
Access Control Models for XML

Abdessamad Imine

Lorraine University & INRIA-LORIA Grand-Est

Nancy, France

Abdessamad.Imine@loria.fr

Outline

•  Overview on XML
•  Why XML Security?
•  Querying Views-based XML Data
•  Updating Views-based XML Data

2

Outline

•  Overview on XML
•  Why XML Security?
•  Querying Views-based XML Data
•  Updating Views-based XML Data

3

4

What is XML?
•  eXtensible Markup Language [W3C 1998]

<files>  
"<record>  
" "<name>Robert</name>  
" "<diagnosis>Pneumonia</diagnosis>  
"</record>  
"<record>  
" "<name>Franck</name>  
" "<diagnosis>Ulcer</diagnosis>  
"</record>  

</files>"

5

What is XML?
•  eXtensible Markup Language [W3C 1998]

/name" /diagnosis"

<files>!
 <record>!
 <name>Robert</name>!
 <diagnosis>!
 Pneumonia!
 </diagnosis> !
 </record>!
 <record …>!
 …!
 </record>!
</files>!

/record"

/files"

/record"

Robert" Pneumonia"

6

XML for Documents
•  SGML

•  HTML - hypertext markup language

•  TEI - Text markup, language technology

•  DocBook - documents -> html, pdf, ...

•  SMIL - Multimedia

•  SVG - Vector graphics

•  MathML - Mathematical formulas

7

XML for Semi-Structered Data
•  MusicXML

•  NewsML

•  iTunes

•  DBLP http://dblp.uni-trier.de

•  CIA World Factbook

•  IMDB http://www.imdb.com/

•  XBEL - bookmark files (in your browser)

•  KML - geographical annotation (Google Maps)

•  XACML - XML Access Control Markup Language

8

XML as Description Language
•  Java servlet config (web.xml)

•  Apache Tomcat, Google App Engine, ...

•  Web Services - WSDL, SOAP, XML-RPC

•  XUL - XML User Interface Language (Mozilla/Firefox)

•  BPEL - Business process execution language

•  Other Web standards:

•  XSLT, XML Schema, XQueryX

•  RDF/XML

•  OWL - Web Ontology Language

•  MMI - Multimodal interaction (phone + car + PC)

9

XML Tools
•  Standalone:

•  xsltproc, mxquery, calabash (XProc)

•  Most Programming Languages have XML parsers

•  SAX (streaming), DOM (in-memory) interfaces

•  libxml2, expat, libxslt (C)

•  Xerces, Xalan (Java)

•  XPath (path expressions) used in many languages

•  JavaScript/JQuery

•  XSLT, XQuery

10

Native XML Databases
•  Offer native support for XML data & query languages

•  Galax

•  MarkLogic

•  eXist

•  BaseX

•  among others...

•  Suitable for new or lightweight applications

•  but some lack features like transactions, views, updates

11

XML in the Industry
•  Most commercial RDBMSs now provide some XML support

•  Oracle 11g - XML DB

•  IBM DB2 pureXML

•  Microsoft SQL Server - XML support since 2005

•  Language Integrated Query (LINQ) targets SQL & XML
in .NET programs

•  Data publishing, exchange, integration problems are very important

•  big 3 have products for all of these

•  SQL/XML standard for defining XML views of relational data

12

XML Terminology
Tags and Text

ü  XML consists of tags and text
 <course cno = “Eng 055”>
 <title> Spelling </title>

 </course>

ü  tags come in pairs: markups
 start tag: <course>

 end tag: </course>

ü  tags must be properly nested
<course> <title> … </title> </course> -- good
<course> <title> … </course> </title> -- ???

13

XML Terminology
Tags and Text

ü  XML consists of tags and text
 <course cno = “Eng 055”>
 <title> Spelling </title>

 </course>

ü  tags come in pairs: markups
 start tag: <course>

 end tag: </course>

ü  tags must be properly nested
<course> <title> … </title> </course> -- good
<course> <title> … </course> </title> -- bad

14

XML Terminology (cont.)
XML Elements

ü  Element: the segment between a start and its corresponding end tag

ü  Subelement: the relation between an element and its component elements.
 <person>

 <name> Ali Baba </name>

 <tel> (33) 354595853 </tel>

 <email> Ali.Baba@nights.com </email>

 <email> ababa@tales.org </email>

 </person>

15

XML Terminology (cont.)
XML Attributes

A start tag may contain attributes describing certain “properties” of
the element:
 <picture>
 <height dim=“cm”> 2400</height>
 <width dim=“in”> 96 </width>
 <data encoding=“gif”> M05-+C$ … </data>
 </picture>

References:
 <person id = “011” country =“UK”>
 <name> Stan Laurel </name>
 </person>
 <person country=“USA” id = “012”>
 <name> Oliver Hardy </name>
 </person>

16

XML Terminology (cont.)
Example: A relational database for school

Students: Course:

 Enroll:

id name sex
001 Joe male
002 Mary female
… … …

cno title credit
331 DB 3.0
350 Web 3.0
… … …

id cno
001 331
001 350
002 331
… …

17

XML Terminology (cont.)
Example: A relational database for school

 <school>

 <student id=“001”>
 <name> Joe </name>

 <sex> male </sex>
 </student>
 …
 <course cno=“331”>
 <title> DB </title>

 <credit> 3.0 </credit>
 </course>
 …
 </course>
 <enroll>
 <id> 001 </id>

 <cno> 331 </cno>
 </enroll>
 …

 </school>

18

Document Type Definition (DTD)

An XML document may come with an optional DTD – “schema”

<!DOCTYPE db [

 <!ELEMENT db (book*)>
 <!ELEMENT book (title, authors*, section*, ref*)>
 <!ATTLIST book isbn ID #required>
 <!ELEMENT section (text | section)*>
 <!ELEMENT ref EMPTY>
 <!ATTLIST ref to IDREFS #implied>
 <!ELEMENT title #PCDATA>
 <!ELEMENT author #PCDATA>
 <!ELEMENT text #PCDATA>

]>

19

Document Type Definition (DTD)

for each element type E, a declaration of the form:

 <!ELEMENT E P> E → P
 where P is a regular expression, i.e.,

P ::= EMPTY | ANY | #PCDATA | E’ |
 P1, P2 | P1 | P2 | P? | P+ | P*

–  E’: element type
–  P1 , P2: concatenation
–  P1 | P2: disjunction
–  P?: optional
–  P+: one or more occurrences
–  P*: the Kleene closure

20

Document Type Definition (DTD)

ü  Extended context free grammar: <!ELEMENT E P>

Why is it called extended?
 E.g., book → title, authors*, section*, ref*

ü  single root: <!DOCTYPE db […] >
ü  subelements are ordered.

