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Résumé

L’objectif général de cette thèse est d’étudier les notions d’aléatoire et d’information al-

gorithmiques – jusqu’ici restreints aux espaces symboliques – sur des espaces plus généraux,

précisément les espaces métriques calculables, et d’appliquer ces notions à la théorie des

systèmes dynamiques. Les principaux apports sont : (1) le développement d’un cadre ro-

buste pour l’étude d’objets mathématiques (mesures de probabilité, systèmes dynamiques

et leurs modèles symboliques) d’un point de vue algorithmique, notamment l’introduction

et l’étude détaillée des treillis d’énumération effective; (2) l’extension de l’aléatoire al-

gorithmique aux espaces métriques calculables, améliorant ainsi l’extension menée par

Gács qui imposait une condition supplémentaire à l’espace, et l’étude de quelques notions

des probabilités classiques du point de vue de l’aléatoire; (3) un apport à la théorie des

systèmes dynamiques, établissant des relations entre l’aléatoire algorithmique et l’aléatoire

dynamique. Nous étudions notamment deux notions de complexité algorithmique des or-

bites, l’une Kµ utilisant la mesure, l’autre K inspirée du point de vue topologique. Nous

montrons que la complexité Kµ des orbites partant des points aléatoires est l’entropie du

système au sens de la mesure, que la borne supérieure des complexités K des orbites est

l’entropie topologique, et que Kµ et K coı̈ncident pour les points aléatoires. Ce travail

enrichit les résultats de Brudno et White.

Sommario

L’obiettivo di fondo di questa tesi è lo studio delle nozioni di aleatorio e d’informazione

algoritmici – usualmente limitati alle sequenze simboliche – a spazi più generali, e di in-

teresse per la fisica-matematica, quali gli spazi metrici calcolabili. E questo, con lo scopo

di applicare tali nozioni alle teoria dei sistemi dinamici. I contributi principali della tesi

sono: (1) lo sviluppo di un quadro robusto per lo studio di strutture matematiche (misure

di probablilità, sistemi dinamici e loro modelli simbolici) dal punto di vista algoritmico,

in particolare l’introduzione e lo studio dettagliato di reticoli d’enumerazione effettivi; (2)

l’estensione dell’aleatorio algoritmico agli spazi metrici calcolabili, migliorando con cosi’

l’approccio di Gacs che imponeva una non ovvia condizione supplementare allo spazio,

nonché lo studio di alcune nozioni di probabilità classica dal punto di vista dell’aleatorio

algoritmico; (3) un contributo alla teoria dei sistemi dinamici, grazie ad alcune correlazioni
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fra aleatorio algoritmico e aleatorio dinamico. Sono state parimenti studiate due nozioni

di complessità algoritmica delle orbite, l’una (Kµ) basata sulla misura, l’altra (K) inspirata

da un punto di vista topologico. Si dimostra allora che la complessità Kµ delle orbite che

iniziano da punti aleatori coincide con l’entropia del sistema, nel senso della misura, che

il limite superiore della complessità K delle orbite è l’entropia topologica, e che Kµ e K
coincidono sui per i punti aleatori. Questi ultimi risultati arricchiscono quelli di Brudno e

White.

Summary

The general aim of this thesis is the study of the notions of algorithmic randomness

and information, which are defined on symbolic spaces, to more general spaces – namely

computable metric spaces – allowing their applications to dynamical systems theory. The

main results are: (1) the development of a robust framework to study classical mathemati-

cal objects (probability measures, dynamical systems and their symbolic models) from an

algorithmic point of view, in particular the introduction and detailed study of the struc-

ture of enumerative lattice; (2) the extension of algorithmic randomness to all computable

metric spaces, improving the previous extension by Gacs which required an additive as-

sumption on the space, and the study of some classical probability notions from the point

of view of randomness; (3) contributions to dynamical systems theory, establishing rela-

tions between algorithmic and dynamical randomness. In particular, we study two notions

of algorithmic orbit complexity, the one (Kµ) using an invariant probability measure, the

other (K) inspired from the topological approach. We prove that the complexity Kµ of

the orbits of random points equal the measure-theoretical entropy of the system, that the

supremum of the complexityK among all the orbits is the topological entropy, and thatKµ
and K coincide on random points. This work improves results established by Brudno and

White.
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Introduction

Modeling regularities

A good model grasps all regularities...

Suppose one tosses a coin a large number of times and observes that heads tend to ap-

pear more than tails: there are at least two possible interpretations: (1) it is a manifestation

of Luck, (2) it is a manifestation of the biased character of the coin. According to the first

one, the observed regularity (the number of heads dominates) is specific to the particular

sequence of tosses. According to the second one, the regularity is a generic property that is

shared by most sequences of tosses with this coin. This can be made precise by the use of a

probabilistic model which provides a mathematical definition of genericity for a property

(generic = of probability one).

We feel that the second model enables us to explain, or understand what happened.

More generally, one could say that understanding a natural phenomenon consists in pro-

viding a model – which will be mathematical here – which grasps all the regularities that

have as yet been observed. Believing in such a model offers an explanation a posteriori of

what has been observed in the past, and allows one to predict a priori the regularities that

will be observed in the future.

Once it has been assumed that a model is adequate with a phenomenon, what remains

is called “randomness”. The actual evolution of the system is expected to occupy all the

space that is left available inside the frame provided by the model, and to explore all the

degrees of freedom in a random way: all the regular part of the system has been injected

into the structure, and only the random part remains to the particular realizations. If one

expects other regularities, the model shall be refined so that they can be derived from it.

These considerations are “physical”: what is concerned there is the relation between

the model and reality. Let us discuss the mathematical counterpart.
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...but creates artificial ones.

In many mathematical spaces, one often distinguishes a class of elements which are

“easily describable”: the rational numbers in the real line, simple functions in functions

spaces, etc. They are used in order to carry out constructions, to approximate more com-

plex elements, to structure the space. If the space underlies a model of a natural process,

these elements may seem to be artificial as they have no physical meaning, but they are

often essential for the understanding of the system. A classical example is given by the

periodic solutions of a differential system: even if they are unstable, they are essential to

the mathematical study of the system, as Poincaré says:

D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles
sont, pour ainsi dire, la seule brèche par où nous puissions essayer de pénétrer
dans une place jusqu’ici réputée inabordable.1

Through these simple elements, some particular regularities might not be forbidden

by the model whereas they are not physically plausible. Probability theory, providing a

mathematical notion of “plausibility” (high or full probability) is a way of getting rid of

the artificial behaviors that are introduced by the model.

This can even be refined: computability theory provides a sound and general setting

to talk about description and regularities. Using this it is possible to give a precise mean-

ing to “easily describable” and “regularities”. This is the aim of algorithmic randomness,

which enables one to reject those elements which have more regularities than expected, la-

beling them as “non-random”. The elements that remain are called “random” and classical

theorems like:

property P holds for µ-almost every element

are to be converted into:

property P holds for every µ-random element.

(where µ is a probability measure).

The ideas underlying this notion go back to Laplace and several definitions have

been suggested along the twentieth century (Von Mises, Church, Kolmogorov), but the

first sound definition of algorithmically random binary sequences is due to Martin-Löf in

1Henri Poincaré, Les méthodes nouvelles de la mécanique céleste.
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[ML66]. Extensions to other spaces have been recently proposed (see [HW98], [HW03],

[Gác05]. A first aim of this thesis is to improve these extensions and establish a framework

which makes possible the investigation of classical probability theory – which takes place

in general spaces – from the algorithmic point of view.

Quantifying regularities

Let us come back for a while to physical considerations. Once a model has been de-

fined in such a way that it integrates all regularities which are expected to appear, what

remains is randomness, disorder, uncertainty. Boltzmann defined a notion of entropy to

quantify the degree of uncertainty left by the statistical model. Along the second half of

the twentieth century this idea has been a source of several notions of entropies in different

mathematical contexts. The expression information content is also used in place of entropy,

as uncertainty can be thought as lack of information. The theories which deal with these

quantities are consequently called information theories.

The static setting The space may be endowed with different structures, which lead to

different notions of entropy:

1. The topological point of view: a topological entropy measures the size of the space,

i.e. the number of distinguishable points. This is the idea underlying the ε-entropy,

defined by Kolmogorov and Tikhomirov in 1959 ([KT59]).

2. The probabilistic point of view: taking advantage of the non-uniformity of the space

modeled by probabilities, Shannon defined in 1948 his famous entropy. To each point

is actually attributed an individual information content, of which the entropy is the

mean. In the topological framework, which is blind to non-uniformity, all points had

the same information content.

3. The algorithmic point of view: in 1965, Kolmogorov ([Kol65]) comes back to the en-

tropy notions mentioned above and makes use of computability theory in order to

define an algorithmic notion. The idea is simple: in each context, topological or prob-

abilistic, one can interpret information content of a point as its minimal description

length, relative to some fixed description system; the entropy is then the mean de-

scription length of points. Computability theory provides a very general description
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system: universal Turing machines are able to simulate all effective decoding proce-

dures. The Kolmogorov complexity of a point is then its minimal description length by

a universal machine, and is also called algorithmic information content.

The dynamical setting The situation described above is “static”: what is observed is

only the state of a system, not its evolution. Time evolution of systems is mainly mod-

eled by dynamical systems. The fact that such systems are deterministic does not prevent

randomness from appearing: randomness is indeed thought as unpredictability (in classi-

cal mechanics). The ideas that underlie information theory, which attempt is to quantify

uncertainty, have been applied to dynamical systems to quantify their degree of unpre-

dictability. Each static entropy has a dynamical version, which is its growth rate along

the time-evolution of the system. The dynamical versions of the ε-entropy, the Shannon

entropy and the Kolmogorov complexity are respectively:

1. The topological entropy of a system (defined in 1965 by Adler, Konheim and McAn-

drew in [AKM65]),

2. The Kolmogorov-Sinaı̈ entropy (defined in 1958, 1959, [Kol58], [Sin59]),

3. The algorithmic complexity of the orbits of a system (defined in 1983 by Brudno,

[Bru83], improved later by Galatolo [Gal00]).

As in the static case, these different notions are strongly related. Let us remark that

the algorithmic approach gives an individual (attributed to each single orbit) and intrinsic

notion (independent of the measure for instance).

The theory of dynamical systems provides a setting in which classical randomness, un-

derstood as deterministic unpredictability, can be investigated. On the other hand, proba-

bility theory2 is the natural framework to talk about randomness (note that this theory is

not concerned with the way randomness is generated). A very natural idea is to mix these

two settings: this is the object of ergodic theory, which deals with dynamical systems from

a probabilistic point of view, studying them as particular stochastic processes.

Another aim of this thesis is to establish a robust framework in order to handle ergodic

theory from an algorithmic point of view. We then establish strong relations between ran-

domness, ergodic theorems, orbit complexities and entropies. Some of our results had

2whose axiomatization was achieved in 1933 by Kolmogorov
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already been stated on the Cantor space (especially [V’y98]); this extension to more “natu-

ral” setting for dynamics relates then to actual physical systems.

Articles
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Galatolo and Cristóbal Rojas. Only the application to absolutely normal numbers is

included in the thesis. An improved version of this article can be found in Cristóbal
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3.1.1 Martin-Löf randomness on the Cantor space . . . . . . . . . . . . . . 67
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Chapter 1

Computability

There are mainly two frameworks to carry out computability investigations over gen-

eral spaces. The one is domain theory, the other is representation theory. The first one (see

[Eda97] for instance) uses order theory and has nice categorical properties, but does not

handle mathematical objects from the classical point of view. The second one (see [Wei00])

applies to topological spaces but uses a rather heavy language, everything being expressed

in terms of Turing machines and symbols (representations are ways to encode objects into

symbolic sequences).

Our goal is to develop a language which is closer to the classical mathematical one, in

order to take advantage of the mathematical intuitions one has when starting to work in

computability theory. Of course, our framework is much inspired by the two frameworks

mentioned above which are rich in ideas and results. We are guided by the following

principle: a mathematical space shall be handled from the first or the second point of view,

depending on the natural structure which comes with it (an order or a topology).

We introduce the rather elementary structure of enumerative lattice from which all con-

structivity notions on general spaces can be derived. It enables one to express computabil-

ity proofs in a more algebraic fashion, freeing oneself from coding questions. The structure

of enumerative lattice enables one to carry out important constructions in a straightfor-

ward way:

1. construction of effective enumerations. Effective enumerations are recurrent in com-

puter science (the first one being the enumeration of Turing machines) and can be

reduced to a general abstract result,

1



Chapter 1: Computability 2

2. conversion of algorithms into extensional algorithms,

3. extension of partial functions to total functions,

4. constructivity relative to non-constructive objects can be easily expressed.

1.1 Background from recursion theory

We assume that the reader is familiar with recursion theory on the natural numbers.

We recall some basic concepts that will be intensively used along this thesis. For more

details, we refer the reader to a standard text [Rog87].

On the set of natural numbers, recursion theory provides a robust notion of recursive

function i.e. possibly partial functions which can be ”effectively computed”. There are

bijective functions 〈〉 : Nk → N which are effective in the sense that the projections πki :

N → N defined by πki (〈n1, . . . , nk〉) = ni are recursive. An essential property of recursive

functions is their effective enumerability: there is an enumeration {φe : e ∈ N} of this set

such that not only φe is recursive, but the function f : 〈e, n〉 7→ φe(n) is recursive. In other

words, there is a universal recursive function φu which simulates all recursive functions.

We will say that φe is recursive uniformly in e: there is a single recursive function which

computes φe when it is provided with e.

One of the most important notions of recursion theory is the notion of recursively enu-

merable (r.e.) subset of N. E ⊆ N is recursively enumerable if there is a recursive function

φ such that E = imφ = {φ(n) : n ∈ N}. The effective enumeration of all the recursive

functions induces an effective enumeration: Ee = imϕe. We recall some well-known facts

which prove to be very useful:

1. If E = imφ it is possible to construct, in a uniform way, a recursive function ψ such

that E = domψ. In other words, there is a total recursive function f such that imφe =

domφf(e). We say that φf(e) semi-decides E: it can be thought of as an algorithm which

tests if an element belongs to E and stops exactly when it is true.

2. The conversion is also possible in the other direction: there is a total recursive func-

tion g such that domφe = imφg(e).

3. There is a total recursive function h such that imφe = imφh(e) and φh(e) is total when

Ee is non-empty.



Chapter 1: Computability 3

The existence of a universal recursive function φu induces the existence of a r.e. set E

which is universal in the sense that Ee = {n : 〈n, e〉 ∈ E} for all e. Indeed, let E = imf

where f is the recursive function defined by f(〈e, n〉) = 〈n, ϕe(n)〉.

1.1.1 Numbered sets

Among the historical models of effective procedures, some work on the natural num-

bers (recursive functions), some work on finite symbolic sequences (Turing machines).

Modulo effective encoding, these two classes of mathematical objects are equivalent. Gödel

initiated this by encoding logical formulas into integers in order for encoding and decod-

ing to be effective (he modeled effectivity by primitive recursion). This is now a very com-

mon principle, intensively used by programmers: expressive programming languages in-

ternally represent discrete objects as graphs, trees, formulas by binary strings. Fortunately

the particular representation system is hidden to the reader: we will try to follow this

principle as soon as possible, namely from section 1.2.

Definition 1.1.1.1. A numbered set is a countable set S with a total surjective function

νS : N → S, called the numbering. If a generic element of S is denoted by s, sn will denote

νS(n).

Whenever it is possible, we will choose a bijective numbering, for which we define:

Definition 1.1.1.2. Suppose the numberings of S and S′ are bijective. A (possibly partial)

function f : S → S′ is computable if there is a recursive function ψ such that f(sn) = s′ψ(n)

for all n ∈ N. In other words, the following diagram commutes:

N ψ−→ N

νS ↓ ↓ νS′

S
f−→ S′

A set A ⊆ S is recursively enumerable (r.e.) if there is a r.e. subset E of N such that

A = {sn : n ∈ E}.

The computability of functions between two numbered sets S, S′ depends on what in-

formation can be effectively recovered about an object from its number. For most countable

sets encountered in mathematics, everybody agree on what is the relevant information. In

this thesis, a few numbered sets will be used. For each one, a particular numbering will be

fixed once for all.
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Examples. 1. Nk is a numbered set, with the inverse of 〈〉k as numbering,

2. N∗ is a numbered set, with the inverse of 〈〉 as numbering,

3. we fix some bijective numbering of the set F of finite subsets of N, which makes

the function from N∗ to F , mapping (n1, . . . , nk) to {n1, . . . , nk} computable, with a

computable right-inverse. Fi will denote the finite subset of N with number i.

4. we fix some effective bijective numbering of Z (for instance z2n = n and z2n+1 =

−n− 1),

5. we fix some bijective numbering of Q which makes the function Z×N → Q, (a, b) 7→
a/b computable, with a computable right-inverse. qn will denote the rational number

with number n.

6. we also fix some effective bijective numbering of the set Q>0 of positive rational

numbers, such that N × N → Q, (a, b) 7→ a/b is computable and has a computable

right-inverse. When it will be clear from the context that we use positive rational

numbers, we will also write qn for the positive rational number with number n.

In a natural way, any finite product of numbered sets is also a numbered set, its

numbering being induced by that of Nk. The set of finite subsets of a numbered set is a

numbered set: its numbering is now induced by the numbering of F . The disjoint union

S′′ = S ] S′ of two numbered sets has a canonical natural numbering: s′′2n = sn and

s′′2n+1 = s′n.

1.2 Enumerative Lattices

Enumerative lattices are a generalization of the set of subsets of N with the inclusion as

order. Their name comes from the fact that they inherit an intersecting property: all the r.e.

subsets of N can be enumerated in a uniform way. They are effective versions of complete

lattices (see appendix B.2 for preliminaries on complete lattices).

Definition 1.2.0.3 (Enumerative lattice). An enumerative lattice (L,≤,P) is a complete

lattice (L,≤) with a numbered set P ⊆ L such that every element of L is the supremum of

a subset of P .
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P is called the set of ideal elements. The numberings of F (the set of finite subsets

of N) and P induce a numbering of the directed set D of suprema of finite subsets of P :

d〈i1,...,in〉 = sup{pi1 , . . . , pin}. The numbered setD will be intensively used in the following.

Examples. 1. The Sierpiński space S = {⊥,>} with ⊥ < > and P = {>} is an enumer-

ative lattice (take for instance νP(n) = > for all n ∈ N). The two elements ⊥ and>
shall be interpreted as false/true, reject/accept, diverge/stop. In particular, we will

use the following notation: if φ is a logical proposition, intended to be right or wrong,

“φ” will be > if φ is right, ⊥ if φ is wrong (it will be clear on examples),

2. The set (P (N),⊆, singletons) is an enumerative lattice, and more generally,

3. If S is a numbered set, then (2S ,⊆, singletons) is an enumerative lattice,

4. Let R = R ∪ {−∞,+∞}: (R,≤,Q) is an enumerative lattice. Similarly, ([0, 1],≤
,Q ∩ [0, 1]) and (R+

,≤,Q>0) are enumerative lattices, where R+ = [0,+∞) ∪ {+∞},

5. If (L,≤,P) and (L′,v,P ′) are enumerative lattices, their product (L×L′,≤×,P×P ′)
is an enumerative lattice, with (x, x′) ≤× (y, y′) if x ≤ y and x′ v y′,

6. Let (Li,≤i,Pi)i∈N be a family of enumerative lattices. Their product (ΠiLi,≤,P) with

(li)i ≤ (l′i)i ⇐⇒ li ≤ l′i∀i and (li)i ∈ P ⇐⇒ there is some i such that li ∈ Pi and

lj = ⊥j for j 6= i.

Scott-topology vs sequential topology

We recall that in every topological space, the sequential topology is finer than the

topology (see appendix A.1.1). As the following proposition shows, enumerative lattices

with the Scott-topology are sequential spaces: the sequential topology coincides with the

Scott-topology.

Proposition 1.2.0.1 (Scott-topology). For a subset U ⊆ L the following are equivalent:

1. U is Scott-open,

2. for all A ⊆ P , [supA ∈ U ⇐⇒ there exists a finite set A0 ⊆ A such that supA0 ∈ U ],

3. for every sequence xn satisfying xn ≤ xn+1,

sup
n
xn ∈ U ⇐⇒ ∃n, xn ∈ U
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4. U is sequentially open.

In conditions 2 and 3 the equivalence can be replaced by an implication ⇒, assuming

that U is an upper set (x ∈ U and x ≤ y =⇒ y ∈ U ). Actually, in conditions 2 and 3, the

implication ⇐ is equivalent to the fact that U is an upper set (take x ∈ U, x ≤ y, A = {x, y}
in condition 2, x0 = x and xn = y for n ≥ 1 in condition 3).

The implication 1 ⇒ 4 is true in any topological space.

Proof of 2 ⇒ 1. We use the characterization of the Scott topology for a complete lattice

(proposition B.2.0.4). Let U ⊆ X satisfying 2. First, U is an upper set: if x ∈ U and x ≤ y,

then y = sup{x, y} ∈ U . Let A ⊆ X such that supA ∈ U . For each a ∈ A, there is some

set Pa ⊆ P such that a = supPa. Define PA :=
⋃
a∈A Pa: supPA = supA ∈ U so there is a

finite subset {pi1 , . . . , pin} of PA whose supremum is in U . For each k ≤ n, there is ak ∈ A
such that pik ∈ Pak

: define A0 = {a1, . . . , an} ⊆ A. As supA0 ≥ sup{pi1 , . . . , pin} ∈ U

which is an upper set, it follows that supA0 ∈ U . U is then Scott-open.

