}}$ and also for eILL
- Also of BBI_{ND} , BBI_{PD} , BBI_{TD} , BBI_{FM} and $BBI_{N\times N}$
- Undecidability for BBI_{HM} through bisimulation

Conclusion, related works, perspectives

- Encoding suitable for class FM and thus, all classes
 - undecidability of elll, BBI_x , $\forall x \in \{ND, PD, TD, HM, FM\}$
- Encoding adapted for class of groups (LW., MFPS 10)
 - another proof of undecidability of Classical BI (CBI)
- Similar results by Brotherston&Kanovich (LICS 10)
 - focus on Separation Logic (RAM-domain model)
 - obtained completely independently, also applies to CBI
- What about decidability of BBI restricted to № ?
 - 1-counter MM are decidable (Bouajjani et al. 99)
- Complete the classification of BBI_x

Bisimulation vs. Kripke/phase semantics of BBI

- (M, \circ, ϵ) and (N, \star, π) two ND monoids
- Bisimulation relation $\sim \subseteq M \times N$ checks:

$$m = \epsilon \text{ iff } m' = \pi$$

$$\forall a \circ b \ni m \exists a' \star b' \ni m' \ a \sim a' \text{ and } b \sim b'$$

$$\forall a' \star b' \ni m' \exists a \circ b \ni m \ a \sim a' \text{ and } b \sim b'$$

$$\forall b \in a \circ m \exists b' \in a' \star m' \ a \sim a' \text{ and } b \sim b'$$

$$\forall b' \in a' \star m' \exists b \in a \circ m \ a \sim a' \text{ and } b \sim b'$$

• if $m \sim m'$ then for any F of BBI, $m \in \llbracket F \rrbracket$ iff $m' \in \llbracket F \rrbracket'$

Bisimulating $\mathbb{N} \times \mathbb{N}$ in $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$

- $(\mathcal{P}_{\mathrm{f}}(\mathbb{N}), \uplus, \emptyset)$ and $(\mathbb{N} \times \mathbb{N}, +, (0, 0))$ are two ND monoids
- Let $\mathbb{N} = \mathbb{E} \uplus \mathbb{O}$ (e.g. even/odd numbers)
- For $X \in \mathcal{P}_{\mathrm{f}}(\mathbb{N})$, let $\varphi(X) = (\operatorname{card}(X \cap \mathbb{E}), \operatorname{card}(X \cap \mathbb{O}))$
- $\varphi : \mathcal{P}_{\mathbf{f}}(\mathbb{N}) \longrightarrow \mathbb{N} \times \mathbb{N}$ is a projection (surjective)
- $\varphi \subseteq \mathcal{P}_{\mathbf{f}}(\mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ is a bisimulation
- Use φ to transform the $\mathbb{N} \times \mathbb{N}$ model into a $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$ model
 - simply define $\llbracket \mathtt{x}
 rbracket^{\prime} = arphi^{-1} ig(\llbracket \mathtt{x}
 rbracket^{} ig)$