 The following two definitions are different. Why?
 <!ELEMENT section (text | section)*>
 <!ELEMENT section (text* | section*)>

ü  recursive definition, e.g., section, binary tree:
 <!ELEMENT node (leaf | (node, node))
 <!ELEMENT leaf (#PCDATA)>

21

Document Type Definition (DTD)

ü  Recursive DTDs

 <!ELEMENT person (name, father, mother)>
 <!ELEMENT father (person)>
 <!ELEMENT mother (person)>

 What is the problem with this? How to fix it?

22

Document Type Definition (DTD)

ü  Recursive DTDs

 <!ELEMENT person (name, father, mother)>
 <!ELEMENT father (person)>
 <!ELEMENT mother (person)>

 What is the problem with this? How to fix it?

–  optional (e.g., father?, mother?)
–  Attributes

ü  Ordering
 How to declare element E to be an unordered pair (a, b)?

23

Document Type Definition (DTD)

ü  Recursive DTDs

 <!ELEMENT person (name, father, mother)>
 <!ELEMENT father (person)>
 <!ELEMENT mother (person)>

 What is the problem with this? How to fix it?

–  optional (e.g., father?, mother?)
–  Attributes

ü  Ordering
 How to declare E to be an unordered pair (a, b)?
 <!ELEMENT E ((a, b) | (b, a)) >

24

Document Type Definition (DTD)

Attribute Declaration
<!ATTLIST element_name

 attribute-name attribute-type default-declaration>
Example: “keys” and “foreign keys”

 <!ATTLIST book
 isbn ID #required>
 <!ATTLIST ref
 to IDREFS #implied>

Note: it is OK for several element types to define an attribute
of the same name, e.g.,
 <!ATTLIST person name ID #required>
 <!ATTLIST pet name ID #required>

25

Document Type Definition (DTD)

Attribute Declaration

<!ATTLIST person

 id ID #required
 father IDREF #implied
 mother IDREF #implied
 children IDREFS #implied>

e.g.,
<person id=“898” father=“332” mother=“336”

 children=“982 984 986”>
 ….
</person>

26

Valid XML Documents

A valid XML document must have a DTD.
ü  The document is well-formed

–  Tags have to nest properly
–  Attributes have to be unique

ü  It conforms to the DTD:
–  elements conform to the grammars of their type

definitions (nested only in the way described by the DTD)
–  elements have all and only the attributes specified by the

DTD
–  ID/IDREF attributes satisfy their constraints:

•  ID must be distinct
•  IDREF/IDREFS values must be existing ID values

27

XPath

W3C standard: www.w3.org/TR/xpath
ü  Navigating an XML tree and finding parts of the tree (node

selection and value extraction)
 Given an XML tree T and a context node n, an XPath query Q

returns
–  the set of nodes reachable via Q from the node n in T – if

Q is a unary query
–  truth value indicating whether Q is true at n in T – if Q is a

boolean query.
ü  Implementations: XALAN, SAXON, Berkeley DB XML, Monet

XML – freeware, which you can play with
ü  A major element of XSLT, XQuery and XML Schema
ü  Version: XPath 3.0

28

XPath

XPath query Q:
–  Tree traversal: downward, upward, sideways
–  Relational/Boolean expressions: qualifiers (predicates)
–  Functions: aggregation (e.g., count), string functions

/files/record/name[text()=“Ali Baba”]
/files/record[name=“Toto”]/diagnosis | /files/

record[name=“Pascal”]/diagnosis

/files/record

/name

text() Robert

/diagnosis

<files>
 <record>
 <name>Robert</name>
 <diagnosis>
 Pneumonia
 </diagnosis>
 </record>
 <record …>
 …
 </record>
</files>

/record

text()Pneumonia

/files

/record

29

XPath

Downward Traversal
Syntax:
Q ::= l | @l | Q/Q | Q | Q | //Q | /Q | Q[q]
q ::= Q | Q op c | q and q | q or q | not(q)

ü  l: either a tag (label) or *: wildcard that matches any label
ü  @l: attribute
ü  /, |: concatenation (child), union
ü  //: descendants or self, “recursion”
ü  [q]: qualifier (filter, predicate)

–  op: =, !=, <=, <, >, >=, >
–  c: constant
–  and, or, not(): conjunction, disjunction, negation

30

XPath

Context node: starting point

31

XPath

Child
/a is equivalent to child::a

32

XPath

Descendant
/descendant::*

33

XPath

Descendant-or-self
//a is equivalent to descendant-or-self::*/child::a

34

XPath

Upward Traversal
Syntax:
Q ::= . . . | ../Q | ancestor ::Q | ancestor-or-self::Q

ü  ../: parent
ü  ancestor, ancestor-or-self: recursion

Abreviations:
. is equivalent to self::*
.. is equivalent to parent::*

35

XPath

Parent

36

XPath

Ancestor

37

XPath

Ancestor-or-self

38

XPath

Sideways
Syntax:
Q ::= . . . | following::Q | preceding::Q |

 following-sibling ::Q | preceding-sibling::Q |
 [p] (p is integer)

ü  following-sibling: the right siblings
ü  preceding-sibling: the left siblings
ü  position function (starting from 1): e.g., //author[position() < 2]