Proof of 3 ⇒ 2. Suppose U satisfies condition 3. Let A ⊆ P such that supA ∈ U . A is

countable: A = {pi1 , pi2 , . . .}. Let dk = sup{pi1 , . . . , pik}. As dk ≤ dk+1 and sup dk =

supA ∈ U , there is k such that dn ∈ U for all n ≥ k: dk = supA0 for some finite subset A0

of A.

Proof of 4 ⇒ 3. First, if U is sequentially open, then it is an upper set: indeed, let x ≤ y with

x ∈ U . The sequence defined by x2n = x, x2n+1 = y converges to its lim inf which is x ∈ U
(see proposition B.2.0.7), so there is k such that xn ∈ U for all n ≥ k. Hence, y ∈ U . This

induces the implication ∃n, xn ∈ U =⇒ supn xn ∈ U .

Now, any sequence satisfying xn ≤ xn+1 converges to its supremum (see proposition

B.2.0.7), so if U is sequentially open, then supn xn ∈ U =⇒ ∃n, xn ∈ U .

Scott-continuity vs sequential continuity

The preceding proposition directly induces characterizations of Scott-continuous func-

tions between enumerative lattices:

Proposition 1.2.0.2 (Scott-continuity). For a function f : L→ L′ the following are equivalent:

1. f is Scott-continuous,
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2. for all A ⊆ P , f(supA) = sup{f(supA0) : A0 finite subset of A},

3. for every sequence xn satisfying xn ≤ xn+1, f(supn xn) = supn f(xn),

4. f is sequentially continuous.

1.2.1 Constructivity

The distinguished ideal elements are chosen to be constructive, and generate a wider

class of constructive elements.

Definition 1.2.1.1 (Constructive element). An element x ∈ L is constructive if there is

some r.e. set E ⊆ N such that x = sup{pi : i ∈ E}.

Naturally, we say that elements xn are uniformly constructive if there are uniformly

r.e. sets En ⊆ N such that xn = sup{pi : i ∈ En}. In other words, there is a r.e. set E ⊆ N2

such that xn = sup{pi : (n, i) ∈ E}.

Examples. 1. If S is a numbered set with a bijective numbering, then the constructive

elements of (2S ,⊆, singletons) are the r.e. subsets of S,

2. The constructive elements of (R,≤,Q) are called the lower semi-computable real

numbers,

3. The constructive elements of the infinite product (LN,≤,P) are the sequences of uni-

formly constructive elements of L.

Here is the interesting property of enumerative lattices which justifies their name:

Proposition 1.2.1.1 (Effective enumeration). Let (L,≤,P) be an enumerative lattice. There is

an effective enumeration of the constructive elements of L, that is a sequence (xe)e∈N of uniformly

constructive elements exhausting the set of constructive elements of L.

Proof. The effective enumeration (Ee)e∈N of the r.e. subsets of N induces an effective enu-

meration of the constructive elements of L: xe = sup{pi : i ∈ Ee}.

The set [L→ L′] of Scott-continuous functions endowed with the point-wise ordering

is a complete lattice, but not an enumerative lattice in general. It is nevertheless possible

to define a natural notion of constructive Scott-continuous function.
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Definition 1.2.1.2 (Constructive function L→ L′). A function f : L→ L′ is constructive if

it is Scott-continuous and f(dk) is constructive uniformly in k.

If f : L → L′ and g : L′ → L′′ are constructive functions, their composition g ◦ f is

easily constructive.

The topology τL is a complete lattice which is isomorphic to the set [L → S] of Scott-

continuous functions from L to S: an open set U ⊆ L can be identified with its (continuous)

characteristic function 1U : L→ S defined by 1U (x) = “x ∈ U” (i.e. 1U (x) = > if x ∈ U , ⊥
otherwise). It enables to define:

Definition 1.2.1.3 (Constructive open set). Let (L,≤,P) be an enumerative lattice. A Scott-

open set U ∈ τL is constructively open or is a constructive open set if 1U : L → S is a

constructive function.

The open sets ∅, L are obviously constructive. In (R,≤,Q), the constructive open sets

are (x,+∞) where x is upper semi-computable. In (2N,⊆, {singletons}), the basic open

sets ↑↑Fi = {E ⊆ N : Fi ⊆ E} (where Fi is finite) are constructive and the constructive open

sets are the r.e. unions of such basic open sets.

Characterizations using P (N)

As mentioned above, (P (N),⊆, singletons) is an enumerative lattice. The set C(P (N), P (N))

of continuous functions from P (N) to P (N) is a complete lattice with the point-wise order-

ing. For each finite set F ⊆ N and j ∈ N, let us define the step function StjF : P (N) → P (N)

by:

StjF (E) =

 {j} if F ⊆ E

∅ otherwise

which is Scott-continuous. The numberings of F and N induce a canonical numbering of

the step functions.

Proposition 1.2.1.2 (Constructive element vs constructive function). C(P (N), P (N)) is an

enumerative lattice with the point-wise ordering and the step functions as ideal elements. The

constructive elements of C(P (N), P (N)) are exactly the constructive functions from P (N) to P (N).

Proof. If Φ : P (N) → P (N) is Scott-continuous, then one easily has Φ = sup{StjF : F ∈
F , j ∈ Φ(F )}. If Φ is moreover a constructive function, then the set A = {(i, j) : j ∈ Φ(Fi)}
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is r.e., as Φ(Fi) is r.e. uniformly in i. So Φ = sup{StjFi
: (i, j) ∈ A} is a constructive element

of C(P (N), P (N)).

Conversely, if Φ is a constructive element of C(P (N), P (N)), i.e. if Φ = sup(i,j)∈A StjFi

for some r.e. setA ⊆ N2, then Φ(Fk) = {j : ∃i, (i, j) ∈ A,Fi ⊆ Fk} is r.e. uniformly in k.

Let (L,≤,P) be an enumerative lattice. Let us define the function supP : P (N) → L.

By hypothesis on L, it is surjective: every element of L is the image of a subset of N by

supP . Moreover, for every function f : L → L′, there is Φ : P (N) → P (N) such that the

following diagram commutes:

P (N) Φ //

supP

��

P (N)

supP′

��
L

f // L′

i.e. f ◦ supP = supP ′ ◦Φ. Indeed, by surjectivity of supP ′ , for each E ⊆ N there is E′ such

that f ◦ supP(E) = supP ′(E′): put Φ(E) = E′. Let us call such a Φ a realization of f .

Proposition 1.2.1.3 (Realizability). Let (L,≤,P) be (L′,≤,P ′) be enumerative lattices and f :

L→ L′ a function.

1. f is Scott-continuous if and only if it has a Scott-continuous realization Φ : P (N) → P (N).

2. f is constructive if and only if it has a constructive realization Φ : P (N) → P (N).

Proof. If f has a Scott-continuous realization Φ, from Φ(E) = supF⊆E Φ(F ) one easily

derivesf(A) = supA0⊆A f(A0) (where F,A0 are finite), so f is Scott-continuous. If Φ is

moreover constructive, then f(dk) = f◦supP(Fk) = supP ′ ◦Φ(Fk) is constructive uniformly

in k, as Φ(Fk) is r.e. uniformly in k.

Conversely, suppose f is Scott-continuous. As supP ′ is surjective, for each finite set

Fi ⊆ N there is a set Ei ⊆ N such that f ◦ supP(Fi) = supP ′(Ei). As f is Scott-continuous,

the element Φ of C(P (N), P (N)) defined by Φ = sup{StjFi
: i ∈ N, j ∈ Ei} is a realization of

f . If f is moreover constructive, Ei can be chosen to be r.e. uniformly in i, which implies

that Φ is a constructive element of C(P (N), P (N)).

Morphism of enumerative lattices

Definition 1.2.1.4. Let (L,≤,P) and (L′,v,P ′) be two enumerative lattices. A morphism

from L to L′ is a constructive function f : L → L′ which commutes with all suprema: for
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all A ⊆ L, f(supA) = sup f(A).

An isomorphism is a bijective morphism f : L → L′ (f−1 : L′ → L is then automati-

cally a morphism). The fact that L and L′ are isomorphic is denoted L ≡ L′.

Here are some easy but useful observations:

Proposition 1.2.1.4 (Basic facts about morphisms).

1. A morphism f : L → L′ of complete lattices is a morphism of enumerative lattices if and

only if f(pi) is constructive uniformly in i.

2. Every bijective constructive function f : L→ L′ is an isomorphism.

3. If f : L→ L′ is an isomorphism, x ∈ L is constructive if and only if f(x) ∈ L′ is construc-

tive.

4. If f : L→ L′ and f ′ : L′ → L′′ are morphisms, f ′ ◦ f : L→ L′′ is a morphism. If f and f ′

are isomorphisms, so is f ′ ◦ f .

Product of enumerative lattices

If (L,≤,P) and (L′,v,P ′) are enumerative lattices, then their product L × L′ is an

enumerative lattice with the product order ≤ × v and with ideal elements (P × {⊥′}) ∪
({⊥} × P ′) (this numbered set can be thought as the disjoint union P ] P ′).

The projections πL : L × L′ → L and πL′ : L × L′ → L′ defined by πL(x, x′) = x

and πL′(x, x′) = x′ are morphisms, and for every constructive elements x, x′, their right-

inverses λx′ : L → L × L′ and λx : L′ → L × L′ defined by λx′(x) = (x, x′) and λx(x′) =

(x, x′) are morphisms.

It follows that if f : L×L′ → L′′ is constructive (where (L′′,⊆,P ′′) is another enumer-

ative lattice) and x ∈ L is constructive, then fx : L′ → L′′ defined by fx(x′) = f(x, x′) =

f ◦ λx(x′) is constructive.

The function sup : L × L → L defined by sup(x, x′) = sup{x, x′} is a morphism.

However, the function inf : L× L→ L which maps (x, y) to inf{x, y} is never a morphism

of complete lattices, unless L = {⊥}: indeed, inf{sup{P × {⊥} ∪ {⊥} × P}} = > and

sup{inf{x, x′} : (x, x′) ∈ P × {⊥} ∪ {⊥} × P} = ⊥.
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In all the enumerative lattices we will encounter in this thesis, the function inf : L ×
L → L is Scott-continuous and even constructive. Its Scott-continuity lies in its distribu-

tivity on sup. Its constructivity happens for different reasons.

Note that inf need not be distributive on sup to be constructive: consider the “dia-

mond” enumerative lattice, where p1 ∧ (p2 ∨ p3) = p1 and (p1 ∧ p2) ∨ (p1 ∧ p3) = ⊥ (as the

lattice is finite, every directed set contains its supremum, so every monotonic function is

Scott-continuous and even constructive):

>

}}
}}

}}
}}

AA
AA

AA
AA

p1

AA
AA

AA
AA

p2 p3

}}
}}

}}
}}

⊥

Replacing P (N) by P (N)× P (N)

The fact that N and N ]N are effectively bijective implies that the enumerative lattices

P (N) and P (N)×P (N) are isomorphic. The set P of ideal elements of P (N)×P (N), which

consists of the elements ({n}, ∅) and (∅, {n}) for n ∈ N, can be identified with N ] N. The

function supP : P (N) → P (N)× P (N), defined by supP(E) = ({n : 2n ∈ E}, {n : 2n+ 1 ∈
E}) is an isomorphism.

From this, it follows that in proposition 1.2.1.3, realizations can be defined on P (N) ×
P (N) or take values in P (N)×P (N). If one wants to prove that a function f : L×L′ → L′′ is

constructive, it may be more natural to exhibit a constructive realization Φ : P (N)×P (N) →
P (N).

1.3 Effective Topological Spaces

Most of the definitions of this section are now classical and can be found in [Wei00]

using representation theory.

We know that if (X, τ) is a topological space, its topology has a natural complete lattice

structure (τ,⊆). If X has a countable basis B with a fixed numbering, then (τ,⊆,B) is

an enumerative lattice. As ∩ distributes on unions, ∩ : τ × τ → τ is Scott-continuous

(see B.2.0.6). Usually, an effective topological space is defined as a T0 second-countable



Chapter 1: Computability 12

topological space (X, τ) with a countable sub-basis σ. Taking the finite intersections of

elements of σ provides a countable basis B with the canonical numbering: B〈i1,...,in〉 =

σi1 ∩ . . .∩σin . As B is closed under finite intersections, and because of the effectivity of the

numbering, it automatically makes ∩ constructive.

However, we will mainly work in topological spaces where a countable basis that is

not closed under finite intersections comes naturally. We then adapt the definition, requir-

ing explicitly the constructivity of ∩.

Definition 1.3.0.5. An effective topological space is a triple X = (X, τ,B) where:

1. (X, τ) is a T0 second-countable topological space,

2. B is a countable basis with a numbering,

3. ∩ : τ × τ → τ is constructive.

The numbered set Bwill be called the set of ideal open sets. The functions∪ : τ×τ → τ

and
⋃

: τN → τ are constructive, as ∪ is the supremum for the inclusion order.

Examples. 1. N with the discrete topology and the singletons as basis is an effective

topological space. Its topology is actually P (N), and the induced enumerative lattice

structure (P (N),⊆, {singletons}) is the one that we already met,

2. If Σ is a finite alphabet, the product topology on ΣN is effective: to each finite string

u on Σ we associate the cylinder [u] := {ω : u prefix of ω}. The cylinders form a

countable basis.

Definition 1.3.0.6 (Constructive open sets). An open subset U of X is constructively open

or is a constructive open set if it is a constructive element of the enumerative lattice (τ,⊆
,B), i.e. if there is a r.e. set E ⊆ N such that U =

⋃
i∈E Bi.

Let (Ue)e∈N be the canonical enumeration of all the constructive open subsets of X ,

given by the general construction on enumerative lattices. For x ∈ X , we define the Scott-

continuous function δx : τ → S by δx(U) = “x ∈ U”.

Definition 1.3.0.7 (Constructive points). Let (X, τ,B) be an effective topological space. A

point x ∈ X is said to be constructive if the function δx : τ → S is constructive (it is then a

morphism of enumerative lattices).
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In other words, x is constructive if the set {i : x ∈ Bi} is r.e.

We recall that τ , being an enumerative lattice, has a canonical topology, namely the

Scott-topology. But this topology has no countable basis in general, so τ is not an effective

topological space. Let us give an example of Scott-open subset of τ : when K is a compact

subset of X , the set UK = {U ∈ τ : K ⊆ U} is a Scott-open. If x is a constructive point, the

subset Ux = {U ∈ τ : x ∈ U} of τ is a constructive open subset of τ (see definition 1.2.1.3):

indeed, its indicator function 1Ux : τ → S is exactly δx.

As a continuous function fromX toX ′ can be characterized by its inverse f−1 : τ ′ → τ ,

the notion of constructive function between enumerative lattices directly gives a notion of

constructively continuous function between effective topological spaces:

Definition 1.3.0.8 (Constructively continuous functions). Let (X, τ,B) and (X ′, τ ′,B′) be

two effective topological spaces. A function f : X → Y is constructively continuous if it is

continuous and f−1 : τ ′ → τ is constructive.

We will use two useful characterizations: as f−1 is a morphism of complete lattices,

it is a morphism of enumerative lattice when it is constructive, and f is constructively

continuous if and only if all f−1(Bi) are uniformly constructive open sets.

As constructivity of functions between enumerative lattices is stable by composition,

so is constructive continuity of functions between effective topological spaces. As a closed

subset A of X can be characterized by the Scott-continuous function ιA : τ → S defined by

ιA(U) = “A ∩ U 6= ∅”, it gives a notion of constructive closed set.

Definition 1.3.0.9. A closed subset A of X is a constructive closed set if the function

ιA : τ → S defined by ιA(U) = “A ∩ U 6= ∅” is constructive (it is then a morphism of

enumerative lattices).

Remark that X , as a closed subset of X , has no reason to be constructive in general:

the non-emptiness of the basic open sets need not be semi-decidable.

Morphisms of effective topological spaces

Definition 1.3.0.10. Let (X, τ,B) and (X ′, τ ′,B′) be two effective topological spaces. A

morphism from X to X ′ is a constructively continuous function f : X → X ′.

An isomorphism is a bijective morphism f : X → X ′ such that f−1 : X ′ → X is a

morphism. That X and X ′ are isomorphic is denoted X ≡ X ′.
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Here are some easy but useful observations:

Proposition 1.3.0.5 (Basic facts about morphisms).

1. The image of a constructive point by a morphism is a constructive point.

2. If f : X → X ′ is an isomorphism x ∈ X is constructive if and only if f(x) ∈ X ′ is

constructive.

3. If f : X → X ′ and f ′ : X ′ → X ′′ are morphisms, f ′ ◦ f : X → X ′′ is a morphism. If f and

f ′ are isomorphism, so is f ′ ◦ f .

Proof. Everything follows from the same proposition for enumerative lattices (proposition

1.2.1.4). If δx : τ → S and f−1 : τ ′ → τ are constructive, so is δf(x) = δx ◦ f−1. If f−1 and

f ′−1 are constructive, so is (f ′ ◦ f)−1 = f−1 ◦ f ′−1.

Product of effective topological spaces

If (X, τ,B) and (X ′, τ ′,B′) are effective topological space, then their product (X ×
X ′, τ × τ ′,B × B′) is an effective topological space with the product topology.

As for enumerative lattices, the projections πX : X ×X ′ → X and πX′ : X ×X ′ → X ′

are morphisms, and for every constructive points x, x′, their right-inverses λx′ : X →
X ×X ′ and λx : X ′ → X ×X ′ are morphisms.

It follows that if f : X ×X ′ → Y is a morphism (where (Y, τY ,BY ) is another effective

topological space) and x ∈ X is constructive, then fx : X ′ → Y defined by fx(x′) =

f(x, x′) = f ◦ λx(x′) is a morphism.

The function X → X ×X mapping x to (x, x) is a morphism: the preimage of Bi ×Bj
is Bi ∩Bj .

1.3.1 Functions which are continuous on a subset

Let (X, τ,B) be an effective topological space and D be any subset of X . D is an

effective topological space, with the induced topology τD = τX ∩D = {U ∩D : U ∈ τX}
and the induced basis BD = B ∩ D = {Bi ∩ D}. Remark that D may be any subset:

in particular, there may be no way to distinguish non-empty basic open sets of BD from

empty ones, in a constructive way.
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The topology on D then receives its canonical enumerative lattice structure. The con-

structive open subsets ofD are exactly the constructive open subsets ofX , intersected with

D.

Proposition 1.3.1.1. Let D ⊆ X .

1. The projection πD : τX → τD defined by πD(U) = U ∩ D is a morphism of enumerative

lattices,

2. x ∈ D is a constructive point of (D, τD,BD) if and only if x is a constructive point of

(X, τ,B),

As id : D → X satisfies id−1 = πD, the first point can be rephrased: id : D → X is a

morphism of effective topological spaces.

Proof. 1. πD is realized by id : P (N) → P (N): πD ◦ supB = supBD
◦id,

2. so the realizations of δDx : τD → S are exactly the realizations of δXx = δDx ◦ πD, and

hence they are constructive at the same time.

It follows that any constructive function F : τY → τX induces a constructive function

πD ◦ F : τY → τD, but not every constructive function from τY to τD may be obtained this

way.

Definition 1.3.1.1. A function f : X → Y is constructively continuous on D if f |D : D → Y

is constructively continuous.

A set A ⊆ X is constructively open on D if A ∩ D is a constructive open subset of

(D, τD,BD).

In other words,A is constructively open onD if and only if there is a constructive open

subset U of X such that A ∩D = U ∩D. f is constructively continuous on D if and only

if f−1(Bi) are uniformly constructive open sets on D, i.e. there are uniformly constructive

open subsets Vi of X such that f−1(Bi) ∩D = Vi ∩D.

Definition 1.3.1.2 (Relative constructivity). Let X,Y be effective topological spaces. A

point y ∈ Y is x-constructive if the function f : {x} → Y defined by f(x) = y is construc-

tively continuous on {x}.
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1.3.2 The enumerative lattice C(X, L)

Let (X, τ,B) be an effective topological space and (L,≤,P) an enumerative lattice. The

set [X → L] of continuous functions from X to L with the point-wise order is a complete

lattice, but does not have a canonical enumerative lattice structure in general. We then

consider a subclass of [X → L], generated by the family of step functions (the author has

been informed that this idea was also used in [Eda07b]).

For any open set U ⊆ X and element l ∈ L, we define the step function StlU : X → L

by:

StlU (x) =

 l if x ∈ U
⊥ otherwise

Step functions are continuous. Ideal step functions are step functions Stpj

Bi
where Bi is

an ideal open set and pj an ideal element. The set Step of ideal step functions is a numbered

set (in bijection with B × L). We will sometimes denote Stpj

Bi
by St〈i,j〉. We define C(X,L)

as the set of point-wise suprema of step functions: it is an enumerative lattice.

Suprema and infima The order on C(X,L) is the point-wise order, and the supremum of

a subset G of C(X,L) for this order coincides with the point-wise supremum of functions

in G:

(supG)(x) = sup{g(x) : g ∈ G}

The same thing holds for finite infima: inf{f, g}(x) = inf{f(x), g(x)}. However, the

infimum of a set G ⊆ C(X,L) is not in general the point-wise infimum of functions in G,

which is not in general continuous. One only has:

(inf G)(x) ≤ inf{g(x) : g ∈ G}

as inf G ≤ inf g for all g ∈ G. A simple example is C(X, S), which can be identified with τX

(they are isomorphic complete lattices). The infimum of a family {Ui}i∈I of open subsets

ofX is not their intersection (which is not in general an open set), but instead the interior of

their intersection: the characteristic function of their intersection is the point-wise infimum

of the characteristic functions of the Ui.

The functions of C(X,L) share a common property, which is not true in general for all

continuous functions from X to L (see section 1.4.3 for a counter-example).
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Proposition 1.3.2.1. Let f ∈ C(X,L). For every x ∈ X and every sequence xn converging to x,

f(x) ≤ lim inf f(xn)

Proof. It is true of any step function Stpj

Bi
: if x ∈ Bi, xn eventually falls inBi, so lim inf f(xn) =

f(x). If x /∈ Bi, f(x) = ⊥.

If the condition is satisfied by a sequence of functions (fi), then it is also satisfied by

f = supi fi: f(x) = supi fi(x) ≤ supi lim inf fi(xn) = supi supk infn≥k fi(xn) = supk supi infn≥k fi(xn).

For all n ≥ k, supi infn≥k fi(xn) ≤ supi fi(xn), so supi infn≥k fi(xn) ≤ infn≥k supi fi(xn).

Hence f(x) ≤ lim inf f(xn).

Back to C(P (N), P (N)) We know that (P (N),⊆, {singletons}) is an enumerative lattice,

on which the Scott-topology is naturally defined. Actually it makes P (N) an effective

topological space: to each finite set F ⊆ N we associate the Scott-open set ↑↑F defined as

{E ∈ P (N) : F ⊆ E}. The family {↑↑F : F finite subset of N} is a basis of the Scott-topology

on P (N).

Taking X = P (N) as an effective topological space and L = P (N) as an enumerative

lattice, the step functions defined here coincide with the step functions defined in section

1.2.1, but the notation is a bit different: ideal open sets are ↑↑F := {E ∈ P (N) : F ⊆ E}
where F ⊆ N is finite, and St{j}↑↑F was written StjF .

Constructivity on C(X,L)

We now define and study the constructive functions from X to L.

Definition 1.3.2.1. Let (X, τ,B) be an effective topological space and (L,≤,P) an enumer-

ative lattice. A function f : X → L is constructive if it is a constructive element of C(X,L).

Proposition 1.3.2.2 (Some constructive functions).

1. The function 1 : τ → C(X, S) defined by 1(U) = 1U is an isomorphism of enumerative

lattice,

2. The function St : τ × L→ C(X,L) defined by St(U, l) = StlU is constructive,

3. If x ∈ X is constructive then the function Evalx : C(X,L) → L defined by Evalx(f) = f(x)

is a morphism. The image of x by a constructive function is then constructive.
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Proof. 1. 1 commutes with suprema. As it is bijective, 1−1 also commutes with suprema.

1 is a constructive bijection between the ideal sets: 1(Bi) = St>Bi
.

2. St(
⋃
i∈E Bi, supj∈E′ pj) = supi∈E,j∈E′ Stpj

Bi
, so St is realized by the constructive func-

tion defined by Φ(E,E′) = {〈i, j〉 : i ∈ E, j ∈ E′}.

3. Evalx commutes with suprema, and Evalx(Stpj

Bi
) is constructive uniformly in 〈i, j〉.

Indeed, it is pj if x ∈ Bi, ⊥ otherwise.

N with the discrete topology can be seen as an effective topological space, the basis

being of course the set of singletons. Its topology is the enumerative lattice 2N. LN and

C(N, L) are isomorphic, so a sequence (ln) of uniformly constructive elements, or construc-

tive sequence, can be seen as a constructive element of C(N, L).

Proposition 1.3.2.3 (Composition). LetX,Y be effective topological spaces, L,L′ be enumerative

lattices, and f : X → Y and h : L→ L′ be continuous functions.

1. For every g ∈ C(Y, L), g ◦ f ∈ C(X,L) and h ◦ g ∈ C(Y, L′).

X
f //

g◦f   @
@@

@@
@@

@ Y

g

��

h◦g

  @
@@

@@
@@

L
h // L′

2. Moreover, the following functions are Scott-continuous:

Compf : C(Y, L) → C(X,L)

g 7→ g ◦ f
Comph : C(Y, L) → C(Y, L′)

g 7→ h ◦ g

3. If f is constructively continuous and h is constructive, then Compf and Comph are con-

structive.

Proof. Let Stpj

Bi
∈ C(Y, L): Compf (Stpj

Bi
) = Stpj

f−1(Bi)
belongs to C(X,L). If f is construc-

tively continuous, it is even constructive, uniformly in 〈i, j〉. As C(X,L) is closed under

suprema and Compf commutes with suprema, the three results follow.

Let Fk be a finite subset of N:

Comph
(
sup

{
Stpj

Bi
: 〈i, j〉 ∈ Fk

})
= sup

St

 ⋂
〈i,j〉∈I

Bi, h

(
sup
〈i,j〉∈I

pj

) : I ⊆ Fk
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belongs to C(Y, L′) and is constructive uniformly in k if h is constructive. As C(Y, L′) is

closed under suprema, and Comph is Scott-continuous, the three results follow.

Note that Compf is also a morphism of complete lattices, and a morphism of enumer-

ative lattices when f is constructively continuous. If h is a morphism, then Comph is also

a morphism. If f and h are isomorphisms, so are Compf and Comph.

Proposition 1.3.2.4 (Some isomorphisms). Let X,Y be effective topological spaces and L,L′ be

enumerative lattices. The following holds:

C(X × Y, L) ≡ C(X, C(Y, L)) (curryfication)

C(X,L× L′) ≡ C(X,L)× C(X,L′) (vector functions)

X ≡ Y implies C(X,L) ≡ C(Y, L) (left composition)

L ≡ L′ implies C(Y, L) ≡ C(Y, L′) (right composition)

The first isomorphism is called Curry : C(X × Y, L) → C(X,C(Y, L)), its inverse is

called Uncurry : C(X,C(Y, L)) → C(X × Y, L).

Proof. Curry commutes with suprema. We recall that BX×Y = {Bi × Bj : Bi ∈ BX , Bj ∈
BY }. The ideal step functions St(Bi × Bj , pk) ∈ C(X × Y, L) and St(Bi,St(Bj , pk)) ∈
C(X, C(Y, L)) are both constructive uniformly in i, j, k: Curry and Uncurry simply ex-

change them.

St(pj ,⊥′)
Bi

∈ C(X,L× L′) and (Stpj

Bi
,⊥′) ∈ C(X,L)× C(X,L′) are constructive uniformly

in i, j, and in correspondence via the isomorphism. Similarly for St
(⊥,p′j)
Bi

and (⊥,St
p′j
Bi

).

The last two assertions are corollaries of proposition 1.3.2.3.

Two simple but useful observations can be made, taking L = S.

1. Every constructively continuous function from X to Y induces a morphism f−1 :

τY → τX , which is “conjugated” to Compf : C(Y,S) → C(X, S) in the following way:

1f−1U = 1U ◦ f , i.e. the following diagram commutes:

C(Y,S)
◦f // C(X, S)

τY
f−1

//

1

OO

τX

1

OO
(◦f denotes Compf )
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2. If x ∈ X andU ∈ τX×Y are constructive then the projectionUx = {y ∈ Y : (x, y) ∈ X}
is a constructive open set. Moreover, the function:

τX×Y → C(X, τY )

U 7→ (x 7→ Ux)

is an isomorphism, which is “conjugated” to Curry in the following way: 1Ux =

Curry(1U )(x), i.e. the following diagram commutes:

C(X × Y,S)
Curry// C(X, C(Y,S))

τX×Y //

1

OO

C(X, τY )

Comph

OO

with h = 1 : τY → C(Y,S) (as h is an isomorphism, so is Comph).

Corollary 1.3.2.1. If inf : L× L → L is constructive, then inf : C(X,L)× C(X,L) → C(X,L)

is constructive.

Proof. If inf : L×L→ L is constructive, then Compinf : C(X,L×L) → C(X,L) is construc-

tive. Using the isomorphism C(X,L)× C(X,L) ≡ C(X,L× L) gives the result.

Restriction of functions

If D is a subset of X , a function f : D → L is constructive if it is a constructive element

of C(D,L) where D has the induced effective topology. Actually, as id : D → X is a

morphism, the canonical surjection Compid : C(X,L) → C(D,L) which maps f to f |D is

a morphism of enumerative lattices, so the constructive functions from D to L are exactly

the constructive functions from X to L, restricted to D.

Relative constructivity

Definition 1.3.2.2 (Relative constructivity). Let X be an effective topological space, L an

enumerative lattice and x ∈ X . An element y ∈ L is x-constructive if the function f :

{x} → Y defined by f(x) = y is constructive, which is equivalent to the existence of a

constructive function f ∈ C(X,L) such that f(x) = y.

Via isomorphisms, the enumerative lattice C({x}, L) can be interpreted in several equiv-

alent ways, allowing to express nicely x-constructivity.



Chapter 1: Computability 21

Consider the enumerative lattice C({x}, L). As a complete lattice, it is isomorphic to L:

to f ∈ C({x}, L) is associated f(x) ∈ L, and to y ∈ L is associated the function x 7→ y. But

as enumerative lattices, they are not isomorphic in general, unless x is constructive. There

is a way of defining an alternative enumerative lattice structure on L to make it isomorphic

to C({x}, L): consider (L,≤,Px) where Px = {Stpj

Bi
(x) : i, j ∈ N} inherits the numbering of

step functions. We denote this enumerative lattice by Lx. The enumerative lattices Lx and

C({x}, L) are now isomorphic, and the constructive elements of Lx are the x-constructive

elements of L.

When L = S, one shall interpret Sx as the space of semi-decidability relative to x. Let

us illustrate this: if X,Y are effective topological spaces, x ∈ X and y ∈ Y , we defined

y is constructive ⇐⇒ the function δy : τ → S is constructive.

We can state:

y is x-constructive ⇐⇒ the function δy : τ → Sx is constructive.

which can be expressed as the semi-decidability relative to x of the the relation “y ∈ U”.

Indeed, let f : {x} → Y be the function defined by f(x) = y: by definition y is x-

constructive if and only if f is constructively continuous. As τ{x} ≡ C({x},S) ≡ Sx, δy

is “conjugated” to f−1 : τY → τ{x} in the following way:

τY

f−1

��

= τY

δy
��

τ{x} ≡ Sx

so f is constructively continuous if and only if δy : τY → Sx is constructive.

The isomorphic enumerative lattices C(Y, L)x ≡ C({x}, C(Y, L)) ≡ C(Y, C({x}, L)) ≡
C(Y, Lx) induces three equivalent notions:

1. constructive elements of C(Y, L)x,

2. x-constructive elements of C(Y, L),

3. constructive elements of C(Y, Lx),

which we call x-constructive functions from Y to L.
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1.4 More on enumerative lattices

1.4.1 Computable enumerative lattice

Generally, the Scott-topology on an enumerative lattice is not second-countable (it is

always T0), so it cannot be made an effective topological space.

For x ∈ L, define ↑x = {y ∈ L : x ≤ y}. These sets have no reason to be Scott-open sets

(in R for instance, ↑x = [x,+∞] is not Scott-open). A candidate for a countable basis of the

topology is the family {Int(↑d) : d ∈ D}, where Int(A) is the interior of A, i.e. the union of

all open sets contained in A and D is the set of finite supremum of simple elements of P
(see what follows definition 1.2.0.3). Let us try to understand these sets.

If y ∈ Int( ↑x), then for every directed set A with y ≤ supA, supA ∈ Int( ↑x) so there

is a ∈ A ∩ Int( ↑x), so x ≤ a. It follows that x � y, where � is the way-below relation,

defined as:

Definition 1.4.1.1 (Way-below). x � y if for any directed set A, [y ≤ supA =⇒ ∃a ∈
A, x ≤ a].

This relation is a classical concept in domain theory, see [AJ94].

The characterization of the Scott-topology on an enumerative lattice (see proposition

1.2.0.1) gives a characterization of the way-below relation: x � y if and only if for all

A ⊆ P ,

y ≤ supA =⇒ there is a finite set A0 ⊆ A such that x ≤ supA0.

Define ↑↑x := {y ∈ L : x � y} and ↓↓x := {d ∈ D : d � x}. The way-below relation

satisfies the following properties:

1. x� y =⇒ x ≤ y,

2. x′ ≤ x� y ≤ y′ =⇒ x′ � y′,

3. x, x′ � y ⇐⇒ sup{x, x′} � y.

Point 1 implies that sup ↓↓x ≤ x. Point 3 implies that ↑↑ sup{x, x′} = ↑↑x ∩ ↑↑x′.

Examples. 1. On (S,≤, {>}), � is <,

2. On (R,≤,Q): � is <,

3. On (P (N),⊆, {singletons}), � is ⊆,
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4. The Euclidean topological space (R, τR,B) is effective, with the rational open inter-

vals as ideal open sets. On the enumerative lattice (τR,⊆,B), U � V ⇐⇒ U ⊆ V

and U is compact.

We now define the notion of computable enumerative lattice, which is like an effective

given continuous domain (see [ES99]) in the case when the poset is a complete lattice.

Let us recall that the set D of finite suprema of simple elements has a natural numbering

{di : i ∈ N}.

Definition 1.4.1.2. A computable enumerative lattice is an enumerative lattice (L,≤,P)

satisfying:

1. x = sup ↓↓x for all x ∈ L,

2. the set {(i, j) : pi � dj} is r.e.

To prove the first point, one just has to show that x ≤ sup ↓↓x. On a computable enu-

merative lattice, the set {(i, j) : di � dj} is also r.e: sup{pi1 , . . . , pik} � dj ⇐⇒ pi1 �
dj , . . . , pik � dj .

The first three examples given above are computable enumerative lattices. If (X, τ,B)

is any effective topological space, its topology is not in general a computable enumerative

lattice.

On a computable enumerative lattice, one has the interpolation property, which is a

classical result on continuous domains (see [AJ94]) (wee write the proof for completeness):

Lemma 1.4.1.1 (Interpolation). If d� y there exists d′ ∈ D with d� d′ � y.

Proof. As ↓↓d is directed for all d, so is D =
⋃
d�y ↓↓d. Hence, if d � supD there is d′ ∈ D

such that d ≤ d′, so d ∈ D. Now, supD = sup{sup ↓↓d : d � y} = sup{d : d � y} =

sup ↓↓y = y. It follows that ↓↓y ⊆ D, which gives the result.

Proposition 1.4.1.1 (Effective topology). Let (L,≤,P) be a computable enumerative lattice. The

family B = {↑↑d = Int( ↑d) : d ∈ D} is a basis of the Scott-topology, the family {↑↑p = Int( ↑p) :

p ∈ P} being a sub-basis: ↑↑ sup{pi1 , . . . , pin} = ↑↑pi1 ∩ . . . ∩ ↑↑pin . It makes (L, τScott,B) an

effective topological space.

Proof. First, ↑↑d is Scott-open: if A is directed and supA ∈ ↑↑d, by the interpolation lemma

there is d′ ∈ D, d � d′ � supA, so there is some a ∈ A with d′ ≤ a, which implies a ∈ ↑↑d.

We already know that Int(↑d) ⊆ ↑↑d: as ↑↑d ⊆↑d is Scott-open, they actually coincide.
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Now, the family B = {↑↑d : d ∈ D} is a basis: for every Scott-open set U , U =
⋃
d∈U ↑↑d.

Indeed, if x ∈ U , as x = sup ↓↓x and ↓↓x is directed, there is d ∈ ↓↓x ∩ U : then x ∈ ↑↑d. As

this basis is closed under finite intersections in a constructive way, (L, τ,B) is an effective

topological space.

Remark that x ∈ L is a constructive point of the effective topological space (L, τ,B) if

and only if {i : pi � x} is r.e. Indeed, dk � x ⇐⇒ ∀i ∈ Fk, pi � x, so if the latter is true,

then {k : x ∈ ↑↑dk} is r.e.

On a computable enumerative lattice, convergence of sequences has a nice characteri-

zation:

Proposition 1.4.1.2 (Limits of a sequence). In a computable enumerative lattice, xn converges

to x if and only if x ≤ lim inf xn.

Proof. We already know that in a complete lattice, if x ≤ lim inf xn then xn converges to x

(see proposition B.2.0.7).

If xn converges to x, then for each d ∈ ↓↓x, lim inf xn ≥ d. Indeed, x belongs to the Scott-

open set ↑↑d so there is k such that xn ∈ ↑↑d for all n ≥ k. It follows that inf{xn : n ≥ k} ≥ d,

so lim inf xn ≥ d. Hence, lim inf xn ≥ sup ↓↓x = x.

Constructivity in (L,≤,P) vs constructivity in (L, τ,B)

We now compare the different notions of constructivity provided by the enumerative

and the effective topological structures. We will use the following lemma (in the title of

the lemma, Lcomp means that the enumerative lattice L is computable):

Lemma 1.4.1.2 (Constructivities of id : Lcomp → Lcomp). Let L be a computable enumerative

lattice (and then also an effective topological space). The identity function id : L→ L is:

1. a constructive element of C(L,L),

2. a morphism of enumerative lattices,

3. a morphism of effective topological spaces.

Proof. 1. id = sup{Stdi
↑↑di

: di ∈ D} = sup{Stpi

↑↑pi
: pi ∈ P}. 2. 3. are obvious (they are already

true when L is a plain enumerative lattice or an effective topological space).
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Proposition 1.4.1.3 (Constructive element of Lcomp). Let (L,≤,P) be a computable enumera-

tive lattice. x ∈ L is a constructive element of the enumerative lattice (L,≤,P) if and only if it is

a constructive point of the effective topological space (L, τ,B).

Proof. If x is a constructive point, i.e. {i : x ∈ ↑↑di} is r.e., then x = sup ↓↓x = sup{pj : pj �
x} is a constructive element.

If x is a constructive element, there is a r.e. set E ⊆ N such that x = sup{pj : j ∈ E}.

Then, di � x if and only if E has a finite subset Fk such that di � dk = supj∈Fk
pj , which

is semi-decidable (i.e. {i : di � x} is r.e.).

Proposition 1.4.1.4 (Functions from Lcomp to L′). Let L,L′ be enumerative lattices, where L is

computable. For a function f : L→ L′, the following are equivalent:

1. f is Scott-continuous,

2. f(x) = sup f(↓↓x) for all x,

3. f ∈ C(L,L′).

The following are equivalent:

i) f is a constructive function between enumerative lattices,

ii) f is a constructive element of C(L,L′).

Proof. [1 ⇒ 2]: as ↓↓x is a directed set, the Scott-continuity of f directly implies f(x) =

f(sup ↓↓x) = sup f(↓↓x). [2 ⇒ 3]: f = sup{St(↑↑di, f(di)) : i ∈ N}. Indeed, f(x) =

sup f(↓↓x) = sup{f(di) : x ∈ ↑↑di}. [3 ⇒ 1]: we already know that elements of C(X,L′)
are continuous functions, for any topological space X .

Remark that [1 ⇒ 3] is a direct consequence of proposition 1.3.2.3, applied to h = f :

L → L′ and g = id ∈ C(L,L): h ◦ g = f ∈ C(L,L′), using that f is continuous. When f is

constructive, the same proposition gives [(i) ⇒ (ii)].

[(ii) ⇒ (i)]: if f is a constructive element of C(L,L′), then f = sup{Stpj

↑↑di
: (i, j) ∈ E}

for some r.e. set E. So f(dk) = sup{pj : (i, j) ∈ E, di � dk} is constructive, uniformly in

k.

Proposition 1.4.1.5 (Functions from X to Lcomp). Let X be an effective topological space and L

a computable enumerative lattice. For a function f : X → L, the following are equivalent:
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1. f is continuous,

2. f(x) ≤ lim inf f(xn) for every sequence xn converging to x,

3. f ∈ C(X,L).

The following are equivalent:

i) f is constructively continuous,

ii) f is a constructive element of C(X,L).

Proof. [1 ⇒ 3] and its constructive version [(i) ⇒ (ii)] follow again from proposition 1.3.2.3,

applied to f : X → L and g = id ∈ C(L,L): g ◦ f = f ∈ C(X,L).

[3 ⇒ 1]: we already know that every function in C(X,L) is continuous.

[1 ⇔ 2]: as L with the Scott-topology is a sequential space (proposition 1.2.0.1), f is

continuous if and only if it is sequentially continuous. By proposition 1.4.1.2, point 2 can

be read ”f is sequentially continuous”.

[(ii) ⇒ (i)]: if f is a constructive element of C(X,L), then f = sup{Stpj

Bi
: 〈i, j〉 ∈ E} for

some r.e. setE. f−1(↑↑dk) =
⋃
{Bi1 ∩ . . .∩Bin : dk � sup{pj1 , . . . , pjn}, 〈i1, j1〉, . . . , 〈in, jn〉 ∈

E} is a constructive open set, uniformly in k.

It follows from this proposition that whenL is a computable enumerative lattice, every

continuous function f : D → L can be extended to a continuous function on the whole

spaceX . Indeed, if f : D → L is continuous then f ∈ C(D,L) by the preceding proposition,

so it can be extended to a continuous function from X to L.

On a computable enumerative lattice, one has the following property, which is already

established for bounded complete continuous domains (see [AJ94]). We write the proof for

self-containedness.

Proposition 1.4.1.6 (Constructivity of inf). If (L,≤,P) is a computable enumerative lattice,

then inf : L× L→ L is constructive.