39

XPath

Following-Sibling

40

XPath

Preceding-Sibling

41

XPath

Following

42

XPath

Preceding

43

XPath

Self

44

XPath

Positional Tests
//*[position()=2] (or just //*[2])

r	

b	

a	

b	

a	

a	

b	

b	

c	

c	

d	

e	

d	

 d	

 d	

e	

a	

b	

 a	

b	

a	

b	

 b	

c	

doc	

45

XPath

Positional Tests
//a/*[first()]

r	

b	

a	

b	

a	

a	

b	

b	

c	

c	

d	

e	

d	

 d	

 d	

e	

a	

b	

 a	

b	

a	

b	

 b	

c	

doc	

46

XPath

Positional Tests
//a/*[last()]

r	

b	

a	

b	

a	

a	

b	

b	

c	

c	

d	

e	

d	

 d	

 d	

e	

a	

b	

 a	

b	

a	

b	

 b	

c	

doc	

Outline

•  Overview on XML
•  Why XML Security?
•  Querying Views-based XML Data
•  Updating Views-based XML Data

47

48

XML Security
•  XML data management

•  Business information: Confidential

•  Health-care data: the Patient Privacy Act

•  Selective divulgation of XML data

•  A major concern for data providers and consumers

•  Preserving data confidentiality, privacy and
intellectual property

49

Example
XML database containing medical records

The Administrator could see the whole database

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

50

Example
XML database containing medical records

Doctor David can only access the records of his patients

Hospital

Genetics
Psychiatry

Record

Doctor Date

Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mark''

Sex Sex

51

Example
XML database containing medical records

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

52

Example
XML database containing medical records

Patient Mary can access his own medical records

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'Mary' 'Mary' 'Angela'

Bill Bill

Sex Sex

53

XML Access Control
ü  Access control

–  multiple groups simultaneously query the same XML
document

–  each user group has a different access-control policy

ü  Enforcement of access-control policies:

XML Query Engine

user group 1 user group n
inaccessible
accessible

.

54

XML Access Control

XML Query Engine

user group

inaccessible
accessible

For each user group of an XML document T,
ü  specify a access-control policy S,
ü  enforce S: for any query Q posted by the group over the document

T, Q(T) consists of only data accessible w.r.t S
Problems with access control for XML:
ü  How to specify access policies at various levels of granularity?
ü  How to efficiently enforce those access policies?

Q Q(T)

XML document T

55

Models for XML Security
Several models have been proposed for XML: XACML, XACL, …

ü  Specifying and enforcing access-control at a physical level
–  annotate data nodes in an XML document with

accessibility, and check accessibility at runtime (with
optimizations for tree-pattern queries and tree/DAG
DTDs)

ü  Problems:

–  costly (time, space): multiple accessibility annotations
–  error-prone: integrity maintenance becomes a problem

when the underlying data or access policy is updated

56

Models for XML Security
Several models have been proposed for XML: XACML, XACL, …

ü  Using at a Security Views: multiple user groups
–  who wish to query the same XML document
–  different access policies may be imposed, specifying the

portions of the document the users are granted or
denied access to.

ü  Two types of security views are used

–  Virtual views
–  Materialized views

57

XML Views
ü  Materialized views: store data in the views

–  Query support: straightforward and efficient
–  Consistency: the views should be updated in response to

changes to the underlying database

ü  Virtual views: do not store data
–  Query support: view queries
 should be translated to
 equivalent ones over the
 underlying data
–  Updates: not an
 issue

XML View

RDB

query answer

DBMS middleware

updates

query
translation

58

Virtual vs. Materialized
XML views are important for data exchange, Web services, access

control (security), Web interface for scientific databases, …

ü  Materialized views: publishing

–  sometimes necessary, e.g., XML publishing
–  when response time is critical, e.g., active system
–  “static”: the underlying database is not frequently updated

ü  Virtual views: shredding
–  “dynamic”: when the underlying data source constantly changes

and/or evolves
–  Web interface: when the underlying database and the views are

large
–  Access control: multiples views of the same databases are

supported simultaneously for different user groups

59

Access Control Specification
Definition of rules for restricting access in XML data using various

levels of granularity (entire subtrees or specific elements).

Each rule is a tuple of:
ü  Requestor

ü  The user of set of users concerned by the authorization
ü  Resource

ü  The data that the requestor is (or not) granted to access
ü  Action

ü  The action (read, write, etc) is (or not) allowed on the resource
ü  Effect

ü  It grants (sign ‘+’) or denies (sign ‘-’) access to the resource
ü  Propagation

ü  It defines the scope of the rule

60

Language for Access Control
XPath language is used to specify the XML nodes concerned by an

access rule.

Each rule’s resource is defined as a XPath expression:

ü  Accessible /Inaccessible nodes
ü  Conditional accessible nodes

ü  XPath is a navigation language that returns a subset of nodes

ü  It is used by XML-related technologies (XQuery, XSLT, etc)

ü  Different XPath fragments are used
ü  Navigational axis (e.g. child, descendent, attributes, etc)
ü  Comparison operators (e.g. testing only equality)
ü  Expressions are absolute or relative

61

Scope for Access Control Rule
Due to the hierarchical nature of XML: how to apply the access rule?

The access rule is local if the scope can be:

ü  The node only
ü  The node and its attributes
ü  The node and its text value

The access rule is recursive if the scope can be:
ü  The node, its attributes, all its descendants and their

attributes
ü  Entire sub-trees
ü  inheritance: some nodes inherit the accessibility of their

ancestors

62

Default Semantics
Given an access control policy, there is a question:

What happens to the node if there exists no access control rule that

neither grants nor denies access to it?

The default semantics of the access control policy gives an implicit

rule in this case. There are two semantics:
ü  Deny

ü  The node is non-accessible
ü  Grant

ü  The node is accessible

63

Conflict Resolution
A conflict occurs when a node is granted access (by a positive rule) and

denied access (by a negative rule) at the same time.