Proof. The product L × L is a computable enumerative lattice, and (x, y) � (x′, y′) ⇐⇒
x � x′, y � y′. To avoid confusions, let us denote the function inf by f : L × L → L. We

use the characterization given by proposition 1.4.1.4 and show that f(x, y) = sup{f(d, d′) :

(d, d′) � (x, x′)}.
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First, f(x, y) = sup(↓↓x ∩ ↓↓y): indeed, f(x, y) = sup ↓↓(f(x, y)) ≤ sup(↓↓x ∩ ↓↓y) as d �
inf{x, y} =⇒ d� x, y, and sup(↓↓x∩↓↓y) ≤ x, y. Then, ↓↓x∩↓↓y = (

⋃
d�x ↓↓d)∩(

⋃
d′�x ↓↓d′) =⋃

(d,d′)�(x,x′)(↓↓d ∩ ↓↓d′). So,

f(x, y) = sup(↓↓x ∩ ↓↓y)

= sup{sup(↓↓d ∩ ↓↓d′) : (d, d′) � (x, x′)}

= sup{f(d, d′) : (d, d′) � (x, x′)}

As ↓↓di ∩ ↓↓d′j is r.e. uniformly in in 〈i, j〉, f(di, dj) is constructive uniformly in i.

Note that inf is never a morphism of complete lattices, unless L = {⊥}: inf{sup(P ×
{⊥} ∪ {⊥} × P)} = (>,>) and sup{inf{x, x′} : (x, x′) ∈ P × {⊥} ∪ {⊥} × P} = (⊥,⊥).

Note also that inf need not be distributive on sup: consider the following computable

enumerative lattice (� is exactly≤), where p1∧ (p2∨p3) = p1 and (p1∧p2)∨ (p1∧p3) = ⊥:

>

}}
}}

}}
}}

AA
AA

AA
AA

p1

AA
AA

AA
AA

p2 p3

}}
}}

}}
}}

⊥

As a computable enumerative lattice is also an effective topological space, definition

1.3.0.9 gives a notion of constructive closed subset: a closed set A ⊆ L is constructive if

the function ιA : τL → S defined by ιA(U) = “A ∩ U 6= ∅” is constructive. For instance,

A =↓ x = {y ≤ x} is a constructive closed set when x is constructive. Indeed, A ∩ ↑↑d 6=
∅ ⇐⇒ d� x ⇐⇒ x ∈ ↑↑d by the interpolation lemma, and more generallyA∩U 6= ∅ ⇐⇒
x ∈ U , so ιA = δx. As x is a constructive element of a computable enumerative lattice, it is

a constructive point of the corresponding effective topological space (proposition 1.4.1.3)

i.e. δx is constructive.

Proposition 1.4.1.7 (Effective enumeration in constructive closed sets). Let (L,≤,P) be a

computable enumerative lattice and A a constructive closed subset of L. There is a effective enu-

meration of all the constructive elements of A.

Proof. Let (Ee)e∈N be the enumeration of the r.e. subsets of N. There is a total recursive

function ϕ such that Ee =
⋃
n Fϕ(e,n) with Fϕ(e,n) ⊆ Fϕ(e,n+1).
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Define xe = sup{dϕ(e,n) : A ∩ ↑↑dϕ(e,n) 6= ∅}. As dϕ(e,n) ≤ dϕ(e,n+1) and all dϕ(e,n) belong

to A, there supremum belongs to A.

Now, if x is a constructive point of A, then E = {i : pi ∈ ↓↓x} is r.e, so there is e such

that E = Ee. We claim that x = xe. Indeed, for every n, dϕ(e,n) � x so x ∈ A∩ ↑↑dϕ(e,n) 6= ∅,

so xe = supn dϕ(e,n) = x.

This proposition can be used to derive a well-known result in randomness and com-

plexity theory: the effective enumerability of semi-measures on N, i.e. sequences of uni-

formly lower semi-computable real numbers whose sum is ≤ 1:

Proposition 1.4.1.8. The enumerative lattice C(N, [0, 1]) of sequences of real numbers is com-

putable. The subset of sequences (xn)n satisfying
∑

n xn ≤ 1 is a constructive closed set.

Proof. For x, y ∈ C(N, [0, 1]), x � y ⇐⇒ xn = 0 or xn < yn for all n, which is semi-

decidable when x is a simple element (null at each n but one).

Let x be a finite supremum of simple elements: xn = 0 for all n /∈ I where I is a finite

subset of N. ↑↑x ∩ A 6= ∅ ⇐⇒ ∃y ∈ A with xn < yn for n ∈ I , which is equivalent to∑
n xn < 1, which can be semi-decided.

Another application will be the effective enumerability of randomness tests on the

Cantor space (see section 3.1.1).

1.4.2 Pseudo-computable enumerative lattice

The computability of an enumerative lattice is a strong condition, which is not satisfied

in general by topologies. For instance, we saw that the Euclidean topology on R is a com-

putable enumerative lattice. The induced topology on Q is an effective topological space,

so the induced topology is an enumerative lattice, which is no more computable. However,

the underlying topology on R makes this enumerative lattice “pseudo-computable”.

We will see that for a large class of effective topological spaces, namely computable

metric spaces, the topology as an enumerative lattice is pseudo-computable.

Definition 1.4.2.1. An enumerative lattice (L,≤,P) is pseudo-computable if there is a bi-

nary relation / on N satisfying:

1. i / j =⇒ pi ≤ pj ,
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2. for all i, j, inf{pi, pj} = supP(⇓i∩ ⇓j), where ⇓i = {k ∈ N : k / i},

3. {(i, j) : i / j} is r.e.

We will sometimes write pi /pj for i / j, which makes sense when the indexes of pi and

pj are written. If (L,≤,P) and (L′,v,Q) are pseudo-computable enumerative lattices, in

the expressions pi / pj and qi / qj , two different relations on N are actually involved (one

for each enumerative lattice).

Every computable enumerative lattice is pseudo-computable: take i / j if and only if

pi � pj .

Let x ∈ L: x = supi∈E pi for some set E ⊆ N. Defining ⇓E =
⋃
i∈E ⇓i, one has

x = supP(⇓E). Indeed, supP(⇓E) = supi∈E supP(⇓i) = supi∈E pi = x.

Proposition 1.4.2.1 (Constructivity of inf). Let (L,≤,P) be a pseudo-computable enumerative

lattice. If inf distributes over sup then inf : L× L→ L is constructive.

Proof. inf{x, y} = inf{supi∈E pi, supi∈E′ pi} = sup{inf{pi, pj} : i ∈ E, j ∈ E′} = sup{supP(

⇓i∩ ⇓j) : i ∈ E, j ∈ E′} = supP(
⋃
i,j ⇓i∩ ⇓j) = supP(⇓E∩ ⇓E′).

By the third condition, the function ⇓ : P (N) → P (N) is constructive. As ∩ : P (N) ×
P (N) → P (N) is constructive, inf is realized by the constructive function ∩ ◦ ( ⇓, ⇓) :

P (N)× P (N) → P (N).

Proposition 1.4.2.2. Let (X, τ,B) be an effective topological space and (L,≤,P) be an enumera-

tive lattice. If τX and L are pseudo-computable enumerative lattices, then so is C(X,L).

Proof. Define Stpj

Bi
/ St

pj′
Bi′

⇐⇒ Bi / Bi′ and pj / pj′ . This relation is obviously r.e. As

St : τX × L → C(X,L) is monotonic, the first condition on / come directly from the same

condition for τX and L. For the second condition,

inf{Stpj

Bi
,St

pj′
Bi′
} = St

inf{pj ,pj′}
Bi∩Bi′

= St(supB(⇓i∩ ⇓i′), supP(⇓j∩ ⇓j′))

= sup{Stpl
Bk

: k ∈⇓i∩ ⇓i′, l ∈⇓j∩ ⇓j′}

= sup{Stpl
Bk

: 〈k, l〉 ∈⇓〈i, j〉∩ ⇓〈i′, j′〉}

Definition 1.4.2.2 (Constructive closed set). In a pseudo-computable enumerative lattice

(L,≤,P), a closed subset A is constructive if the set {i : A∩ ⇑Fi 6= ∅} is r.e.
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We extend the relation / to P (N)× P (N): E / E′ if for every i ∈ E there is j ∈ E with

i / j. For a finite set F , F / E if and only if there is F ′ ⊆ E of same cardinality such that

F / F ′. We define ⇑F = {sup{pi : i ∈ F ′} : F / F ′}.

Theorem 1.4.2.1 (Uniform numeration in constructive closed sets). LetL be a pseudo-computable

enumerative lattice and A a constructive closed subset of L. There is a constructive enumeration of

all the constructive elements of A.

Proof. Let pi ∈ A. For each F / {i}, pi ∈ A∩ ⇑F 6= ∅. So pj = sup{dF : F / {i}, A∩ ⇑F 6= ∅}.

If x ∈ A is constructive, x = supi∈E pi for some r.e. set E. So x = sup{dF : F / E,A∩ ⇑F 6=
∅}.

Let (Ee)e∈N be the enumeration of the r.e. subsets of N. There is a total recursive

function ϕ such that Ee =
⋃
n Fϕ(e,n) with Fϕ(e,n) ⊆ Fϕ(e,n+1).

Define xe = sup{dϕ(e,n) : A∩ ⇑Fϕ(e, n) 6= ∅}. As dϕ(e,n) ≤ dϕ(e,n+1) and all dϕ(e,n)

belong to F , their supremum belongs to F . If x ∈ A is constructive, x = supi∈E pi for some

r.e. set E. Let E′ =
⋃
i∈E ⇓i. E′ is r.e, so E′ = Ee for some e. We claim that x = xe.

Indeed, for each F ⊆ E′, there is F ′ ⊆ E with F / F ′. As d′F ≤ x, d′F ∈ A∩ ⇑F 6= ∅. So

xe = sup{dϕ(e,n) : n ∈ N} = x.

1.4.3 An enumerative lattice which is not computable

We give an example of enumerative lattice which is not computable and is a source

of counter-examples. This example already appeared in [AJ94]. Consider the following

enumerative lattice L = N ∪ {α,∞} with P = N ∪ {α} for instance.

∞

��
��

��
��

��
��

�

α

00
00

00
00

00
00

00
0 2

1

0

The way-below relation is 0 � x for all x, n � x for all x ∈ [n,+∞]. But α is not
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way-below ∞ (and then, not way-below itself): α ≤ ∞ = sup N but α � n for all n ∈ N. It

implies that sup ↓↓α = 0 < α, so L is not a computable enumerative lattice.

The Scott-open sets are [n,∞] for n ∈ N, n > 0 and {α} ∪ [n,∞] for n ∈ N. The Scott-

open sets ↑↑x are not a basis of the topology, as they do not generate the sets {α} ∪ [n,∞]

for n > 0.

Nevertheless, L is an effective topological space, with all the open sets as a countable

basis.

Convergence Define the sequence x2n = n and x2n+1 = α: xi converges to α, as every

open set containing α is one of the sets {α} ∪ [n,+∞] which contains xi for all i ≥ 2n. But

α � lim inf xi = 0.

Continuity id : L → L is of course continuous, but is not in C(L,L). Indeed, the preced-

ing sequence xn converges to α, but id(α) � lim inf id(xn).

We also exhibit an example of a continuous function from [0, 1] to L which is not in

C(X,L). Let us define g : [0, 1] → L in the following way: g(0) = α, g = n on [2−(n+1), 2−n)

for n ∈ N and g(1) = 0. g is continuous, but once again g /∈ C([0, 1], L): defining y2n =

2−(n+1) and y2n+1 = 0, one has yn → 0 and g(yn) = xn.

The function inf : L × L → L is not continuous: N is directed, but inf{α, sup N} = α

and sup{inf{α, n} : n ∈ N} = 0.

Constructivity id : L → L is obviously a morphism of enumerative lattices and a mor-

phism of effective topological spaces. As id /∈ C(L,L), id is a fortiori not a constructive

element of C(L,L).

1.5 Computability on R

In this section, we present the different well-known notions of computability on the

set of real numbers, expressed with the computability structures developed so far.

Computability

The Euclidean topology on R is effective: the rational open intervals form a countable

basis. A real number or a function from some set to R is computable if it is constructive, R
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being endowed with the effective Euclidean topology.

The Euclidean topology τR on R is a computable enumerative lattice, the way-below

relation being U � V ⇐⇒ U compact and U ⊆ V .

Lower semi-computability

R can also be endowed with the right-topology, or topology of lower semi-continuity,

given by the open sets (x,+∞). R is also an effective topological space for this topology,

but this can be expressed in the following way.

We add the infinites to R: R = R ∪ {−∞,+∞} and endow it with the natural order

≤. It is a computable enumerative lattice, with Q as set of ideal elements, the way-below

relation being the strict order <.

To express that a real number is constructive as an element of this enumerative lattice,

we will say that it is a lower semi-computable real number. In a similar way, we will say

that a function from some set to R is lower semi-computable if it is a constructive function

when R is endowed with this enumerative lattice structure.

We will sometimes restrict ourselves to R+ = [0,+∞) ∪ {+∞} or to [0, 1], which are

also computable enumerative lattices.

Upper semi-computability

Reversing the order gives another computable enumerative lattice, whose constructive

elements are the upper semi-computable real numbers.

Relations

The topology of lower semi-continuity τ≤ on (R,≤,Q), is a computable enumerative

lattice which is isomorphic to (R,≥,Q). In particular, the constructive open subsets of

(R,≤,Q) are the sets (x,+∞] where x is upper semi-computable.

Conversely, the topology of upper semi-continuity τ≥ on (R,≤,Q), is isomorphic to

(R,≤,Q): the constructive open sets are the sets [−∞, x) where x is lower semi-computable.

The function id : R → R is both lower and upper semi-computable: it means that id is

a constructive or recursively continuous function from the effective topological space R to

the computable enumerative lattice (R,≤,Q) (resp. (R,≥,Q)).
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On a totally ordered set X , the order topology can be defined (not to be confused with

the Scott-topology !): it is the topology generated by the sub-base of “open rays” {x : a <

x}, {x : x < b} for all a, b ∈ X . The open rays together with the intervals {x : a < x < b}
form a basis of the order topology.

This can be applied to R with the natural order: the order topology is then the eu-

clidean topology. This can also be applied to R or R+ , still with the natural order: the

order topology is the euclidean topology together with the sets [−∞, x), (x,+∞]. It is also

the refinement of τ≤ and τ≥. It makes R and R+ compact effective topological spaces: their

bases are the unions of the bases of τR, τ≤ and τ≥. A function from an effective topolog-

ical space X to R or R+ is constructively continuous if and only if it is lower and upper

semi-computable.

Actually, the spaces R, R+ and [0, 1] with the order topology are isomorphic effective

topological spaces, the functions ex : R → R+ and − ln(1−x) : [0, 1] → R+ being examples

of isomorphisms. Remark that they are also isomorphisms of computable enumerative

lattices.

1.6 Computable Metric Spaces

1.6.1 Basics

Computable metric spaces were studied in [Wei93], [BP03] using representation the-

ory, in [Hem02] using oracle machines, in [EH98] using domain theory.

A metric on a set X is a way to transfer automatically the Euclidean topology on R to

X . Generally, the advantages drawn from defining a metric exceed the fact that a topology

is automatically defined, and the metric structure yields strong results which are not true

of any topological space. When a metric space is separable (i.e. has a countable dense

subset) the topology has a countable basis, which enables one to endow it with an effective

topology. The choice of a particular countable dense subset induces particular notions

of constructive points, functions, etc. To make the use of the metric interesting from a

computability point of view, it shall be chosen in order for the distance to be computable,

as a function from the effective topological space to R. Precisely, it gives:

Definition 1.6.1.1. A computable metric space (CMS) is a triple (X, d,S) where:

1. (X, d) is a separable complete metric space,
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2. S is a countable dense subset of X , with a numbering such that

3. d(si, sj) is computable, uniformly in i, j.

S is called the set of ideal points. It is a numbered set, whose numbering makes the

mutual distances between ideal points uniformly computable. Let B = {B(s, q) : s ∈
S, q ∈ Q, q > 0} be the set of ideal balls. It is a basis of the topology induced by the metric

d. The numberings of S and of the set of positive rational numbers induce a numbering

of the collection of ideal balls, which is then a numbered set. Precisely, B〈i,j〉 := B(si, qj).

The topology (τ,⊆,B) is an enumerative lattice, which is not computable in general. Nev-

ertheless:

Proposition 1.6.1.1. The topology of a computable metric space is a pseudo-computable enumera-

tive lattice, with:

〈i1, j1〉 / 〈i2, j2〉
def.⇐⇒ d(si1 , si2) + qj1 < qj2

As ∩ distributes over unions, ∩ : τ × τ → τ is constructive.

Proof. As the distance between ideal points is computable, the relation / is r.e. Clearly, n/p

implies Bn ⊆ Bp.

We finally have to show thatB(si1 , qj1)∩B(si2 , qj2) =
⋃
{B(si, qj) : 〈i, j〉/〈i1, j1〉, 〈i2, j2〉}:

if x ∈ B(si1 , qj1)∩B(si2 , qj2), take a positive rational number qj < 1
2(qj1 −d(x, si1)), 1

2(qj2 −
d(x, si2)). Then si ∈ B(x, qj): x ∈ B(si, qj) and 〈i, j〉 / 〈i1, j1〉, 〈i2, j2〉.

The relation / is related to the way-below relation on the domain of formal balls, as

defined in [EH98].

As ∩ is constructive, (X, τ,B) is then an effective topological space (see definition

1.3.0.5).

Product of computable metric spaces

If (X, d,S) and (X ′, d′,S ′) are computable metric spaces, there are two ways to endow

their product with an effective topology: (1) as X and X ′ are automatically effective topo-

logical spaces, so is their product, the countable basis being the product B ×B′, (2) X ×X ′

can be endowed with the product metric d∞((x, x′), (y, y′)) = max{d(x, y), d′(x′, y′)}, with

S × S ′ as ideal points: it is a computable metric space, and then an effective topological
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space. The induced topology is also the product topology, but the countable basis is a bit

different: it is the set of ideal balls {B((s, s′), q) : (s, s′) ∈ S × S ′, q ∈ Q}.

Actually, these two different effective topological spaces are isomorphic, so we may

use one construction or the other according to circumstances.

The metric and the constructive points

The constructivity of a point can be characterized in an algorithmic way: x ∈ X is

constructive if and only if there is an algorithm which outputs a Cauchy sequence of ideal

points converging exponentially fast to x. Precisely, x is constructive if and only if there is

a total recursive function ϕ such that d(x, sϕ(n)) < 2−n for all n.

For this reason, the constructive points of computable metric spaces will be called com-

putable points: they can be computed by an algorithm, up to any precision. Constructive

functions arriving in a computable metric space will be called computable functions.

Proposition 1.6.1.2. The function d : X ×X → R is computable. For all x ∈ X , the following

are equivalent:

1. x is a computable point,

2. the function dx : X → R, dx(y) = d(x, y) is computable,

3. d(x, si) is computable, uniformly in i,

4. d(x, si) is upper semi-computable, uniformly in i.

Proof. d−1(a, b) =
⋃
{B(s, q)×B(s′, q′) : a+ q + q′ < d(s, s′) < b− q − q′} is a constructive

open set, uniformly in a, b. [1 ⇒ 2] follows from the computability of d, [2 ⇒ 3 ⇒ 4] is

immediate, [4 ⇒ 1]: δx : τ → S is constructive: δx(B(si, qj)) = > ⇐⇒ d(x, si) < qj .

In particular, if r is a positive lower semi-computable real number and x a computable

point of X , the ball B(x, r) is a constructive open set: dx is upper semi-computable and

B(x, r) = d−1
x [0, r).

For x ∈ X and r ≥ 0, let B(x, r) be the closed ball {y : d(x, y) ≤ r}. It contains

the closure of the open ball B(x, r) but is not equal when there are isolated points are at

distance r from x. Bn denotes B(si, qj) where n = 〈i, j〉. The complement of Bn is a

constructive open set, uniformly in n. Remark that n / p implies Bn ⊆ Bp.
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Computable metric subspace

As every computable metric space is also an effective topological space, there is a

notion of effective topological subspace: given any subset D of X , the topology on X

induces a topology on D, which is an effective topological subspace of X . D is also a

metric subspace, with the induced metric, but D is not in general a computable metric

space: it should at least be closed in order to be a complete metric space.

Definition 1.6.1.2. Let (X, d,S) be a computable metric space. A computable metric sub-

space ofX is a computable metric space (D, d,S ′) whereD is a subset ofX , d is the induced

metric and such that id : D → X is computable.

Theorem 1.6.1.1. A subset D of X can be made a computable metric subspace of X if and only if

D is a constructive closed set.

Before proving it we state another theorem which will be used later and from which

theorem 1.6.1.1 directly follows.

Theorem 1.6.1.2. Let (X, d,S) be a computable metric space. A closed subset A is constructive if

and only if it contains a dense sequence of uniformly computable points.

Proof. The “if” part is direct: if A contains such a sequence (xk)k, then A ∩ U 6= ∅ ⇐⇒
∃k, xk ∈ U .

The “only if” part requires more attention. LetB = B(s, r) be an ideal ball intersecting

A: we construct a fast Cauchy sequence of ideal points s(i) whose limit is in A ∩ B. Put

s(0) = s and r(0) = r. If s(i), r(i) have been constructed and satisfy B(i) = B(s(i), r(i)) ∩
A 6= ∅, put r(i + 1) = r(i)/2: as B(i) ⊆ ∪s′∈B(i)B(s′, r(i)/2) there is s(i + 1) ∈ B(i) such

that B(s(i + 1), r(i + 1)) intersects A. s(i + 1) can be effectively found. The sequence

s(i) is a Cauchy sequence, so it converges, and its limit is in A, which is a closed set. As

everything is uniform in the number of the ideal ball B, any numbering (Bk)k of the ideal

balls intersecting A gives a constructive sequence (xk)k of uniformly computable points

with xk ∈ Bk ∩A.

Remark that the closure of any constructive open set is then a constructive closed set.

Indeed, the ideal points of U can be enumerated in a uniform way, and they are dense in

U .
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Proof. (of theorem 1.6.1.1) The proof of the theorem is then a consequence of this: any

dense sequence of uniformly computable points contained in F can be used as set of ideal

points of the subspace F . Conversely, if (F, d,SF ) is a computable metric subspace, then

sFi is a computable point of F , uniformly in i, so sFi = id(sFi ) is also a computable point of

X , uniformly in i.

Computable Baire theorem

The technique used in the proof of theorem 1.6.1.2 can be adapted to get a computable

version of Baire’s theorem.

Definition 1.6.1.3. In an effective topological space (X, τ,B), a constructive Gδ, or Π0
2 is an

intersection of uniformly constructive open sets.

One of the forms of the classical Baire category theorem states that every non-empty

complete metric space is a Baire space, i.e. every countable intersection of dense open sets

is dense. Its proof is actually constructive, and a computable version has been proved in

[YMT99], [Bra01]. We recall the proof, which uses the following lemma:

Lemma 1.6.1.1. Let X be a computable metric space. Let Vi be a sequence of non-empty uniformly

constructive open sets such that V i+1 ⊆ Vi and diam(Vi) effectively tends to 0. Then
⋂
i Vi is a

singleton containing a computable point.

Proof. As Vi is non-empty there is a computable sequence of ideal points si ∈ Vi. This is a

Cauchy sequence, which converges by completeness. Let x be its limit: it is a computable

point as diam(Vi) tends to 0 in an effective way. Fix some i: for all j ≥ i, sj ∈ Vj ⊆ V i so

x = limj→∞ sj ∈ V i. Hence x ∈
⋂
i V i =

⋂
i Vi.

Theorem 1.6.1.3 (Computable Baire theorem). Every dense constructive Gδ contains a dense

sequence of uniformly computable points.

Proof. A =
⋂
i Ui where Ui is constructive uniformly in i. Let B be an ideal ball: we con-

struct a shrinking sequence of ideal balls (B(i))i such that B(i+ 1) ⊆ Ui. Put B(0) = B. If

B(i) has been constructed, as Ui is dense B(i)∩Ui is a non-empty open set, so we can find

some ball B′ ⊆ B(i)∩Ui. B(i+ 1) is obtained dividing the radius of B′by 2. It follows that⋂
iB(i) is a singleton {x} consisting of a computable point. As everything is uniform in the

ideal ball B, the numbering (Bk)k of B gives a constructive sequence (xk)k of uniformly

computable points with xk ∈ Bk.
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The technique used in the proof of Baire’s theorem is a generalization of the diago-

nalization technique used in Cantor’s argument to prove that the set of real numbers is

not countable. Actually, Baire’s theorem implies that R is non-countable: given a sequence

(xn)n of real numbers, the open sets Un = R \ {xn} are dense, so their intersection is dense

by Baire’s theorem and then non-empty. In other words, from any sequence (xn)n of real

numbers, one can construct a number x which does not belong to the sequence. This con-

struction is effective, as illustrated by the computable Baire’s theorem. It implies that in

a computable metric space without isolated point, there is no constructive enumeration

of all its computable points: from every constructive sequence can be computed a point

which does not appear in the sequence.

Corollary 1.6.1.1. There is a sequence (rn)n of uniformly computable positive real numbers which

is dense in [0,+∞), such that d(si, sj) 6= rn for all i, j, n. It makes the relation si ∈ B(sj , rn)

decidable.

Proof. [0,+∞) is obviously a computable metric space. Define the uniformly constructive

open subsets of [0,+∞): Ui,j = (0,+∞) \ {d(si, sj)}. Then R =
⋂
i,j Ui,j is a constructive

dense Gδ, so the preceding theorem allows to conclude.

Computable dense orbits Let us briefly present a direct consequence of this theorem

for topological dynamical systems. One of the features of undecomposable (topologically

transitive) chaotic systems is that there are many dense orbits, the following shows that if

the system is computable then there are computable dense orbits.

Definition 1.6.1.4. Let (X, τ) be a topological space and T : X → X a continuous map. T

is topologically transitive if for all open sets U, V , there is n such that U ∩ f−nV 6= ∅.

A sufficient condition is the existence of a dense trajectory. In complete separable

metric spaces, it is also a necessary condition:

Proposition 1.6.1.3. Let X be a complete separable metric space and T : X → X a continuous

map. T is topologically transitive if and only if it has a dense trajectory.

The proof relies on the Baire category theorem. Its computable version gives:

Theorem 1.6.1.4 (Computable dense orbits). Let X be a computable metric space and T : X →
X a transformation which is computable on a constructive dense Gδ. If T has a dense orbit, then it

has a computable dense one.
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Proof. This is a direct consequence of the computable Baire theorem (theorem 1.6.1.3). Let

D be the domain of computability of T : then R = D∩
⋂
i

⋃
n T

−nBi is a constructive dense

Gδ. Indeed, as T is computable on D, T−nBi ∩D = Un,i ∩D where Un,i is a constructive

open set, uniformly in n, i. Hence, R = D ∩
⋂
i

⋃
n Un,i. By computable Baire’s theorem R

contains computable points, whose orbits are dense by definition of R.

1.6.2 Extension of computable functions

It is a classical result that if f : X → Y is a function from a topological space to a metric

space, then the set of points of continuity of f is a Gδ.

In [Hem02] it is proved that between computable metric spaces, the domain of func-

tions which are computable in a stronger sense is a constructive Gδ, when the space has

finite topological dimension in an effective way (existence of a finitary stratification). We

prove a related result, which holds for any computable metric space.

Theorem 1.6.2.1. Let X be an effective topological space and Y a computable metric space. Let

f : D ⊆ X → Y be a function computable on a dense set D. Then f can be extended to a

computable function on a constructive Gδ.

Proof. There is a computable function φ : BY → τX such that f−1(B) = D ∩ φ(B) for all

ideal ball B of Y . We define the domain of the extension of f :

G =
⋂

q∈Q,q>0

⋃
s∈SY

φ(B(s, q))

which is a Π0
2-set. By continuity of f : D → Y , one easily has D ⊆ G.

We now define g : G → Y extending f . Let x ∈ G: as D is dense, there is a sequence

(xk)k of points of D converging to x: we define g(x) = limk f(xk).

Claim. g is well-defined.

The limit exists: for each ε > 0, x is in some φ(B(s, ε)) which is open, so there is k0

such that xk ∈ φ(B(s, ε)) for k ≥ k0. As xk ∈ D, f(xk) ∈ B(s, ε) for all k ≥ k0. (f(xk))k is

then a Cauchy sequence, which converges by completeness of Y .

The limit is uniquely defined. Indeed, let (xk)k and (x′k)k be two sequences of points of

D converging to x. Mix these two sequences: x′′2k = xk and x′′2k+1 = x′k. (x′′k)k is a sequence

of points of D converging to x, so f(x′′k) converges. Consequently, limk f(xk) = limk f(x′k).

As f is continuous on D, g coincides with f on D.
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Claim. g is computable.

In general, one does not have g−1(B) = G ∩ φ(B) for an ideal ball B. Instead, the

following holds: g−1(B) ⊆ G ∩ φ(B) and G ∩ φ(B) ⊆ g−1(B) (easy from the definition of

g).

We define the strict order < on Y × R+ by (x′, r′) < (x, r) if d(x′, x) + r′ < r. If

(x′, r′) < (x, r) then B(x′, r′) ⊆ B(x, r) (the converse does not hold in general, but for

connected spaces like R). Let B(s, q) be some ideal ball of Y . We define:

ψ(B(s, q)) =
⋃

(s′,q′)<(s,q)

φ(B(s′, q′))

and show that g−1(B(s, q)) = G ∩ ψ(B(s, q)) which implies that g is computable, as ψ(Bi)

is recursively open, uniformly in i.

First, note that B(s, q) =
⋃

(s′,q′)<(s,q)B(s′, q′) =
⋃

(s′,q′)<(s,q)B(s′, q′).

If x ∈ G∩ψ(B(s, q)) then x ∈ φ(B(s′, q′)) for some (s′, q′) < (s, q), so g(x) ∈ B(s′, q′) ⊆
V .

Conversely, if x ∈ G and g(x) ∈ V , g(x) ∈ B(s′, q′) for some (s′, q′) < (s, q). Take

some positive rational δ such that d(g(x), s′) < q′ − δ: as x ∈ G, there is s′′ such that

x ∈ φ(B(s′′, δ/2)). It follows that g(x) ∈ B(s′′, δ/2), which implies (s′′, δ/2) < (s, q). Hence,

x ∈ ψ(B(s, q)).

1.7 Representation theory

In representation theory, the Cantor space {0, 1}N is chosen as a primitive space: a

notion of computable function from {0, 1}N to {0, 1}N is defined using a kind of Turing

machines (called type-two machines), and is used to define computability notions on gen-

eral spaces through representations. A representation on a set X is a partial surjective func-

tion ρ : {0, 1}N → X . If (X, ρ) and (X ′, ρ′) are represented spaces, an element x ∈ X is

ρ-computable if it is the image by ρ of a computable sequence, a function f : X → X ′

is (ρ, ρ′)-computable if there is a computable function F : dom(ρ) → {0, 1}N such that

f ◦ ρ = ρ′ ◦ F on dom(ρ).

{0, 1}N is an effective topological space, which the topology generated by the cylinders,

which form a countable basis B. It is an easy fact that a function F : D ⊆ {0, 1}N → {0, 1}N

is computable by a type-two machine if and only if it is constructively continuous on D.
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The set P (N) is represented this way: if ω ∈ {0, 1}N,

En(ω) = {n ∈ N : 110n+111 is a sub-word of ω}.

It induces a canonical representation ρL = supP ◦En for any enumerative lattice (L,≤,P),

which is a constructive element of C({0, 1}N, L).

When (X, τ,B) is an effective topological space, the standard representation is defined

by ρX(ω) = x if En(ω) = {i : x ∈ Bi}: it is a constructively continuous function from

{0, 1}N to X .

It can be shown that:

1. Constructive functions from P (N) to P (N) as defined here are exactly the functions

which are (En,En)-computable (and this extends to functions between enumerative

lattices).

2. Between effective topological spaces X and Y , it is well-known that constructively

continuous functions are exactly the (ρX , ρY )-computable functions.

3. Constructive elements of C(X,L) are exactly the (ρX , ρL)-computable functions.

See [Wei00] for details.

1.8 Kolmogorov complexity

We briefly recall the notion of Kolmogorov complexity and some useful properties.

For complete introductions to the subject, we refer to [LV93], [Cal94], [Gác].

In the context of information theory, Kolmogorov defined in [Kol65] a notion of algo-

rithmic information content of discrete objects. Information theory is about transmission of

discrete data, and particularly, their encoding into binary sequences. A central question is

to find coding systems which minimize the length of the transmitted message. Until Kol-

mogorov, the effective computability of the coding systems studied (Shannon-Fano coding,

Huffman coding) was always implicit, attention being even focused on their practical im-

plementation. Kolmogorov took advantage of computability theory, which grasps what it

means for a procedure to be effectively computable, defining the algorithmic information

content of discrete objects as the minimal codeword length by computable codings (once

the objects have been identified with integers, or finite words).
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The so-called Kolmogorov complexity is universal in the sense that it does not depend on

structures underlying the objects (for instance, Huffman coding depends on the probabil-

ities that are put on the objects). From this universality Kolmogorov complexity draws a

very general statute and intimate relations with many mathematical concepts (as probabil-

ities, dimension). As a drawback, Kolmogorov complexity is not computable, and makes

sense only up to additive constants (which may be as large as possible), so its interesting

features appear at the asymptotic limit.

We recall the variant of Kolmogorov complexity, defined independently by Chaitin

and Levin, which is closer to classical information theory, as it is concerned with prefix

codes. For a complete introduction to Kolmogorov complexity we refer to standard texts

[LV93], [Gác].

1.8.1 Definitions

Given a discrete data set, there are many ways to encode its objects into binary strings.

We require the code to be prefix: no code is prefix of another code, which enables one to

decode a concatenation of codes into a sequence of data. Let us make it precise.

Let {0, 1}N be the Cantor space of infinite binary sequences, and {0, 1}∗ be the set of

finite binary words. A word w ∈ {0, 1}∗ defines the cylinder [w] ⊂ {0, 1}N of all possible

continuations of w. A set D = {w1, w2, ...} ⊂ {0, 1}∗ defines an open set [D] = ∪i[wi] ⊂
{0, 1}N. D is called prefix-free if no word ofD is prefix of another one, that is if the cylinders

[wi] are pairwise disjoint.

We define the prefix Kolmogorov complexity of objects of a numbered set whose num-

bering is bijective (typically, N or Σ∗ where Σ is a finite alphabet).

Definition 1.8.1.1. Let S be a numbered set. An interpreter is a partial recursive function

I : {0, 1}∗ → S which has a prefix-free domain.

The prefix Kolmogorov complexity (or algorithmic information content) of s ∈ S rela-

tive to an interpreter I is

KI(s) :=

 |p| if p is a shortest input such that I(p) = s

∞ if there is no p such that I(p) = s

As for recursive functions, there exists an effective enumeration of all interpreters,

which entails the existence of a universal interpreter U which is asymptotically optimal in

the sense that the invariance theorem holds:
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Theorem 1.8.1.1 (Invariance theorem). For every interpreter I there exists cI ∈ N such that for

all s ∈ S we have KU (s) < KI(s) + cI .

All universal interpreters then give the same complexity to objects of S, up to addi-

tive constants. We fix a universal interpreter U and we let K(w) = KU (w) be the prefix

Kolmogorov complexity of s. In this thesis, we never use the original definition by Kol-

mogorov, sometimes called plain complexity, so we will often omit the adjective prefix. As

the set of words p satisfying U(p) = s is r.e. uniformly in s (indeed, we suppose the num-

bering to be bijective), the function K : S → N is upper semi-computable.

1.8.2 Simple estimates

Let f, g be real-valued functions. We say that g additively dominates f and write f <
+
g

if there is a constant c such that f ≤ g+ c. As codes are always binary words, we use base-2

logarithms, which we denote by log.

Binary words. Let S = {0, 1}∗ be the numbered set of finite binary strings. We define an

interpreter I by I(a10a2 . . . 0ak1w) = w if a1a2 . . . ak is the binary expansion of |w|.
The domain where I is defined is prefix-free, and KI(w) = |w| + 2blog(|w| + 2)c.
Hence,

K(w) <
+ |w|+ 2 log |w| for w ∈ {0, 1}∗ (1.1)

Natural numbers. Let S = N: from (1.1), we derive

K(n) <
+

log n+ 2 log(log n) for n ∈ N (1.2)

as n can be identified with a binary word of length blog(n+ 1)c.

Cartesian product. If S, S′ are numbered sets, S×S′ has a canonical numbering. If I, I ′ are

interpreters from {0, 1}∗ to S, S′ respectively, we define the function I ′′ : {0, 1}∗ →
S × S′ by I ′′(pq) = (I(p), I(q)) (where pq is the concatenation of p and q), which

makes sense as the domains of I, I ′ are prefix-free. I ′′ is computable and has prefix-

free domain, so it is an interpreter. From this, we derive:

K(s, s′) <
+
K(s) +K(s′) for (s, s′) ∈ S × S′ (1.3)
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Finite sequences. If S is a numbered set then the set S∗ of finite sequences of elements of

S is also a numbered set. Using the same argument,

K(s1, . . . , sn) <
+
K(s1) + . . .+K(sn) for (s1, . . . , sn) ∈ S∗ (1.4)

1.8.3 Shannon information content

When a finite set S is endowed with a probability measure P = (ps)s∈S , that is ps ∈
[0, 1] and

∑
s ps = 1, Shannon proved that the mean codeword length of a prefix code is

bounded from below by the entropy of the distribution H(P ) = −
∑

s ps log ps, the quantity

− log ps being called the information content of s. Moreover, there is an optimal prefix code

(Huffman coding) for which the codeword length of s is d− log pse, so the mean codeword

length is between H(P ) and H(P ) + 1.

This can be extended to countable sets. If S is a numbered set, and P is computable (ps

is computable uniformly in s), then the associated optimal prefix code is also computable,

i.e. it can be decoded by an interpreter. It implies that K(s) <
+ − log ps. This can be

improved by the so-called coding theorem.

Theorem 1.8.3.1 (Coding theorem). Let P : S → R+ be a lower semi-computable function

such that
∑

s P (s) ≤ 1. Then K(s) <
+ − logP (s), i.e. there is a constant c such that K(s) ≤

− logP (s) + c for all s ∈ S.

Such a function P is often called a semi-measure (it is nearly a probability measure).

As the domain of the universal interpreter U is prefix-free,
∑

i 2
−K(i) is the (Lebesgue)

measure of its domain, so is less than one. Hence, the function m: N → [0, 1] defined

by m(i) = 2−K(i) is itself a semi-measure, which is universal, in the sense that it multi-

plicatively dominates all semi-measures: for all P , there is a constant c′(= 2−c) such that

m≥ c′P .

Let us consider a simple application: the sequence 1
n(log(n))2

is summable, which can

be proved using that it is the derivative of − ln(2)
log(x) , which is integrable on [2,+∞). From the

coding theorem, one derives K(n) <
+

log n+ 2 log(log n) (inequality 1.2).

Define J(x) = x+1+2 log(x+1) for real x ≥ 0:
∑

n 2−J(logn) <∞ andK(n) <
+
J(log n).

The following property is a version of a result attributed to Kolmogorov, stated in

terms of prefix complexity instead of plain complexity.
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Proposition 1.8.3.1. Let E ⊆ N× S be a r.e. set such that En = {s : (n, s) ∈ E} is finite for all

n. Then for (s, n) with s ∈ En,

K(s) <
+
J(log |En|) +K(n)

Proof. Let ϕ : N × N → N be a total injective recursive function enumerating E. Define

P (n, sϕ(n,i)) = 2−K(n)−J(log(i)) and P (n, s) = 0 if s /∈ En. P is lower semi-computable

and
∑

(n,s) P (n, s) ≤
∑

(n,i) 2−K(n)−J(log(i)) ≤ 1, so applying the coding theorem, one has

K(n, sϕ(n,i)) <
+
K(n) + J(log(i)). As i ≤ |En| and J is non-decreasing, K(n, s) <

+
K(n) +

J(log |En|) for s ∈ En.





Chapter 2

Probability measures and

computability

The Cantor space, or space of infinite binary sequences, is a friendly place for com-

putability. Its total disconnection has numerous consequences: cylinders are decidable

sets, their measure is computable, the space has open covers which are also partitions, etc.

General metric spaces do not share these features with the Cantor space, which raises im-

portant problems when dealing with measures, or symbolic models of dynamical systems.

Computability of probability measures on general spaces was already studied, iden-

tifying measures with valuations, in [Eda96] using domain theory and in [Sch07] using

refined representation theory. The problem was studied in [Wei99] for the unit real inter-

val, from several points of view. In [Gác05] probability measure are seen as points of a

metric space, on which computability notions are well developed.

We study the computability of probability measures on a computable metric space,

seeing measures as points of a metric space, as valuations on open sets, as integration op-

erators. We show that these approaches are equivalent, which relates the works mentioned

above. We then introduce the computable version of probability spaces, and show:

Theorem. Every computable probability space is isomorphic to the Cantor space endowed with the

uniform measure.

This result allows one to transfer algorithmic probability concepts (as algorithmic ran-

domness) from the Cantor space to any computable probability space. The computability

47
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assumption on the measure is fundamental, as there are non-computable probability mea-

sures for which the theorem does not hold.

Most of this work together with a part of section 3 on algorithmic randomness are

gathered in an article [HR07] which is following the submission process at the time this

thesis is written.

2.1 The space M(X) of probability measures

Following [Gác05] we endow the space M(X) with a computable metric space struc-

ture compatible with the weak topology.

2.1.1 Background

Let us recall bases of measure theory for probability measures, partially taken from

[Bil68].

Let (X, d) be a metric space. A σ-field on X is a class of subsets of X containing X ,

which is closed under complement and countable unions. The Borel σ-field is the σ-field

generated by the topology, i.e. the smallest σ-field containing the open sets. A Borel prob-

ability measure µ on X is a set function from the Borel sets to [0, 1] which is (i) countably

additive set (µ(∪∞k=1Ak) =
∑

k µ(Ak) for disjoint Borel sets Ak), and satisfies (ii) µ(X) = 1.

Let µn, µ be Borel probability measures on X : we say that µn converges weakly to µ if∫
fdµn →

∫
fdµ for every bounded, continuous real function f on X .

Let us recall the Portmanteau theorem. We say that a Borel set A is µ-continuous if

µ(∂A) = 0, where ∂A = A ∩X \A is the boundary of A.