There are different approaches to perform conflict resolution:

ü  Priorities
ü  Each rule is assigned a priority and the rule with highest

priority is considered
ü  Deny overwrites

ü  Negative rule takes precedence over positive rule
ü  Grant overwrites

ü  Positive rule takes precedence over negative rule

64

Example
XML database containing medical records

Rule: (Toto, //Name, Read, +, local)
Default semantics: Deny

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

65

Example
XML database containing medical records

Rule: (Toto, //Name, Read, +, local)
Default semantics: Deny

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

66

Example
XML database containing medical records

Rule: (Toto, //Record[./Patient/Name=‘Mark’], Read, +, recursive)
Default semantics: Deny

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

67

Example
XML database containing medical records

Rule: (Toto, //Record[./Patient/Name=‘Mark’], Read, +, recursive)
Default semantics: Deny
Date, Doctor, Bill, Diagnosis, … inherit the accessibility of Record

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

68

Example
XML database containing medical records

Rule1: (Toto, //Patient/Name, Read, - , local)
Rule2: (Toto, //Record[./Doctor/Name=‘David’], Read, +, recursive)
Default semantics: Deny

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

69

Example
XML database containing medical records

Rule1: (Toto, //Patient/Name, Read, - , local)
Rule2: (Toto, //Record[./Doctor/Name=‘David’], Read, +, recursive)
Default semantics: Deny
Conflict resolution policy: Deny

Hospital

Patient Doctor

Record

Diagnosis

Date

Name

Genetics
Psychiatry

Record

Doctor Date

Name Diagnosis Name

Patient

Name

Record

Doctor Date

Diagnosis Name

Patient

Name

'David' 'David' 'Mary' 'Mary' 'Angela' 'Mark''

Bill Bill Bill

Sex Sex Sex

Outline

•  Overview on XML
•  Why XML Security?
•  Querying Views-based XML Data
•  Updating Views-based XML Data

70

71

XML without Schema
Access control for XML Data proposed by Fundulaki et al. [Iri 2004].

ü  XPath fragment
 locapath ::= axis ‘::’ ntst ‘[‘ expr ‘]’ | ‘/’ locapath | localpath ‘/’ localpath

 expr ::= localpath | not expr | expr and expr | expr or expr
 | locapath op v

 ntst is a node label, * or function text()
 op is comparison operator (e.g. <=)
 v is a value

ü  Access Control Policy
ü  Defined by four sets of XPath filter expressions

Pl, Pr: positive local and recursive rules
Nl, Nr: negative local and recursive rules

72

XML without Schema
Example: XML database containing medical records

1. Grant access to all nodes: Pr = {*}

2. Only Name nodes are accessible: Pl = {Name}

3. All nodes are accessible except Diagnosis: Pr = {*}, Nl = {Diagnosis}

4. Grant access to the Record nodes and all its descendant nodes,
 except if they are below a Patient node whose Name node has
 the value ‘Mark’:
 Pr = {Record}
 Nr = {Patient[./Name=‘Mark’]}

73

XML without Schema
Enforcement of Access Control

•  A XML document: D

•  A query as a XPath expression: q

•  An access control policy: ACP

•  The query q is rewritten into q[expr] where expr is XPath
expression, obtained from ACP in such a way the answer
set of q must be filtered to obtain only the accessible node

74

XML without Schema
Access Control Policies with Only Local Rules

A node is accessible if there exists:
 1. at least one positive rule that grants access to it, and
 2. no negative rule that denies access to it

q[expr]
ü q targets element nodes

 [expr] is

ü q targets attribute/text nodes

 [expr] is

75

XML without Schema
Access Control Policies with Only Recursive Rules

A node is accessible if:

 1. there exists a positive rule that grants access to one of its
 ancestors, or the node itself, and

 2. no negative rule that denies access to one of its ancestors or the
 node itself

q[expr]

76

XML without Schema
Access Control Policies with Local and Recursive Rules

A node is accessible if:
 1. there exists at least one positive recursive rule that grants
 access to it, or
 2. there exists at least one positive local rule that grants access to
 it, and
 3. there is no negative recursive rule, and
 4. there is no negative local rule that denies access to it

q[expr]

77

XML without Schema
Problem: Security Breaches

Only nodes files and name are accessible: Pl = {files}, Pl = {name}

Query /files/record/name is rewritten in /files/record/name[self::name]

name

text() Robert

diagnosis

<files>
 <record>
 <name>Robert</name>
 <diagnosis>
 Pneumonia
 </diagnosis>
 </record>
 <record …>
 …
 </record>
</files>

record

text()Pneumonia

files

record

78

XML without Schema
Problem: Security Breaches

Only nodes files and name are accessible: Pl = {files}, Pl = {name}

Query /files/record/name is rewritten in /files/record/name[self::name]
 è Discloses the existence of hidden node

name

text() Robert

diagnosis

<files>
 <record>
 <name>Robert</name>
 <diagnosis>
 Pneumonia
 </diagnosis>
 </record>
 <record …>
 …
 </record>
</files>

record

text()Pneumonia

files

record

79

XML without Schema
Problem: Security Breaches

Only nodes files and name are accessible: Pl = {files}, Pl = {name}

Query /files/record/name is rewritten in /files/record/name[self::name]
 è Discloses the existence of hidden node

Solution: examining all nodes parsed in the query

name

text() Robert

diagnosis

<files>
 <record>
 <name>Robert</name>
 <diagnosis>
 Pneumonia
 </diagnosis>
 </record>
 <record …>
 …
 </record>
</files>

record

text()Pneumonia

files

record

80

XML without Schema
Problem: Rewriting may be impossible

Only nodes files and name are accessible: Pl = {files}, Pl = {name}

Query /files/name is rewritten in /files/name[self::name]
 è This query will be rejected

name

text() Robert

diagnosis

<files>
 <record>
 <name>Robert</name>
 <diagnosis>
 Pneumonia
 </diagnosis>
 </record>
 <record …>
 …
 </record>
</files>

record

text()Pneumonia

files

record

81

XML without Schema
Problem: Rewriting may be impossible

Only nodes files and name are accessible: Pl = {files}, Pl = {name}

Query /files/name is rewritten in /files/name[self::name]
 è This query will be rejected

Solution: Denial Downward Consistency Property
 if a node is inaccessible then all its descendants are inaccessible

name

text() Robert

diagnosis

<files>
 <record>
 <name>Robert</name>
 <diagnosis>
 Pneumonia
 </diagnosis>
 </record>
 <record …>
 …
 </record>
</files>

record

text()Pneumonia

files

record

82

XML with Schema
Access control for XML Data proposed by Fan et al. [Fan 2004].

ü  Security administrator: specifies a access-control policy for

each group by extending the document DTD with XPath
qualifiers

ü  Derivation module: automatically derives a security-view

definition from each policy: view DTD and mapping via Xpath

ü  Query translation module: rewrite and optimize queries over

views to equivalent queries over the underlying document

83

XML with Schema
Access control for XML Data proposed by Fan et al. [Fan 2004].

ü  Specification and enforcement: at the conceptual (schema) level

–  no need to update the underlying XML data
–  no need to materialize views or perform runtime check

ü  Schema availability: view schema is automatically derived
–  characterizing accessible data
–  exposing necessary schema information only

84

XML with Schema
Access control Specification

DTD D : element type definitions A → α

α ::= PCDATA | ε | A1, …, Ak | A1 + … + Ak | A*

Annotations are added in the DTD document to define the
access control policy

Access policy Document DTD = + XPath qualifiers

85

XML with Schema
Access control Specification

ü Specification S = (D, access()): a mapping access() from the
edges in the DTD document D à { Y, N, [q] }.

For each A → α, for each B in α, define Access(A, B) as
–  Y: accessible (true)
–  N: inaccessible (false)
–  [q]: XPath qualifier, conditional: accessible iff [q] holds
XPath fragment:

p ::= ε | A | * | // | p/p | p ∪ p | p[q]

q ::= p | p = “c” | q1 ∧ q2 | q1 ∨ q2 | ¬q

86

XML with Schema
 Example: an XML document of patients

Document DTD D
 hospital → patient*
 patient → SSN, name, record*
 record → date, diagnosis, treatment
 treatment → (trial + regular)
 trial → trName, treatment*
 regular → tname, bill

Access-control policies over docs of D:
ü  Doctors in the hospital are granted

 access to all the data in the docs
ü  Insurance company is allowed to access

 billing information only

*

treatment

tname

*

trial

trName

hospital

SSN

patient

name record
*

diagnosis date

regular

bill

DTD graph

87

XML with Schema
 Example: an XML document of patients

access(hospital, patient) = [//diagnosis = “DIS”] -- [q1]
access(patient, record) = [diagnosis = “DIS”] -- [q2]
access(treatment, trial) = N
access(treatment, regular) = N
access(regular, tname) = Y

ü  overriding: if access(A, B) = Y (N),

then the B children of A override
the accessibility of A

ü  inheritance: if access(A, B) is not
explicitly defined, then the B children
of A inherit the accessibility of A

ü  content-based: conditional accessibility
via XPath qualifiers

*

treatment

tname

*

trial

trName

hospital

SSN

patient

name record
*

diagnosis date

regular

bill

Conditionally accessible

[q1]

[q2]

88

XML with Schema
 Properties of the specification language

ü  XML tree of the document DTD:

the accessibility of each data node
 is uniquely defined by an access specification

–  relative to the path from root
–  a qualifier at a node a constrains the entire

subtree rooted at a,
•  e.g., [q2] constrains tname

ü  various levels of granularity: entire subtrees
or specific elements

ü  schema level: the underlying XML data is

not touched; efficient, easy to specify
and maintain

*

treatment

tname

*

trial

trName

hospital

SSN

patient

name record
*

diagnosis date

regular

bill

Conditionally accessible

[q1]

[q2]

89

XML with Schema
Enforcing Access Control – Security Views

XML security view: σ = (Dv, xpath()) with respect to an access policy

S = (D, access()),

ü  Dv: view DTD, exposed to the user and characterizing the
accessible information (of document DTD D) w.r.t S

 Schema availability: to facilitate query formulation

ü  xpath(): mapping from instances of D to instances of Dv
defined in terms of XPath queries and view DTD Dv
–  for each A → α in Dv, for each B in α, xpath(A, B) = p
–  p: generates B children of an A element in a view

p ::= ε | A | * | // | p/p | p ∪ p | p[q]

q ::= p | p = “c” | q1 ∧ q2 | q1 ∨ q2 | ¬q

90

XML with Schema
Derivation of Security Views

One needs an algorithm to compute a security-view definition:

ü  Input: an access policy S = (D, access())
ü  Output: a security-view definition σ = (Dv, xpath())

–  sound: accessible information only
–  complete: all the accessible data (structure preserving)
–  DTD-conformant: conforming to the view DTD

ü  efficient: O(|S|2) time (proposed in [Fan2004])
ü  generic: recursive/nondeterministic document DTDs

91

XML with Schema
Example: an XML document of patients

ü  Top-down traversal of the document DTD D
ü  short-cutting/renaming (via dummy) inaccessible element types
ü  normalizing the view DTD Dv and reducing dummy types

*

hospital

patient
*

hospital

patient [q1]

xpath(hospital,patient) =
 hospital/patient[q1]

SSN name record

*
SSN name record

*
[q2]

xpath(patient, record) = record[q2]

treatment diagnosis date
treatment

diagnosis date

xpath(record, treatment) = treatment

92

XML with Schema
Example: an XML document of patients

ü  recursive and non-deterministic productions

 xpath(treatment, dummy2) = regular
xpath(treatment, dummy1) = trail

treatment

tname
*

treatment

tname
*

dummy1

trName

regular

bill

dummy2 trial

ü  reducing dummy element types:
 (dummy1/treatment)* / dummy2 / tname ∪ dummy2/tname)
 ⇒ (dummy1/treatment)* / dummy2 / tname ⇒ tname*
 xpath(treatment, tname) = //tname

treatment

tname

*

93

XML with Schema
Rewriting Algorithm

ü Input:

–  σ = (Dv, xpath()) (security view wrt S = (D, access())), and
–  an XPath query Qv over the view (Dv)

ü Output: an equivalent XPath query Qt over the document
–  for any XML document T of D, Qt(T) = Qv(σ(T))

Dynamic programming:
ü for any subquery Qv’ of Qv, any node A in view-DTD graph Dv

rewrite Qv’ at A by incorporating xpath(A, _) ⇒ Qt’ (A)
ü efficient: O(|Qv| | σ |2) time
ü a practical class of XPath (with union, descendant, qualifiers) vs.
tree-pattern queries studied in previous security models

94

XML with Schema

*

treatment

tname
*

hospital

SSN

patient

name record
*

diagnosis date

*

treatment

tname
*

trial

trName

hospital

SSN

patient

name record
*

diagnosis date

regular

bill

[q1]

[q2]

Qv = // patient[name=“Joe”] // tname over the view

xpath(hospital, patient) [name = “Joe”] /
xpath(patient, record) /
xpath(record,treatment) /
xpath(treatment, tname)

Qt = /hospital/patient[name = “Joe”
 and //diagnosis = “DIS”]
 /record[diagnosis = “DIS”]
 /treatment // tname
 equivalent query over document

Example: an XML document of patients

95

XML with Schema
Problems when using “dummy” nodes

Replacing inaccessible nodes with anonymous nodes

competition

Engineering
School

University

candidate

Department

candidate
exams

exams

Original XML Document

competition

Dummy 1 Dummy 3

Dummy 2 Dummy 4

Dummy 5 exams

exams

User view

96

XML with Schema
Problems when using “dummy” nodes

User queries may contain “dummy” nodes

competition

Engineering
School

University

candidate

Department

candidate
exams

exams

Original XML Document

competition

Dummy 1 Dummy 3

Dummy 2 Dummy 4

Dummy 5 exams

exams

User view

//dummy2/exams //candidate/exams
pre-processing

97

XML with Schema
Problems when using “dummy” nodes

User queries may disclose some confidential information

competition

Engineering
School

University

candidate

Department

candidate
exams

exams

Original XML Document

competition

Dummy 1 Dummy 3

Dummy 2 Dummy 4

Dummy 5 exams

exams

User view

//*={university, department,...}
post-processing

{dummy3, dummy4,...}

98

XML with Schema
Problems when using “dummy” nodes

User queries do not contain “dummy” nodes …

… Difficult to express some queries (e.g. exams under Dummy 2)

competition

Engineering
School

University

candidate

Department

candidate
exams

exams

Original XML Document

competition

Dummy 1 Dummy 3

Dummy 2 Dummy 4

Dummy 5 exams

exams

User view

99

XML with Schema
Problem: the XPath fragment is not closed un rewriting

XPath fragment:
p ::= ε | A | * | // | p/p | p ∪ p | p[q]

q ::= p | p = “c” | q1 ∧ q2 | q1 ∨ q2 | ¬q

 Qv = //D over Dv
 xpath(Root,A) = A
 xpath(A,D) = D ∪ B/D ∪ C/D

 Qv is rewritten into
 Q = /Root/xpath(Root,A)/(D ∪ B/D)
 over D1

Root

DTD D1

A

C B

D

Root

View Dv

A

B

D

100

XML with Schema
Problem: the XPath fragment is not closed un rewriting

XPath fragment:
p ::= ε | A | * | // | p/p | p ∪ p | p[q]

q ::= p | p = “c” | q1 ∧ q2 | q1 ∨ q2 | ¬q

 Qv = //D over Dv
 xpath(Root,A) = A
 xpath(A,D) = D ∪ B/D ∪ C/D ∪ C/C/D
 … ∪ C/C/C/C/D …

 Qv cannot be rewritten as xpath(A,D)
 leads to infinitely many paths

Root

DTD D2

A

C B

D

Root

View Dv

A

B

D

101

XML with Schema
Problem: the XPath fragment is not closed un rewriting

XPath fragment:
p ::= ε | A | * | // | p/p | p ∪ p | p[q]

q ::= p | p = “c” | q1 ∧ q2 | q1 ∨ q2 | ¬q

 Qv = //D over Dv
 xpath(Root,A) = A
 xpath(A,D) = D ∪ B/D ∪ C/D ∪ C/C/D
 … ∪ C/C/C/C/D …

 Qv cannot be rewritten as xpath(A,D)
 leads to infinitely many paths

 XPath does not contain the Kleene Star

Root

DTD D2

A

C B

D

Root

View Dv

A

B

D

102

XML with Schema
Solution 1: Using Regular XPath for rewriting [Fan 2007]

Capture DTD recursion and XPath recursion in a uniform framework
ü  Regular XPath:

 Q ::= ε | A | Q/Q | Q ∪ Q | Q* | Q[q]

 q ::= Q | Q = ‘c’ | q ∧ q | q ∨ q | not q

ü  The child-axis, Kleene closure, union

ü  An XPath fragment: Q//Q instead of Q*

Example:
/Root/A /C//C/D is translated into
/Root/A/(C) */D

Root

DTD D2

A

C B

D

Root

View Dv

A

B

D

103

XML with Schema
Solution 1: Using Regular XPath for rewriting [Fan 2007]

Drawback of Regular XPath Query

–  the size of the rewritten query QT, if directly represented in Regular
XPath, may be exponential in the size of input query QV.