Theorem 2.1.1.1 (Portmanteau theorem). Let µn, µ be Borel probability measures on a separable

metric space (X, d). The following are equivalent:

1. µn converges weakly to µ,

2. lim supn µn(F ) ≤ µ(F ) for all closed sets F ,

3. lim infn µn(G) ≥ µ(G) for all open sets G,

4. limn µn(A) = µ(A) for all µ-continuous sets A.



Chapter 2: Probability measures and computability 49

When (X, d) is a separable metric space, weak convergence can be proved using the

following criterion:

Proposition 2.1.1.1. LetA be a countable basis of the topology which is closed under the formation

of finite unions. If µn(A) → µ(A) for every A ∈ A, then µn converges weakly to µ.

Proof. Let G be an open set: it can be expressed as a countable union of elements of A:

G =
⋃
iAi. LetGi = A0∪. . .∪Ai ∈ A: asGi ⊆ G, µn(Gi) ≤ µn(G) so µ(Gi) = limn µn(Gi) ≤

lim infn µn(G). It follows that µ(G) = supi µ(Gi) ≤ lim infn µn(G), so condition (iii) of the

preceding theorem holds.

We then endow the set M(X) of Borel probability measures over X with the weak

topology, which is the topology of weak convergence (i.e. the finest topology for which all

sequences µn converging weakly to µ converge to µ for the topology, see appendix A.1.1).

The implication 1 ⇒ 3 in the portmanteau theorem can then be read as the lower semi-

continuity of the function (M(X) is a sequential space by definition):

v(U) : M(X) → R+

µ 7→ µ(U)

When (X, d) is a metric space, the weak topology on M(X) is metrizable:

Definition 2.1.1.1. The Prokhorov metric ρ on M(X) is defined by:

ρ(µ, ν) := inf{ε ∈ R+ : µ(A) ≤ ν(Aε) + ε for every Borel set A}. (2.1)

where Aε = {x : d(x,A) < ε}.

It is known that it is indeed a metric, which induces the weak topology on M(X).

When X is separable, M(X) is also separable: fixing a countable dense set S ⊆ X , we

define the set N ⊂ M(X) of finite linear combinations of Dirac measures (measures con-

centrated in one point) concentrated on points of S, with rational coefficients. It can be

shown that this is a dense subset.

Moreover, when (X, d) is complete, (M(X), ρ) is also complete, see [Bil68].

2.1.2 The computable metric space M(X)

Let (X, d,S) be a computable metric space. From what precedes, we know that (M(X), ρ,N )

is a separable complete metric space. Following [Gác05], we show that it is even a com-

putable metric space.
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We callN the set of ideal measures. As every ideal measure can be described by a finite

subset of S×Q>0, the numberings of S and Q>0 induce a canonical numbering {νi : i ∈ N}
of N (which can be taken injective). We start with the following lemma:

Lemma 2.1.2.1. The valuation vνi : τ → [0, 1] mapping U to νi(U) is lower semi-computable,

uniformly in i.

Proof. For a Dirac measure ds concentrated on an ideal point s, vds : τ → [0, 1] is lower-

semi-continuous, as s is constructive (vds is actually δs : τ → S, with 0 and 1 in place of ⊥
and > respectively). Now, if ν is a finite linear combination

∑
qds of Dirac measures, vν is∑

qvds , which is lower semi-computable, uniformly in the number of ν.

Proposition 2.1.2.1. (M(X), ρ,N ) is a computable metric space.

Proof. We have to show that the real numbers ρ(νi, νj) are all computable, uniformly in

〈i, j〉.
Observe that if νi is an ideal measure concentrated over a finite set S ⊆ S, then (2.1)

becomes ρ(νi, νj) = inf{ε ∈ Q : ∀A ⊂ S, νi(A) < νj(Aε) + ε}. First, νi(A) is computable.

Since Aε is a finite union of ideal open balls, the number νj(Aε) is lower semi-computable.

As everything is uniform, ρ(νi, νj) is upper semi-computable. To see that ρ(νi, νj) is lower-

semi-computable, observe that ρ(νi, νj) = sup{ε ∈ Q : ∃A ⊂ S, νi(A) > νj(Aε) + ε}, where

Aε = {x : d(x,A) ≤ ε} is a finite union of ideal closed balls when A ⊂ S, and then is

the complement of a constructive open set. νj(Aε) is then upper semi-computable, which

allows to conclude. Note that everything is uniform.

Definition 2.1.2.1. A Borel probability measure µ is computable if it is a computable point

of the computable metric space (M(X), ρ,N ).

2.1.3 The Wasserstein metric

In the particular case when the metric space X is bounded, an alternative metric due

to Wasserstein in [Was69] can be defined on M(X). When f is a real-valued function, µf

denotes
∫
fdµ.

Definition 2.1.3.1. The Wasserstein metric on M(X) is defined by:

W (µ, ν) = sup
f∈1-Lip(X)

(|µf − νf |) (2.2)
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where 1-Lip(X) is the space of 1-Lipschitz functions from X to R.

As with the Prokhorov metric, the topology induced byW onM(X) is the weak topol-

ogy, and (M(X),W ) is separable and complete as soon as X is separable and complete.

Again, if (X, d,S) is a (bounded) computable metric space, then:

Proposition 2.1.3.1. (M(X),W,N ) is a computable metric space.

Proof. We have to show that the distance W (νi, νj) between ideal measures is uniformly

computable. Let Si,j = Supp(νi) ∪ Supp(νj) be the finite set of ideal points on which νi

and νj are concentrated. We fix some s∗ ∈ Si,j : we can take the supremum in (2.2) over

1-Lip∗(X) := {f ∈ 1-Lip(X) : f(s∗) = 0}. Given some precision ε we construct an ε-net of

1-Lip∗(X), that is a finite set Gε ⊆ 1-Lip∗(X) made of uniformly computable functions such

that for each f ∈ 1-Lip∗(X) there is some g ∈ Gε satisfying sup{|f(x)−g(x)| : x ∈ Si,j} < ε.

Let M ∈ N be greater than the diameter of X : |f | < M for every f ∈ 1-Lip∗(X). Compute

n ∈ N such thatM < 2εn. For each s ∈ Si,j and a ∈ {kMn }
m
k=−m let us consider the functions

defined by φ+
s,k(x) := a+d(s, x) and φ−s,k(x) := a−d(s, x). Then it is not difficult to see that

Gε defined as the set of all possible combinations of max and min made with the φ±s,k(x)

satisfy the required condition.

Therefore, since sup(|f − g|) < ε implies |µ(f − g)| < ε we have that:

sup
g∈Gε

(|µig − µjg|) ≤W (µi, µj) ≤ sup
g∈Gε

(|µig − µjg|) + 2ε

where the µig are computable, uniformly in i. The result follows.

WhenX is bounded, the effectivisation using the Prokhorov or the Wasserstein metrics

turn out to be equivalent.

Theorem 2.1.3.1. The Prokhorov and the Wasserstein metrics are effectively equivalent. That

is, the identity function id : (M(X), ρ,N ) → (M(X),W,N ) is an isomorphism of effective

topological spaces.

Proof. LetM be an integer bound on the diameter ofX . We show that ρ(µ, ν)2 ≤W (µ, ν) ≤
(M + 1)ρ(µ, ν).

For the second inequality, suppose ρ(µ, ν) < ε/(M + 1). By the coupling theorem

[Bil68], for every f ∈ 1-Lip(X) it holds |µf−νf | ≤ ε, soW (µ, ν) < ε. For the first inequality,



Chapter 2: Probability measures and computability 52

suppose W (µ, ν) < ε2. Let A be a Borel set: we define g(x) := [1 − d(x,A)/ε]+ where

[r]+ = max(r, 0): g equals 1 on A, 0 outside Aε, so µ(A) ≤ µg ≤ µ(Aε). As εg ∈ 1-Lip(X),

εµg < ενg+ ε2, which, simplifying by ε, gives µ(A) ≤ ν(Aε) + ε. As this is true for all Borel

sets A, it follows that ρ(µ, ν) < ε.

Therefore, given a fast sequence of ideal measures converging to µ in the Prokhorov

metric, we can construct a fast sequence of ideal measures converging to µ in the W metric

and vice-versa.

The effectivisation of the space of Borel probability measures M(X) is of theoretical

interest, and opens the question: what kind of information can be (algorithmically) recov-

ered from a description of a measure as a point of the computable metric space M(X) ?

The two most current uses of a measure are to give weights to measurable sets and means

to measurable functions. Can these quantities be computed ?

2.1.4 Measures as valuations

We know from the portmanteau theorem (theorem 2.1.1.1) that for each open set U ,

the function:
v(U) : M(X) → R+

µ 7→ µ(U)

is lower semi-continuous. As R+ is a computable enumerative lattice, v(U) is an element

of C(M(X),R+). Moreover, it is a basic property of measures that supn µ(Un) = µ(
⋃
n Un)

when Un ⊆ Un+1. This implies the Scott-continuity of the function

v : τ → C(M(X),R+)

U 7→ v(U)
(2.3)

Indeed, if Un ⊆ Un+1, v(
⋃
n Un) is the function which maps µ to µ(

⋃
n Un) = supn µ(Un) =

supn(v(Un)(µ)) so it is the point-wise supremum of the functions v(Un) which is exactly

supn v(Un). Proposition 1.2.0.2 then enables to conclude.

Proposition 2.1.4.1. The valuation operator v : τ → C(M(X),R+) defined in (2.3) is construc-

tive.

Proof. We have to show that v(Bn1 ∪ . . . ∪Bnk
) is constructive, uniformly in 〈n1, . . . , nk〉.
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We define the ε-interior of U : U(ε) = B(si1 , qj1 − ε) ∪ . . . ∪ B(sik , qjk − ε): we will use

U(2ε)ε ⊆ U(ε) and U(ε)ε ⊆ U . Let Bn = BM(µi, qj) be an ideal ball of M(X). Define

yn = µi(U(qj))− qj . We claim that:

v(U) = sup
n

Styn

Bn

Indeed, for every measure µ ∈ Bn = BM(µi, qj), µi(U(qj)) ≤ µ(U) + qj by definition

of the Prokhorov distance, so Styn

Bn
(µ) ≤ v(U)(µ).

Let µ ∈ M(X) and q < µ(U): as µ(U) = supj{µ(U(qj)) − 2qj}, there is qj > 0 such

that µ(U(qj))− 2qj > q. As vU is continuous, v−1
U (q, 1] is open, so there is an ideal measure

µi ∈ v−1
U (q, 1] ∩B(µ, qj). Then, q < µ(U(2qj))− 2qj ≤ µi(U(qj))− qj , so q < Styn

Bn
(µ).

Finally, as U(qj) is recursively open, uniformly in j, yn is lower semi-computable uni-

formly in n, so v(U) is constructive. And everything is uniform in 〈n1, . . . , nk〉.

Here is a simple consequence: if Bi = B(s, r) is an ideal ball, denoting by Bi the

closed ball B(s, r) = {x : d(x, s) ≤ r}, its complement is a constructive open set, uni-

formly in i. Then the function µ 7→ µ(Bi1 ∪ . . .∪Bik) is upper semi-computable, uniformly

in 〈i1, . . . , ik〉. In particular, if the measure of the boundary of any ideal ball is null, the

quantities µ(Bi1 ∪ . . . ∪Bik) are uniformly computable.

The second result is stronger: the lower semi-computability of the measure of the con-

structive open sets even characterizes the computability of the measure.

Theorem 2.1.4.1. Given a measure µ ∈M(X), the following are equivalent:

1. µ is computable,

2. vµ : τ → [0, 1] is lower semi-computable,

3. µ(Bi1 ∪ . . . ∪Bik) is lower semi-computable uniformly in 〈i1, . . . , ik〉.

Proof. [1 ⇒ 2] Direct from proposition 2.1.4.1. [2 ⇒ 3] Trivial. [3 ⇒ 1] We show that

ρ(µn, µ) is upper semi-computable uniformly in n, and then use proposition 1.6.1.2. Since

ρ(µn, µ) < ε iff µn(A) < µ(Aε) + ε for all A ⊂ Sn where Sn is the finite support of µn, and

µ(Aε) is lower semi-computable (Aε is a finite union of open ideal balls) ρ(µn, µ) < ε is

semi-decidable, uniformly in n and ε.
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It could be formulated in terms of representations: representing a measure by the set

of integers 〈i1, . . . , ik, j〉 satisfying µ(Bi1 ∪ . . .∪Bik) > qj , would lead to the same construc-

tivity notions. This is the approach taken in [Wei99] for the special case X = [0, 1] and in

[Sch07] on arbitrary sequential spaces. In both case, the topology on M(X) induced by

this representation is proved to be equivalent to the weak topology. A domain theoretical

approach was also developed in [Eda96], the Scott topology being proved to induce the

weak topology.

The examples of the Cantor space and the unit interval. On the Cantor space ΣN (where

Σ is a finite alphabet) with its natural computable metric space structure, the ideal balls

are the cylinders. As a finite union of cylinders can always be expressed as a disjoint (and

finite) union of cylinders, and the complement of a cylinder is a finite union of cylinders,

we have:

Corollary 2.1.4.1. A measure µ ∈ M(ΣN) is computable iff the measures of the cylinders are

uniformly computable.

On the unit real interval, ideals balls are open rational intervals. Again, a finite union

of such intervals can always be expressed as a disjoint (and finite) union of open rational

intervals. Then:

Corollary 2.1.4.2. A measure µ ∈ M([0, 1]) is computable iff the measures of the rational open

intervals are uniformly lower-semi-computable.

If µ has no atoms, a rational open interval is the complement of at most two disjoint

open rational intervals, up to a null set. In this case, µ is then computable iff the measures

of the rational intervals are uniformly computable.

2.1.5 Measures as integrals

We now answer the second question: is the integral of functions computable from the

description of a measure?

The effective topology on X and the enumerative lattice structure of R+ induce in a

canonical way the enumerative space C(X,R+) (see section 1.3.2). As R+ is a computable

enumerative lattice, C(X,R+) is exactly the set of lower semi-continuous functions from X
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to R+ , and its constructive elements are the constructively continuous functions from X to

R+ (proposition 1.4.1.5).

The Portmanteau theorem (theorem 2.1.1.1) can be easily extended: µn converges

weakly to µ if and only if for all f ∈ C(X,R+), lim infn
∫
fdµn ≥

∫
fdµ (lower semi-

continuous functions behave as open sets). In other words, the function:

I(f) : M(X) → R+

µ 7→
∫
fdµ

is lower semi-continuous (as M(X) is a sequential space), i.e. belongs to C(M(X),R+).

The monotone convergence theorem states that
∫

(supn fn)dµ = supn
∫
fndµ when fn

is an increasing sequence of non-negative measurable functions (see [Bil79]). As the enu-

merative lattice C(X,R+) is a sequential space, it implies by proposition 1.2.0.2 that the

function:
Iµ : C(X,R+) → R+

f 7→
∫
fdµ

is Scott-continuous. Actually, this can be strengthen. The function:

I : C(X,R+) → C(M(X),R+)

f 7→ I(f)
(2.4)

is Scott-continuous. Indeed, taking an increasing sequence fn, I(supn fn) is the function

which maps µ to
∫

(supn fn)dµ = supn
∫
fndµ = supn I(fn)(µ) so it is the point-wise supre-

mum of the functions I(fn), which is exactly supn I(fn). Again, proposition 1.2.0.2 allows

to establish the Scott-continuity of I .

Proposition 2.1.5.1. The integral operator I : C(X,R+) → C(M(X),R+) defined at (2.4) is

constructive.

Proof. Consider a finite supremum of step functions fn = sup{St
qj1
Bi1
, . . . ,St

qjk
Bik
}. The func-

tions can be reordered so that qj1 ≥ qj1 ≥ . . . ≥ qjk . The integral
∫
fndµ can be expressed

using the valuation operator v, by induction on k:∫
sup{St

qj1
Bi1
, . . . ,St

qjk
Bik
}dµ = qjkµ(Bi1 ∪ . . . ∪Bik) +∫

sup{St
qj1−qjk
Bi1

, . . . ,St
qjk−1

−qjk

Bik−1
}dµ
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When only one function remains, the integral is simply
∫

StqjBi
dµ = qjµ(Bi). Replacing∫

. . . dµ by I(. . .) and µ(. . .) by v(. . .), and using the fact that v is constructive (proposition

2.1.4.1), we obtain that I(fn) is a lower semi-computable function, uniformly in n. So I is

constructive.

Remark 2.1.5.1. Here is a simple corollary which will be used in the construction of the

uniform randomness test (see section 3.1.2). We recall that Ci is the complement of Bi. We

define the upper semi-computable functions Stqj
Bi

= qj − StqjCi
, which will also be denoted

by St〈i,j〉. If Fk is a finite subset of N, we define fk = sup{Stqj
Bi

: 〈i, j〉 ∈ Fk}. The function

µ 7→
∫
fkdµ is then upper semi-computable, uniformly in k. Indeed, let q be the maximal

qj enumerated by Fk: q − fk = inf{StqjCi
+ q − qj} is a constructive element of C(X,R+),

uniformly in k, and
∫
fkdµ = q −

∫
(q − fk)dµ.

Another corollary can easily be inferred:

Corollary 2.1.5.1. Let fi be uniformly computable real functions such that |fi| ≤ Mi where Mi

are uniformly computable bounds. Then the functions µ 7→
∫
fidµ are uniformly computable.

Proof. The functions fi + Mi (resp. Mi − fi) are uniformly lower (resp. upper) semi-

computable, so
∫
fidµ =

∫
(fi + Mi)dµ −Mi = Mi −

∫
(Mi − fi)dµ. Proposition 2.1.5.1

allows to conclude.

Again, the lower semi-computability of the integral of lower semi-computable func-

tions characterizes the computability of the measure:

Proposition 2.1.5.2. Given a measure µ ∈M(X), the following are equivalent:

1. µ is computable,

2. Iµ : C(X,R+) → R+ is lower semi-computable,

3.
∫

sup{Sti1 , . . . ,Stik}dµ is lower semi-computable uniformly in 〈i1, . . . , ik〉.

Proof. [1 ⇒ 2] is a direct consequence of proposition 2.1.5.1, [2 ⇒ 1] is a direct consequence

of theorem 2.1.4.1: 1 : τ → C(X,R+) mapping U to 1U is constructive, so the constructivity

of Iµ implies that of vµ = Iµ ◦ 1, which implies the computability of µ, [2 ⇔ 3] holds by

Scott-continuity of the operator.
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2.2 Computable Probability Spaces

In this section, we study in details the following class of spaces:

Definition 2.2.0.1. A computable probability space is a pair (X,µ) where X is a com-

putable metric space and µ a computable Borel probability measure on X .

On a probability space, restricting oneself to continuous functions is too much limited

and does not even makes sense: the space L1 of integrable functions is actually a quotient

space, identifying functions which differ on a null set.

On a computable probability space a natural idea is to require functions to be com-

putable almost everywhere. Theorem 1.6.2.1 states that functions between computable met-

ric spaces which are computable on a dense set can be extended to functions which are

computable on a dense constructive Gδ. So assuming that the measure is supported on the

whole space, any function which is computable on a full-measure set can be extended to

a function which is computable on a full-measure constructive Gδ. We will see above that

the assumption on the support of the measure can be suppressed.

Definition 2.2.0.2. 1. Let (X,µ) be a probability space and Y a computable metric space.

A function f : X → Y is almost computable if it is constructively continuous on a

constructive Gδ of full measure, which we denote by Df .

2. A morphism of probability spaces f : (X,µ) → (Y, ν), is an almost computable

function f : X → Y such that ν = µf−1.

3. An isomorphism (f, g) : (X,µ) � (Y, ν) is a pair (f, g) of morphisms such that g◦f =

id on f−1(Dg) and f ◦ g = id on g−1(Df ).

If (f, g) is an isomorphism, it can be converted into a bijection h : D1 → D2 be-

tween full-measure constructive Gδ, such that h and h−1 are morphisms. Indeed, put

D2 = g−1(Df ) and D1 = f−1(D2) = g(D2): h = f |D1 : D1 → D2 is a bijection and

g|D2 is its inverse.

Let (X,µ) be a computable probability space and Y a computable metric space. If f :

X → Y is an almost computable function, then the induced probability measure ν = µF−1

is computable, and f : (X,µ) → (Y, ν) is a morphism of computable probability spaces.

Here is a simple example of an isomorphism. Let (X,µ) be a computable probability

space. The support Supp(µ) of µ (the smallest closed set of full measure) is a constructive
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closed set: U ∩Supp(µ) 6= ∅ ⇐⇒ µ(U) > 0. It follows that Supp(µ) is a computable metric

subspace ofX (see theorem 1.6.1.1). The induced measure is µ itself, which is a computable

probability measure, as element of M(Supp(µ)), and the computable probability spaces

(X,µ) and (Supp(µ), µ) are isomorphic. From this, it is possible to assume that the measure

is supported on the whole space when necessary.

2.2.1 Generalized binary representations

When studying computability over the reals, the first step is generally to get convinced

that the base-two numeral representation of real numbers is not adequate to define com-

putable functions. This relies in the fact that the space R of real numbers and the Cantor

space of binary representations are not homeomorphic.

But many interesting issues on the unit interval [0, 1] arise in a probabilistic context

instead of a topological one (think of Borel normality). For this purpose, the numeral

system is suitable, and may even be preferred: almost every real has a unique expansion.