–  Regular XPath remains a theoretical achievement
(it is not yet accepted as a standard)

–  There are no translation and evaluation tools

104

XML with Schema
Solution 2: Extending the fragment for rewriting [Mah 2012]

Using two XPath fragments in a uniform framework
ü  XPath fragment F for expressing queries:

p ::= ε | A | * | // | p/p | p ∪ p | p[q]

q ::= p | p = “c” | q1 ∧ q2 | q1 ∨ q2 | ¬q

ü  Extended XPath fragment for rewriting queries:
 F + ../Q | ancestor ::Q | ancestor-or-self::Q | p[n]

–  ../: parent

–  ancestor, ancestor-or-self: ascendant axis

–  p[n]: Position function

105

XML with Schema
Solution 2: Extending the fragment for rewriting [Mah 2012]

Qv = //D over Dv such that xpath(Root,A) = A
xpath(A,D) = D ∪ B/D ∪ C/D ∪ C/C/D … ∪ C/C/C/C/D …

 = D ∪ B/D ∪ D[ancestor::C[1]]
 Qv is rewritten into //D[not ancestor::C[1]]

Root

DTD D2

A

C B

D

Root

View Dv

A

B

D

Outline

•  Overview on XML
•  Why XML Security?
•  Querying Views-based XML Data
•  Updating Views-based XML Data

106

107

XML Updates

Input: an XML tree T and XML update ΔT

 Output: updated XML tree T’ = T + ΔT

T T’

108

Atomic Updates
Basic changes that can be applied to tree

u ::= insertInto(n,t)  
 | insertAsFirstInto(n,t)  
 | insertAsLastInto(n,t)  
 | insertBefore(n,t)  
 | insertAfter(n,t)  
 | delete(n)  
 | replace(n,t)  
 | replaceValue(n,s)  
 | rename(n,a)!

109

Atomic Updates
Insertion

•  InsertInto (c,<x><y/></x>)!

a	

c	

b	

 b	

d	

 e	

a	

c	

b	

 b	

d	

 e	

x	

y	

Before After

110

Atomic Updates
Insertion

•  InsertAsFirstInto (c,<x><y/></x>)!

Before After

a	

c	

b	

 b	

d	

 e	

x	

y	

a	

c	

b	

 b	

d	

 e	

111

Atomic Updates
Insertion

•  InsertAsLastInto (c,<x><y/></x>)!

Before After

a	

c	

b	

 b	

d	

 e	

 x	

y	

a	

c	

b	

 b	

d	

 e	

112

Atomic Updates
Insertion

•  InsertBefore (c,<x><y/></x>)!

Before After

a	

c	

b	

 b	

d	

 e	

x	

y	

a	

c	

b	

 b	

d	

 e	

113

Atomic Updates
Insertion

•  InsertAfter (c,<x><y/></x>)!

Before After

a	

c	

b	

 b	

d	

 e	

a	

c	

b	

 b	

d	

 e	

x	

y	

114

Atomic Updates
Deletion

•  Delete (c)!

Before After

a	

c	

b	

 b	

d	

 e	

a	

b	

 b	

115

Atomic Updates
Replace Text Value

•  ReplaceValue (d, “toto”)!

Before After

a	

c	

b	

 b	

d	

 e	

a	

c	

b	

 b	

d	

 e	

toto

116

Atomic Updates
Replace Subtree

•  Replace (c, <x><y/><z/></x>)!

Before After

a	

c	

b	

 b	

d	

 e	

a	

x	

b	

 b	

y	

 z	

117

Atomic Updates
Rename

•  Rename (c, x)!

Before After

a	

c	

b	

 b	

d	

 e	

a	

x	

b	

 b	

d	

 e	

118

Access Control with Updates
Existing access control approaches

–  Most of XML access control approaches deal only with read access rights

–  Access control considering update rights has not received more attention

–  The XQuery Update Facility: a recommendation of W3C providing facility to
modify XML documents

Drawbacks

–  Existing update access control languages are unable to specify some update
policies in case of recursive DTDs

–  No practical tool exists for securely querying and updating XML data over
recursive DTDs

119

Access Control with Updates
Example of DTD: Biopolymer and Genealogical Data

120

Access Control with Updates
Example of DTD: Hospital Data

 (b) Corresponding DTD (a) Patient Treatment
 Life-cycle Management

121

Basic Notions
DTD (Document Type Definition)

n  Ele is a set of element types;

n  root is a distinguished element type, called the root type;

n  Rg is a function such that for any A in Ele, Rg(A) is a regular expression of the
form:

A DTD D is a triple (Ele, Rg, root) where:

n  A Rg(A) is the production of A;

n  B is a child type of A, and A is a parent type of B;

n  D is recursive if there is an element type A defined in terms of itself directly
or indirectly.

122

Basic Notions
Xquery Update Operations

n  Insert source into target: insert nodes in source as children of target's node.
n  Insert source as first/as last into target: insert nodes in source as first (resp. as
last) children of target's node.
n  Insert source before/after target: insert nodes in source as preceding (resp.
following) sibling nodes of target's node.
n  Replace target with source: replace target's node with the nodes in source.
n  Replace value of target with string-value: replace the text-content of target's
node with the new value string-value.
n  Delete target: delete nodes returned by target along with their descendant nodes.
n  Rename target with string-value: rename the label of target's node with the new
label string-value.

In the following, source is a set of XML nodes, and target is an XPath expression
which returns a single node in case of Insert and Replace operations.

123

Access Control Policy
Goals

Challenges

For each user group of an XML document T:

n  Specifying an update-access policy S

n  Enforcing S at update time: any update op must be performed only at nodes that
are updatable w.r.t. S.

n  How to specify update policies at various granularity levels?

n  How to specify update policies over arbitrary DTDs?

n  How to efficiently enforce those update policies ?

124

Access Control Policy
Example: Doctor Update Policy

Each doctor can update only
data of treatments that she/
he has done.

 Update Policy:

125

Access Control Policy
Example: Update rights of Dr Imine

Delete //treatment [type='surgery']/Tresult

ERROR: insufficient privilege

User update:

126

Existing Access Control Models
Model of Fundulaki et al. [Fun2007]

n  An XPath-based rules language (XACU)is proposed to specify update policies.

n  An XACU rule has the form: (object, action, effect).

n  An XACU rule can be positive/negative, local/recursive.

n  Grant/Deny overrides as conflict resolution policy.

Drawbacks

n  The XACU language can be used only for non-recursive DTDs.

127

Existing Access Control Models
Model of Fundulaki et al. [Fun2007]

Each doctor can update only
data of treatments that she/he
has done.

 Update Policy:

128

Existing Access Control Models
Model of Fundulaki et al. [Fun2007]

Each doctor can update only
data of treatments that she/he
has done.