Moreover, the Cantor space is a privileged place for computability, due to its symbolic

nature. For instance belonging to a basic open set (cylinder) can be decided: it boils down

to a simple pattern-matching. This is possible only because cylinders are at the same time

closed and open.

This idea has already been implicitly used to extend algorithmic randomness from

the Cantor space to the unit interval with the Lebesgue measure: algorithmic randomness

being at the boundary between probability theory and computability, the numeral system

is perfectly appropriate to carry out this extension.

We propose a generalization of the binary representation of real numbers, and prove

that every computable probability space admits such a representation. It will have im-

portant consequences in the application to dynamical systems, where the use of symbolic

models is essential.

To carry out this generalization, let us briefly scrutinize the binary numeral system on

the unit interval: bin : 2N → [0, 1] is a total surjective computable function. Every non-

dyadic real has a unique expansion, and the inverse of bin, defined on the set D of non-

dyadic numbers, is computable. Moreover, D is large both in a topological and measure-

theoretical sense: it is a residual (a dense Gδ) and has full Lebesgue measure. (bin,bin−1)

is then an isomorphism.
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In our generalization, we do not require every binary sequence to be the expansion of

a point, which would force X to be compact.

Definition 2.2.1.1. A binary representation of a computable probability space (X,µ) is a

constructively continuous surjective function ρ : 2ω → X such that, calling ρ−1(x) the set

of expansions of x ∈ X :

• there is a constructive dense Gδ of full measure D ⊆ X of points having a unique

expansion,

• ρ−1 : D → ρ−1(D) is constructively continuous.

Remark that a constructive Gδ of full measure is always dense in the support of the

measure. Also remark that a binary representation ρ induces an isomorphism (ρ, ρ−1)

between the Cantor space and the computable probability space.

The sequel of this section is devoted to the proof of the following result:

Theorem 2.2.1.1. Every computable probability space (X,µ) has a binary representation.

First remark that if there is such a binary representation, the domain D of the isomor-

phism is then totally disconnected: the pre-images of the cylinders form a basis of clopen

and even decidable sets. As subsets of the whole space X , they are generally not decidable,

but almost decidable instead.

Definition 2.2.1.2. A set A is said to be almost decidable if there are two constructive open

sets U and V such that:

U ⊂ A, V ∩A = ∅, U ∪ V is dense and has measure one

Remark that, as for subsets of N, a set is almost decidable if and only if its complement

is almost decidable. An almost decidable set is always a continuous set. Let B(s, r) be

a µ-continuous ball with computable radius: in general it is not an almost decidable set

(for instance, isolated points may be at distance exactly r from s). But if there is no ideal

point at distance r from s, then B(s, r) is almost decidable: take U = B(s, r) and V =

X \ B(s, r). The indicator 1A : X → [0, 1] of an almost decidable set A is an almost

computable function.

We say that the elements of a sequence (Ai)i∈N are uniformly almost decidable if there

are uniformly constructive open sets Ui, Vi satisfying the conditions of the definition.
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Proposition 2.2.1.1. If A is almost decidable then µ(A) is a computable real number.

Proof. Since U and V are constructive open sets, by proposition 2.1.4.1 their measures

are lower semi-computable. As µ(U) + µ(V ) = 1, their measures are also upper semi-

computable.

Consequences of Baire’s theorem

We present a series of lemma which follow from the computable Baire theorem (theo-

rem 1.6.1.3).

Lemma 2.2.1.1. Let (Y, µ) be a computable probability space with no isolated point. Then there is

a sequence of uniformly computable points (yn)n which is dense in X satisfying µ({yn}) = 0 for

all n.

Proof. The set R = {y ∈ Y : µ({y}) = 0} is a constructive Gδ: R =
⋂
n

⋃
i:µ(Bi)<2−n Bi. If Y

has no isolated point, R is moreover dense in Y .

Corollary 2.2.1.1. Let (X,µ) be a computable probability space and Y be a computable metric

space without isolated point. Let fi : X → Y be a sequence of uniformly computable functions.

Then there is a sequence (yn)n of uniformly computable points of Y which is dense in Y and such

that for all i, n, f−1
i (yn) is a µ-null set.

Proof. Define the uniformly computable measures µi = µf−1
i and apply the previous

lemma to the computable measure µ =
∑

i 2
−iµi (or intersect the uniform sequence of

constructive Gδ, which gives a constructive Gδ).

We can strengthen this requiring these sets to be also negligible from a topological

point of view. We recall that a set A is nowhere dense if the interior of its closure is empty;

if A is a closed set, A is nowhere dense if and only if its complement is dense.

Corollary 2.2.1.2. Under the same hypotheses, there is a sequence (yn)n of uniformly computable

points of Y which is dense in Y and such that for all i, n, f−1
i (yn) is a nowhere dense µ-null set.

Proof. Intersect the constructive Gδ from the preceding corollary with
⋂
i,j Y \ {fi(sj)}.

The yn constructed are such that every ideal point is outside f−1
i (yn), so the complement

of f−1
i (yn) is a dense open set.
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Theorem 2.2.1.2. There is a sequence (rn)n∈N of uniformly computable positive real numbers such

that (B(si, rn))〈i,n〉 is a basis of uniformly almost decidable balls.

Proof. Apply the preceding corollary to fi : X → R+ defined by fi(x) = d(si, x).

We will denote B(si, rn) by Bµ
k where k = 〈i, n〉. Note that different algorithmic de-

scriptions of the same µ may yield different sequences (rn)n∈N, so Bµ
k is an abusive nota-

tion. It is understood that some algorithmic description of µ has been chosen and fixed.

This can be done only because the measure µ is computable, which is then a crucial hy-

pothesis. We denote X \B(si, rn) by Cµk and define:

Definition 2.2.1.3. For w ∈ 2∗, the cell Γ(w) is defined by induction on |w|:

Γ(ε) = X, Γ(w0) = Γ(w) ∩ Cµi and Γ(w1) = Γ(w) ∩Bµ
i

where ε is the empty word and i = |w|.

This an almost decidable set, uniformly in w.

We are now able to prove theorem 2.2.1.1.

Proof of theorem 2.2.1.1. We construct an encoding function b : D → 2ω, a decoding function

ρ : Dρ → X , and show that ρ is a binary representation, with b = ρ−1.

Encoding. Let D =
⋂
iB

µ
i ∪ C

µ
i : this is a dense full-measure constructive Gδ. Define the

computable function b : D → 2ω by:

b(x)i =

 1 if x ∈ Bµ
i

0 if x ∈ Cµi

Let x ∈ D: ω = b(x) is also characterized by {x} =
⋂
i Γ(ω0..i−1). Let µρ be the image

measure of µ by b: µρ = µ ◦ b−1. b is then a morphism from (X,µ) to (2ω, µρ).

Decoding. Let Dρ be the set of binary sequences ω such that
⋂
i Γ(ω0..i−1) is a singleton.

We define the decoding function ρ : Dρ → X by:

ρ(ω) = x if
⋂
i

Γ(ω0..i−1) = {x}
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ω is called an expansion of x. Remark that x ∈ Bµ
i ⇒ ωi = 1 and x ∈ Cµi ⇒ ωi = 0,

which implies in particular that if x ∈ D, x has a unique expansion, which is b(x). Hence,

b = ρ−1 : ρ−1(D) → D and µρ(Dρ) = µ(D) = 1.

We now show that ρ : Dρ → X is a surjective morphism. For sake of clarity, the center

and the radius of the ballBµ
i will be denoted si and ri respectively. Let us call i an n-witness

for ω if ri < 2−(n+1), ωi = 1 and Γ(ω0..i) 6= ∅.

• Dρ is a Π0
2-set: we show that Dρ =

⋂
n{ω ∈ 2ω : ω has a n-witness}.

Let ω ∈ Dρ and x = ρ(ω). For each n, x ∈ B(si, ri) for some i with ri < 2−(n+1). Since

x ∈ Γ(ω0..i), we have that Γ(ω0..i) 6= ∅ and ωi = 1 (otherwise Γ(ω0..i) is disjoint of Bµ
i ). In

other words, i is an n-witness for ω.

Conversely, if ω has a n-witness in for all n, since Γ(ω0..in) ⊆ Bµ
in

whose radius tends

to zero, the nested sequence (Γ(ω0..in))n of closed cells has, by completeness of the space,

a non-empty intersection, which is a singleton.

• ρ : Dρ → X is computable. For each n, find some n-witness in of ω: the sequence

(sin)n is a fast sequence converging to ρ(ω).

• ρ is surjective: we show that each point x ∈ X has at least one expansion. To do

this, we construct by induction a sequence ω = ω0ω1 . . . such that for all i, x ∈ Γ(ω0 . . . ωi).

Let i ≥ 0 and suppose that ω0 . . . ωi−1 (empty when i = 0) has been constructed. As

Bµ
i ∪ C

µ
i is open dense and Γ(ω0..i−1) is open, Γ(ω0..i−1) = Γ(ω0..i−1) ∩ (Bµ

i ∪ C
µ
i ) which

equals Γ(ω0..i−10) ∪ Γ(ω0..i−11). Hence, one choice for ωi ∈ {0, 1} gives x ∈ Γ(ω0..i).

By construction, x ∈
⋂
i Γ(ω0..i−1). As (Bµ

i )i is a basis and ωi = 1 whenever x ∈ Bµ
i , ω

is an expansion of x.

The existence of a basis of almost decidable sets also leads to another characterization

of the computability of measures, which is reminiscent of what happens on the Cantor

space (see corollary 2.1.4.1). Let us say that two bases (Ui)i and (Vi)i of the topology τ are

constructively equivalent if the corresponding effective topological spaces are isomorphic.

Corollary 2.2.1.3. A measure µ ∈M(X) is computable if and only if there is a basis U = (Ui)i∈N

of uniformly almost decidable open sets which is constructively equivalent to the basis B of ideal

balls and such that all µ(Ui1 ∪ . . . ∪ Uik) are computable uniformly in 〈i1, . . . , ik〉.

Proof. if µ is computable, the almost decidable balls U〈i,n〉 = B(si, rn) are basis which
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is constructively equivalent to B: indeed, B(si, rn) =
⋃
qj<rn

B(si, qj) and B(si, qj) =⋃
rn<qj

B(si, rn), and rn is computable uniformly in n.

For the converse, the valuation function fµ is lower semi-computable. Indeed, the con-

structive open sets are uniformly constructive relatively to the basis U , so their measures

can be lower-semi-computed, computing the measures of finite unions of elements of U .

Hence µ is computable by theorem 2.1.4.1.

2.2.2 Computable Lebesgue space

It is a classical result that metric spaces endowed with a probability measure are

Lebesgue spaces, i.e. isomorphic to the unit interval with the Lebesgue measure together

with a countable set of mass points (see [Bil68]). We define:

Definition 2.2.2.1. A computable probability space is a computable Lebesgue space if it is

isomorphic to the computable probability space ([0, 1], λ) where λ is the Lebesgue measure.

and prove:

Theorem 2.2.2.1. Every computable probability space with no atom is a computable Lebesgue

space.

We first prove the result for (I = [0, 1], µ).

Lemma 2.2.2.1. The interval endowed with a non-atomic computable probability measure is a

computable Lebesgue space.

Proof. We define the morphism of computable probability spaces F (x) = µ([0, x]). As µ

has no atom and is computable, F is computable and surjective.

As F is surjective, it has right inverses. Two of them are G<(y) = sup{x : F (x) < y}
and G>(y) = inf{x : F (x) > y}, and satisfy F−1(y) = [G<(y), G>(y)]. They are increasing

and respectively left and right-continuous. As F is computable, they are even lower and

upper semi-computable respectively.

Let us define D = {y : G<(y) = G>(y)}: every y ∈ D has a unique pre-image by F ,

which is then injective on F−1(D). The restriction of F on F−1(D) has a left-inverse, which

is given by the restriction ofG< andG> onD. Let us call itG : D → I . By lower and upper

semi-computability of G< and G>, G is computable.
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Now, D is a Π0
2-set: D = ∩n{y : G>(y) − G<(y) < 1/n}. We show that I \ D is a

countable set. The family {[G<(y), G>(y)] : y ∈ I} indexed by I is a family of disjoint

closed intervals, included in [0, 1]. Hence, only countably many of them have positive

length. Those intervals are indexed by points y belonging to I \D, which is then countable.

It follows that D has Lebesgue measure one.

(F,G) is then an isomorphism between (I, µ) and (I, λ).

Proof of the theorem. We know from theorem 2.2.1.1 that every computable probability space

(X,µ) has a binary representation, which is in particular an isomorphism with the Cantor

space (2N, νρ). Using the classical binary representation of real numbers, the latter is iso-

morphic to the unit interval (I, µI) with the induced measure µI . If µ is non-atomic, so is

µI . By the previous lemma, (I, µI) is isomorphic to (I, λ).

2.3 When the measure is not computable

Let X be a computable metric space and µ a (not necessarily computable) Borel prob-

ability measure. We can consider, for a Borel probability µ on X , the enumerative lattice

τµ. The topologies τ and τµ are the same, only their associated countable bases B and Bµ

differ: the constructive open sets of (X, τµ,Bµ) are the µ-constructive open sets of (X, τ,B).

We recall that τµ ≡ C({µ}, τ). τµ is a pseudo-computable enumerative lattice, and

makes (X, τµ,Bµ) an effective topological space. When µ is computable, (X, τµ,Bµ) is

isomorphic to (X, τ,B).

TheGδ sets are the elements of the enumerative lattice (τµ)N: its constructive elements

are the µ-constructive Gδ sets. It may be useful to remark that (τµ)N ≡ C(N, τµ) ≡ C(N ×
{µ}, τ) ≡ C({µ}, τN) ≡ (τN)µ.

It gives a direct notion of µ-constructivity for functions: a function f from X to an ef-

fective topological space Y is µ-constructively continuous if f−1 : τY → (τX)µ is construc-

tive. It is equivalent to the existence of a constructively continuous function g : {µ}×X →
Y such that f(x) = g(µ, x).

From this, we could consider probability spaces (X,µ) for non-computable measures,

and define the associated notions of morphisms. But the computability of the measure

was essential in the construction of the binary representation. First, the construction of
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µ-continuity points (lemma 2.2.1.1) cannot be made uniform in the measure:

Proposition 2.3.0.1. There is no continuous function f : M([0, 1]) → [0, 1] such that µ({f(µ)}) =

0 for all µ.

Proof. The function δ : x→ δx is continuous, so f ◦ δ is a continuous function from [0, 1] to

[0, 1], so it has a fixed point x0: δx0({f(δx0)}) = 1.

Proposition 2.3.0.2. There is no continuous function f : M(R) → R such that µ({f(µ)}) = 0

for all µ.

Proof. If such an f exists, let g : R → R be the continuous function defined by g(x) = f(δx).

As in the preceding proof, we prove that g must have a fixed point, which contradicts the

hypothesis on f .

Let us suppose that g has no fixed point: replacing g by x 7→ −g(−x), we can assume

without loss of generality that g(x) > x for all x. Let α = g(0) + 1. The function h : λ 7→
f((1 − λ)δ0 + λδα) is continuous and h(λ) 6= α for all λ ∈ (0, 1]. As h(0) = g(0) < α,

h(1) < α and hence g(α) = h(1) < α. As g(0) > 0, g has a fixed point in (0, α).

Moreover, the construction which was possible for a computable measure is not pos-

sible in general:

Proposition 2.3.0.3. There exists a (non-computable) Borel probability measure µ on [0, 1] which

has no µ-computable continuity point.

Sketch of the proof. The space [0, 1]N of sequences of real numbers with the product topology

has a computable metric. In [Mil04], Miller proved the existence of a sequence α = (αn)n ∈
[0, 1]N such that there is no x which is α-computable and which does not belong to α. Such

a sequence has no “computable diagonalization”, i.e. there is no way to construct a point

x /∈ α from α. In particular, α contains all computable reals, as every computable real is

also α-computable.

Let µ =
∑

i 2
−iδαi be the mixture of the Dirac measures concentrated on the points

of this sequence. µ is α-computable, so µ has no µ-computable continuity point (which

should not belong to α and be α-computable).

The reason lies in the fact that µ has no minimal degree, i.e. there is no binary se-

quence ω which is µ-computable and such that µ is ω-computable. Such a sequence would
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be a representative for µ, which could be computed from any Cauchy sequence of ideal

measures converging exponentially fast to µ.

When µ has a minimal degree, the construction of continuity points can be made ex-

tensional, i.e. independent of the particular Cauchy sequence converging to µ, describing

µ by ω. Hence, such a measure has µ-computable continuity points.



Chapter 3

Algorithmic probability theory

Probability theory enables one to formulate and prove sentences like “property P

holds with probability one”, or “property P holds almost surely”. An idea which was

already addressed by Laplace, and later by Von Mises, is to identify the properties that an

infinite binary sequence should satisfy to be qualified “random”. Church and later Kol-

mogorov proposed a definition using computability theory, but Martin-Löf ([ML66]) was

the first one who defined a sound notion: a binary sequence is random if it satisfies all

properties of probability one which can be presented in an algorithmic way. A character-

ization of Martin-Löf randomness in terms of Kolmogorov complexity was later proved,

conferring robustness to this notion.

3.1 Algorithmic randomness

Still recently, algorithmic randomness was only defined on the space of binary se-

quences (or sequences on a finite alphabet). We first recall the classical setting.

3.1.1 Martin-Löf randomness on the Cantor space

Let ΣN be the space of infinite sequences on a finite alphabet Σ.

A finite string is easily describable if its Kolmogorov complexity is low. Kolmogorov

tried to define a notion of algorithmic random sequence as whose prefixes have maximal

complexity. Martin-Löf showed in [ML71] that this definition did not work: no infinite

sequence could be random in this sense. This lead him to propose in [ML66] a sound

67
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notion using tests:

Definition 3.1.1.1. Let µ be a computable probability measure on ΣN. A µ-Martin-Löf test

is a sequence of uniformly constructive open sets Un satisfying µ(Un) < 2−n.

A sequence ω passes such a test if ω /∈
⋂
n Un.

A sequence is µ-Martin-Löf random if it passes all µ-Martin-Löf tests.

In other words, the property “being in
⋂
n Un” has null probability, in an effective way:⋂

n Un is called an effective µ-null set.

He proved the following remarkable result:

Theorem. There is a universal µ-Martin-Löf test, i.e. a test that is passed exactly by random

sequences.

Later, Chaitin and Levin independently proposed the prefix variant of the Kolmogorov

complexity (see section 1.8) which enables to define a sound notion of individual algorith-

mic randomness. It was then proved that this notion coincides with Martin-Löf’s one.

Theorem 3.1.1.1 (Schnorr, Levin). Let µ be a computable measure on ΣN. A sequence ω is µ-

Martin-Löf random if and only if there is a constant c such that for all n,

K(ω0..n−1) > − logµ[ω0..n−1]− c.

(ω0..n−1 is the word which consists of the first n symbols of ω). The minimal such c,

called the randomness deficiency of ω, and defined by:

dµ(ω) := sup
n
{− logµ[ω0..n−1]−K(ω0..n−1)}

for all ω, is then finite exactly on random sequences.

Moreover, the coding theorem provides a simple upper bound on the complexity of

words, when the space is endowed with a computable measure. The function P : Σ∗ →
[0, 1] defined by P (w) = 2−K(|w|)µ([w]) is a semi-measure (see theorem 1.8.3.1): P (w) is

lower semi-computable uniformly in w, and
∑

w P (w) =
∑

n 2−K(n) ≤ 1, so the coding

theorem gives:

Proposition 3.1.1.1. Let µ be a computable measure on ΣN. For all w ∈ Σ∗,

K(w) <
+ − logµ([w]) +K(|w|)



Chapter 3: Algorithmic probability theory 69

Another presentation of tests is possible: a µ-randomness test is defined as a positive

lower semi-computable function t : {0, 1}N → R satisfying
∫
tdµ ≤ 1 (see [VV93] for an

interpretation of such tests). The associated effective null set is {x : t(x) = +∞} =
⋂
n{x :

t(x) > 2n}.

IfUn is a Martin-Löf test then t(ω) = sup{n : ω ∈ Un} is a randomness test. Conversely,

if t is a randomness test, then the sequence Un = {x : t(x) > 2n} is a Martin-Löf test.

Gács proved in [Gác79] that 2dµ is a universal randomness test: it multiplicatively

dominates all randomness tests, i.e. for all test t, there is a constant c such that 2dµ ≥ ct.

The proof of the existence of a universal test lies on the effective enumeration of all

tests. Using this presentation of tests, we show how to derive this enumeration from

proposition 1.4.1.7:

Proposition 3.1.1.2. The enumerative lattice C(2N,R+) is computable. If µ is a computable mea-

sure on 2N, the subset of functions f satisfying
∫
fdµ ≤ 1 is a constructive closed set.

Proof. Stq[w] � f ⇐⇒ q < infω∈[w] f(ω) ⇐⇒ [w] ⊆ f−1(q,+∞] which is semi-decidable,

as [w] is compact in a constructive way.

Let f be a finite supremum of step functions. ↑↑f ∩ A 6= ∅ ⇐⇒ ∃g ∈ A, f � g ⇐⇒∫
fdµ < 1, which is semi-decidable as

∫
fdµ is computable (on the Cantor space).

3.1.2 Martin-Löf randomness on a computable metric space

A first extension to more general spaces was proposed in [HW98] and [HW03], but

a sound theory of computable measures was lacking and in some sense the assumptions

put on the probability measure are not stable. A suitable extension to computable metric

spaces was carried out in [Gác05], generalizing at the same time Levin’s theory: algorith-

mic randomness is also defined for non-computable probability measures. We improve

this work removing a computability condition for the existence of a universal randomness

test. Our work is currently submitted to a journal ([HR07]).