 Update Policy:

n  (//intervention[doctor/dname='Imine']//treatment, delete, +)

n  (//intervention[doctor/dname≠'Imine']//treatment, delete, -)

Some XACU rules:

129

Existing Access Control Models
Model of Fundulaki et al. [Fun2007]

n  (//intervention[doctor/dname='Imine']//treatment, delete, +)

n  (//intervention[doctor/dname≠'Imine']//treatment, delete, -)

Some XACU rules:

Nodes treatment3 and treatment4 are
in the scopes of both the two XACU rules.

Grant overrides: node treatment3 becomes
 updatable for Imine.

Deny overrides: node treatment4 becomes
 not updatable for Imine.

Limitation:

130

Existing Access Control Models
Model of Damiani et al. [Dam2008]

n  Update policies are defined by annotating element types of the DTD by security
attributes.

n  E.g., attribute @insert=Y on element type treatment specifies that some nodes can
be inserted as children of treatment nodes.

n  Update policy is translated into security automaton.

n  Each update operation is rewritten into a safe one by parsing this automaton.

Drawbacks

n  Query rewriting over automaton is guaranteed only when DTDs are non-recursive

n  Update annotations are local which is insufficient to specify some update
constraints.

131

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Security Administrator:

 Specifies for each group of users an
update policy by annotating the DTD
with update constraints (i.e. XPath
qualifiers).

Updates Rewriter Module:

 Translates each update operation
into a safe one in order to be
performed only over nodes that can be
updated w.r.t. the update policy.

132

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

An update specification S=(D, Annot): Annot is a mapping from element types of D into: Y, N,
[Q].
For an element type A in D, and an update of type op, define Annot(A, op) as:

n  Y : operation of type op can be performed at nodes of type A.

n  N : operation of type op cannot be performed at nodes of type A.

n  [Q] : operation of type op can be performed at node of type A iff [Q] is valid.

Update Specification: Update policy = DTD + XPath Qualifiers

Update types:

We define restricted update operations that can be performed only for some specific element types.
E.g. insertInto[B], delete[B], replaceNode[Bi,Bj].

 Local and recursive rules:

Inheritance and overriding of update rights

133

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Example: Update Policy for Nurses

n  Annot(department, insertInto[patient]) = [name='Critical care']

n  Annot(sibling, insertInto[patient]) = N

Update specification:

134

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Example: Update Policy for Dr Imine

Each doctor can update only data of
treatments that she/he has done.

 Update Policy:

n  Annot(intervention, replaceValue[Tresult]) =
[dname='Imine']

n  Annot(intervention, insertAfter[type, Tresult]) =
[dname='Imine']

n  Annot(intervention, delete[Tresult]) =
[dname='Imine']

Update specification:

135

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Rewriting principle:

Given an update specification S=(D, Annot) and an update operation op over an
instance T of D. We rewrite op into a safe one opt such that executing opt over T
has to modify only nodes that are updatable w.r.t. S.

Rewriting Problem:

Consider the XPath fragment defined as follows:

For recursive DTDs, the fragment is not closed under update operations rewriting.

136

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Example: Update Policy for Dr Imine

n Annot(intervention, delete[Tresult]) =
[dname='Imine']

n  Delete //Tresult cannot be rewritten in

User update:

137

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Example: Update Policy for Dr Imine

n Annot(intervention, delete[Tresult]) =
[dname='Imine']

n  Delete //Tresult cannot be rewritten in

User update:

Delete //intervention[doctor/dname='Imine']/treatment/
 (implies/diagnosis/treatment)*/Tresult

n  A possible rewriting:

138

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Example: Update Policy for Dr Imine

n Annot(intervention, delete[Tresult]) =
[dname='Imine']

n  Delete //Tresult cannot be rewritten in

User update:

Delete //intervention[doctor/dname='Imine']/treatment/
 (implies/diagnosis/treatment)*/Tresult

LIMIT. The kleene star (*) cannot be expressed
in the standard XPath.

n  A possible rewriting:

139

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Solution:

We extend fragment as follows:

We extend into by adding upward axes (parent, ancestor, and

ancestor-or-self), and the position predicate (i.e., [n]).

For recursive DTDs, the fragment is closed under update operations rewriting.

140

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Update Rewriting Algorithm

A safe update opt defined in such that executing opt over any instance T of D
has to modify only nodes that are updatable w.r.t. S.

n  Input:
An update specification S=(D, Annot) and an update operation op defined in .

n  Output:

n  Efficiency:

For any update specification S=(D, Annot) and any update operation op, rewriting of op
can be done in O(|Annot|) time.

141

Existing Access Control Models
Model of Mahfoud et al. [Mah2012]

Example: Update Policy for Dr Imine

n Annot(intervention, delete[Tresult]) =
[dname='Imine']

n  Delete //Tresult can be rewritten in

User update:

Which has to delete nodes Tresult1, Tresult2 and Tresult3.

Delete //Tresult[ancestor::intervention[1] [doctor/dname='Imine']]

142

Some References
•  Irini Fundulaki, Maarten Marx. Specifying access control policies for XML documents with XPath.
In: SACMAT 2004.

•  Irini Fundulaki, Sebastian Maneth. Formalizing XML Access Control for Update Operations. In:
SACMAT 2007.

•  Wenfei Fan et al. Secure XML Querying with Security Views. In: SIGMOD 2004.

•  Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Rewriting Regular XPath
Queries on XML Views. In: ICDE 2007.

•  Ernesto Damiani, Majirus Fansi, Alban Gabillon, Stefania Marrara. A General Approach to
Securely Querying XML. In: Computer Standards and Interface 2008.

•  Mahfoud Houari, and Abdessamad Imine. Secure querying of recursive XML views: a standard
xpath-based technique (short paper).In: WWW 2012.

•  Mahfoud Houari, and Abdessamad Imine. A General Approach for Securely Updating XML Data.
In: WebDB 2012.

•  Some slides of this course are inspired from lectures taught by Pr Wenfei Fan.