As testing a statistical property may require computations using the probability mea-

sure µ, they are generally not constructive when µ is not computable. Instea, they are

constructive relatively to µ. We briefly recall how relative contructivity can be expressed in

a simple way, when dealing with objects in an enumerative lattice.

Let L be an enumerative lattice and x a point of an effective topological space X .

An element l ∈ L is x-constructive if there is a constructive function f ∈ C({x}, L) such
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that f(x) = l, which is equivalent to the existence of a constructive function f ∈ C(X,L)

such that f(x) = l (we recall that constructive functions from D ⊆ X to L are exactly the

restrictions to D of constructive functions from X to L) (see section 1.3.2 for more details).

We also recall that lower semi-computable functions from X to R+ are defined as con-

structive elements of C(X,R+). Mixing these two remarks gives the notion of a µ-lower

semi-computable function from X to R+ : it is a µ-constructive element of C(X,R+).

Definition 3.1.2.1. Given a probability measure µ, a µ-randomness test is a µ-lower semi-

computable function t : X → R+ such that
∫
tdµ ≤ 1.

A uniform randomness test is a lower semi-computable function t : M(X)×X → R+

such that for all µ ∈M(x),
∫
tµdµ ≤ 1 where tµ denotes t(µ, .).

Definition 3.1.2.2. A point x ∈ X is said to be µ-random with respect to t if tµ(x) <∞. A

point is µ-random if it is random w.r.t every test t. The set of µ-random points is denoted

by Rµ.

A set N ⊆ X is a µ-effective null set if there is a randomness test t such that N ⊆ {x ∈
X : tµ(x) = +∞}.

By definition, a uniform test t is a constructive element of C(M(X) ×X,R+) and can

also be seen, by curryfication, as a constructive element of C(M(X), C(X,R+)).

A presentation à la Martin-Löf can be directly obtained using the morphisms of enu-

merative lattices F : C(X,R+) → τN and G : τN → C(X,R+) defined by: F (f)n =

f−1(2n,+∞) and if U = (Un)n, G(U)(x) = sup{n : x ∈
⋂
k≤n Uk}. They satisfy F ◦G = id :

τN → τN and preserve the corresponding effective null sets.

We show an important result which holds on any computable metric space: there is

a universal uniform randomness test (theorem 3.1.2.1). This result was already obtained

in [Gác05] but only on spaces which have recognizable Boolean inclusions, which is an

additional computability property on the basis of ideal balls.

Proposition 3.1.2.1. There is a sequence (te)e∈N of uniformly lower semi-computable functions

from M(X)×X to R+ satisfying:

1. te is a uniform randomness test for all e,

2. if f is a lower semi-computable function, then there is e such that for all µ which satisfies∫
f(µ, .)dµ ≤ 1, it holds te(µ, .) = f(µ, .).
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Proof. For each finite subset Fk of N, consider the functions from M(X) × X to R+ : fk =

supi∈Fk
Sti and fk = supi∈Fk

Sti (see remark 2.1.5.1), which are respectively lower and up-

per semi-computable. The function mk : M(X) → [0, 1] defined by mk(µ) =
∫
fk(µ, .)dµ

is upper semi-computable by remark 2.1.5.1, so the sets Wk := m−1
k [0, 1) are uniformly

constructive open subsets of M(X). If µ ∈Wk then
∫
fk(µ)dµ ≤ mk(µ) < 1.

Consider the effective enumeration (Ee)e∈N of the r.e. subsets of N2: there is a recursive

function ϕ : N2 → N such that Ee =
⋃
n Fϕ(e,n) and Fϕ(e,n) ⊆ Fϕ(e,n+1). Define

te = sup
n
fϕ(e,n).1Wϕ(e,n)×X

The functions te are uniformly constructive and are uniform tests. Indeed, as fϕ(e,n) ≤
fϕ(e,n+1),

∫
te(µ, .)dµ = sup{

∫
fϕ(e,n)(µ, .) : µ ∈Wϕ(e,n)} ≤ 1.

Now, let f be a lower semi-computable function from M(X)×X to R+ . There is a r.e.

set E ⊆ N such that f = supj∈E Stj . Let E′ = {i : ∃j ∈ E,Sti / Stj}. E′ is r.e. so there is e

such that E′ = Ee: we prove that te(µ, .) = f(µ, .) for each µ such that
∫
f(µ, .)dµ ≤ 1.

By definition ofEe = E′, f = supn fϕ(e,n) = supn fϕ(e,n), somϕ(e,n)(µ) =
∫
fϕ(e,n)(µ, .) ≤∫

f(µ, .)dµ. Moreover, fϕ(e,n)(µ, x) < f(µ, x) as soon as f(µ, x) > 0, so
∫
f(µ, .)dµ = 0 or∫

fϕ(e,n)(µ, .)dµ < f(µ, .)dµ. In both cases, µ ∈ Wϕ(e,n) whenever
∫
f(µ, .)dµ ≤ 1. Hence,

te(µ, .) = supn fϕ(e,n)(µ, .) = f(µ, .).

It has two important consequences:

Corollary 3.1.2.1. Let t be a µ-test: there is a uniform test t′ such that t′µ = t.

Proof. t : {µ}×X → R+ can be extended to a lower semi-computable function f : M×X →
R+ . Applying the preceding proposition to f gives a uniform test t′ which coincides with

f on µ: t′µ = fµ = t.

Theorem 3.1.2.1 (Universal uniform test). There is a universal uniform randomness test, that

is a uniform test tu such that for every uniform test t there is a constant c with tu ≥ ct.

Let µ be a probability measure on X . A point x ∈ X is µ-random if and only if it is µ-random

with respect to tu.

Proof. It is defined by tu :=
∑

e 2−e−1te.
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3.1.3 Weaker notions of randomness

Martin-Löf random points are points which pass a large class of tests, but for some

theorems, this class is broader than necessary. In [Sch71], Schnorr proposed a smaller

class of tests which induce a strictly weaker notion of randomness, which are sufficiently

random to satisfy many classical probability theorems, as for instance the strong law of

large numbers (on the Cantor space with a Bernoulli measure). Schnorr tests may not be

suitable on computable metric spaces with non-computable measures. We introduce the

class of Borel-Cantelli tests which we will prove later to be equivalent to Schnorr tests when

the measure is computable.

The weak notion of Kurtz-randomness can be straightforwardly extended to metric

spaces, and happens to be very useful. We refer the reader to [HW97], [DG] for characteri-

zations of Schnorr and Kurtz randomness on the Cantor space.

First, let us recall the celebrated Borel-Cantelli lemma.

Theorem (Borel-Cantelli). Let (X,µ) be a probability space and An be measurable sets.

If
∑

n µ(An) <∞ then for µ-almost every x, x ∈ An only finitely many times.

If
∑

n µ(An) = ∞ and the An’s are pairwise independent, then for µ-almost every x, x ∈ An
infinitely many times.

From now, we suppose thatX is a computable metric space and µ is a Borel probability

measure on X (for the moment, we do not require µ to be computable). We denote by Πµ
1

the set of complements of µ-constructive open sets (see section 2.3).

A sequence xn of non-negative real numbers is said to be effectively summable if there

is a total recursive function φ : N → N such that
∑

n≥φ(i) xn < 2−i.

Definition 3.1.3.1. A Borel-Cantelli test (BC-test for short) is a sequence (An)n∈N of uni-

formly Πµ
1 -sets such that the sequence µ(An) is effectively summable.

A point x passes a Borel-Cantelli test if it belongs to An only finitely many times, i.e.

if x /∈ lim supnAn.

A point is Schnorr random if it passes all BC-tests.

If P (x) is a property of points of X , we will say that P is tested by a BC-test (An)n if

P (x) holds for all points x that pass the test: passing the test is a guarantee that P will be

satisfied (but it may not be an equivalence). Let us point out simple properties of BC-tests,
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which follow from the fact that the class Πµ
1 is closed under finite unions, in a constructive

way.

Normal form If (An)n is a BC-test, it can be converted into a BC-test (Bn)n such that

µ(Bn) < 2−n. Indeed, there is a computable sequence of natural numbers ki such

that µ(
∑

n≥ki
µ(An)) < 2−i. Put Bi =

⋃
ki≤n<ki+1

An. Obviously, a point belongs to

An infinitely often if and only if it belongs to Bi infinitely often. This construction is

uniform in the primitive test.

Finite conjunction If properties P, P ′ can be tested by BC-tests (An)n and (A′n)n, then

the conjunction P ∧ P ′ can be tested by a single BC-test: the sequence defined by

A′′n = An+1 ∪A′n+1 is a BC-test, and lim supnA′′n = lim supnAn ∪ lim supnA′n.

Countable conjunction If property Pi can be tested by BC-test (Ain)n and if the tests are

uniform in i, then the conjunction of all Pi can be tested by a single BC-test A′n =⋃
i<nA

i
n+1+i: it is easy to check that

⋃
i lim supnAin ⊆ lim supnA′n. Indeed, for each i,⋂

k

⋃
n>k A

i
n =

⋂
k

⋃
n>k A

i
n+1+i ⊆

⋂
k

⋃
n>k A

′
n.

We will also use a smaller class of tests (see [DGR04] for more information):

Definition 3.1.3.2. A Kurtz-test is a sequence of uniformly Πµ
1 setsAn satisfying µ(An) = 0.

A point passes a Kurtz-test if x /∈
⋃
nAn.

A point is Kurtz-random if it passes all Kurtz-tests.

Actually, (An)n is a Kurtz test if and only if
⋂
n(X \ An) is a µ-constructive Gδ of full

measure.

Proposition 3.1.3.1. Every Kurtz random point is in the support of the measure.

Proof. Supp(µ) is a µ-constructive Gδ: B ∩ Supp(µ) 6= ∅ ⇐⇒ µ(B) > 0. And it has full

measure.

On the Cantor space with a computable measure, it is well-known that Martin-Löf ran-

domness implies Schnorr-randomness which implies Kurtz-randomness, the first implica-

tion being straightforward as Schnorr-tests are defined as a particular class of Martin-Löf

tests. We establish a generalization of this theorem. This time, the second implication is

direct. For the first one, one has to be careful: as in the construction of the universal test,

extensionality with respect to the measure is a problem which did not exist for computable

measures.
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Theorem 3.1.3.1. Martin-Löf-randomness ⇒ Schnorr-randomness ⇒ Kurtz-randomness.

Proof of the first implication. LetAn = X\Un be a BC-test. We encloseAn in a µ-constructive

open set Tn of measure ≤ 2−n. We first make the description of Un independent of µ: Un =

Vn(µ) where Vn are uniformly constructive open subsets of M(X) × X : Vn =
⋃
i∈En

Bi

where En are uniformly r.e. sets. We now describe Vn by closed balls: defining E′n = {j :

∃i ∈ En, Bj / Bi}, Vn =
⋃
j∈E′n Bj =

⋃
j∈E′n Bj . As E′n is r.e. uniformly in n, there is a

total recursive function ϕ : N2 → N such that E′n =
⋃
p Fϕ(p,n) with Fϕ(p,n) ⊆ Fϕ(p+1,n).

Denoting the complement of Bj by Cj , we define the uniformly constructive open sets:

Vp,n =
⋃

j∈Fϕ(p,n)

Bj and Wp,n =
⋂

j∈Fϕ(p,n)

Cj

By construction, (i) Vn =
⋃
p Vp,n, (ii) Vp,n ∩Wp,n = ∅ and (iii) An ⊆Wp,n. We finally define

Tn =
⋃
p:µ(Vp,n(µ))>1−2−n Wp,n(µ) which is, by construction, a µ-ML-test. As µ(Vn(µ)) =

µ(Un) > 1 − 2−n, there is p such that Tn contains Wp,n(µ), which contains An. It follows

that lim supnAn ⊆ lim supn Tn, so (
⋃
n>k Tn)k is a µ-ML-test containing lim supnAn.

Proof of the second implication. Let (An)n be a Kurtz-test. Define Bn =
⋂
k≥nAk which is

also a Kurtz-test and hence a BC-test, and lim supnBn =
⋂
nAn.

The three notions enable us to state a sharp Borel-Cantelli lemma for algorithmic ran-

dom points (see [Dav01] for similar results for Martin-Löf random sequences).

Proposition 3.1.3.2 (Borel-Cantelli for random points). Let X be a computable metric space

and µ a Borel probability measure on X . Let An be Borel sets.

i) IfAn is a µ-constructive open set, uniformly in n, and
∑

n µ(An) <∞ then every µ-Martin-

Löf random point belongs to only finitely many An.

ii) If An is a Πµ
1 -set, uniformly in n, and the sequence µ(An) is effectively summable then every

µ-Schnorr random point belongs to only finitely many An.

iii) If An is a µ-constructive open set, uniformly in n, the An’s are independent events and∑
n µ(An) = ∞, then every µ-Kurtz random point belongs to infinitely many An.

Proof.
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i) Such a sequence (An)n is usually called a Solovay test. Solovay tests are known to

be equivalent to Martin-Löf tests. Indeed, define t(x) = #{n : x ∈ An}: t is µ-

lower semi-computable and
∫
tdµ =

∑
n µ(An) < ∞, so t is a Martin-Löf test, and

lim supnAn = {x : t(x) = ∞}.

ii) By definition of Borel-Cantelli tests.

iii) It is a direct corollary of the classical theorem: lim supnAn =
⋂
n

⋃
k≥nAk has mea-

sure one, so the sets Bn = X \ (
⋃
k≥nAk) form a Kurtz-test.

3.1.4 Application to random variables

We briefly investigate convergence of random variables for algorithmic random points.

An attempt toward this direction can be found in [V’y97]. The results established here are

rather simple but clarifying, and seem to be new.

Background

Let (X, d,S) be a computable metric space and µ a (not necessarily computable) Borel

probability measure on X : it makes (X,µ) a probability space (we do not mention the

σ-field, which is always supposed to be the Borel one).

Definition 3.1.4.1. A random variable on (X,µ) is a measurable function f : X → R.

Definition 3.1.4.2. Random variables fn converge in probability to f , written fn →P f , if

lim
n
µ[|fn − f | ≥ ε] = 0

for each positive ε, where [|fn − f | ≥ ε] denotes {x : |fn(x)− f(x)| ≥ ε}.

Definition 3.1.4.3. Random variables fn converge almost surely to f if for almost every

point x ∈ X , fn(x) → f(x). It is equivalent to the convergence in probability to 0 of

supk≥n |fn − f |.
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Effective versions

Definition 3.1.4.4. Random variables fn effectively converge in probability to f if for each

ε > 0, µ{x : |fn(x) − f(x)| < ε} effectively tends to 1, uniformly in ε. That is, there is a

computable function n(ε, δ) such that for all n ≥ n(ε, δ), µ[|fn − f | ≥ ε] < δ.

Definition 3.1.4.5. Random variables fn effectively converge almost surely to f if supk≥n |fn−
f | effectively converge in probability to 0.

Proposition 3.1.4.1 (Convergence for Schnorr-random points). Let fn, f be uniformly almost

computable random variables. If fn effectively converges almost surely to f then the convergence of

fn(x) to f(x) can be tested by a Borel-Cantelli test. In particular, convergence holds for µ-Schnorr-

random points.

Proof. Define the uniformly constructive open sets Un(ε) = [|fn − f | < ε]. µ(
⋂
n≥k Un(ε))

converges effectively to 1, uniformly in ε so it is possible to compute a sequence (ki)i such

that µ(
⋂
n≥ki

Un(2−i)) > 1− 2−i for all i. Put Vi =
⋂
ki≤n<ki+1

Un(2−i): Vi is constructively

open uniformly in i and µ(Vi) > 1 − 2−i. The complements of the sets Vi form a Borel-

Cantelli test, and if a point x passes the test, there is i0 such that x ∈ Vi for all i ≥ i0,

so |fn(x) − f(x)| < 2−i for all n ≥ ki, i ≥ i0. Remark that the convergence of fn(x) is

effective.

Proposition 3.1.4.2 (Convergence for Martin-Löf random points). Let fn : X → R+ be a de-

creasing sequence of uniformly lower semi-computable random variables which effectively converge

in probability to 0. Then fn converges to 0 on Martin-Löf random points.

Proof. Let ε be a positive rational number. By hypothesis Un = [fn > ε] are uniformly

constructive open sets whose measures converge effectively to 0.

When the convergence is not effective, a version for random points can still be stated,

even if it is weaker.

Proposition 3.1.4.3 (Kurtz-random points). Let fn be uniformly lower semi-computable random

variables which converge almost surely to a constant c. Then lim supn fn ≥ c on Kurtz-random

points.

Proof. Let a < c be a rational number: with probability one, lim supn fn ≥ c so fn > a

infinitely many times. In other words the set
⋂
k

⋃
n>k[fn > a] has measure one: it is a

Kurtz-test.
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Note that the convergence is not supposed to be effective, and the constant c need not

be computable.

When the almost sure convergence is not effective, one cannot expect convergence for

all Martin-Löf random points. For instance, let Ω be Chaitin’s number (it is a lower semi-

computable real number in [0, 1], which is Martin-Löf random for the Lebesgue measure

λ, see [LV93]). Let (qn)n be an increasing computable sequence of rational numbers con-

verging to Ω, and let Un = (qn,Ω + 1/n). fn = 1Un is uniformly lower semi-computable

and converges λ-almost surely to 0, but fn(Ω) = 1.

Lemma 3.1.4.1. Let f be an almost computable random variable. There is a lower semi-computable

function g : X → R such that f = g on DX .

Proof. f : Df → R is computable, i.e. constructively continuous, so it is also constructively

continuous as a function from Df to R with the order topology. Hence, it is construc-

tively continuous for the lower and upper topologies: as R is a computable enumerative

lattice, f is then a constructive element of C(Df ,R≤) and C(Df ,R≥). So it has a lower

semi-computable extension g on X .

Corollary 3.1.4.1. Let fn be uniformly almost computable random variables which converge almost

surely to a constant c. Then lim supn fn ≥ c ≥ lim infn fn on Kurtz-random points.

Proof. Apply the previous lemma to fn and −fn (which can be extended to lower semi-

computable random variables, which coincide with fn and −fn on the domain of com-

putability of fn, and hence on Kurtz-random points).

Corollary 3.1.4.2. Let fn, f be uniformly almost computable random variables. If fn converge

almost surely to f , then lim supn fn ≥ f ≥ lim infn fn on Kurtz-random points.

Proof. Apply the previous lemma to the sequence fn− f which converges almost surely to

0.

Rudiments of algorithmic integration theory

Proposition 3.1.4.2 directly induces a result we could be a starting point for an algorith-

mic version of the classical integration theory, as algorithmic randomness is an algorithmic

version of probability theory.
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It is a basic result from measure theory that on a metric space X endowed with a Borel

probability measure µ, for every Borel set A and every ε > 0 there is an open set G and

closed set F such that F ⊆ A ⊆ G and µ(G \ F ) < ε (see [Bil68]). From this, one easily

derives: for every integrable function h : X → R+ and every ε > 0 there is a lower semi-

continuous function g and an upper semi-continuous function f such that f ≤ h ≤ g and∫
(g − f)dµ < ε. This approach has been used [Eda07a] to build a computable theory of

measure and integration.

Definition 3.1.4.6. An integrable function h : X → R+ is effectively integrable if there is a

decreasing sequence gn of uniformly lower semi-computable functions and an increasing

sequence fn of uniformly upper semi-computable functions such that fn ≤ f ≤ gn and∫
(gn − fn)dµ < 2−n.

A similar definition of effectively measurable set is possible: the effective measurable

sets of measure zero are exactly the effective null sets. Consequently, this fits very well

with algorithmic randomness:

Proposition 3.1.4.4. If h is effectively integrable, then supn fn(x) = h(x) = infn gn(x) for all

Martin-Löf random points x.

Proof. By Tchebychev inequality, µ[gn − fn ≥ ε] ≤ 1
ε

∫
(gn − fn)dµ effectively converges to

0, so
⋂
n[gn − fn > ε] is an effective null set. One could also apply proposition 3.1.4.2 to

gn − fn.

A unified algorithmic theory of measure, integration and randomness should be in-

vestigated in the future.

The value of lower semi-computable functions on random points

Here is a rather surprising consequence: lower semi-computable random variables

which coincide on a full-measure set actually coincide on an effective full-measure set (ef-

fective in Kurtz sense).

Proposition 3.1.4.5. Let f, g : X → R be lower semi-computable functions. f and g coincide

almost everywhere if and only if they coincide on µ-Kurtz random points.

Proof. Suppose f and g coincide almost everywhere.
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There is a r.e. set E such that g = sup{Sti : i ∈ E}. Define the r.e. set E′ = {j :

∃i ∈ E,Stj / Sti}. Then g = sup{Stj : j ∈ E′} = sup{Stj : j ∈ E′}. Enumerating E′

and taking finite suprema, we can construct an increasing sequence gn of uniformly upper

semi-computable functions such that g = sup gn. Applying proposition 3.1.4.3 to f − gn,

which are uniformly lower semi-computable and converge almost everywhere to 0, gives

f ≥ lim infn gn = g on µ-Kurtz random points. Exchanging f and g gives the result.

Given a lower semi-continuous function f : X → R and a point x, dropping the value

of f on x leaves f lower semi-continuous: for each a ≤ f(x), the function g defined by

g(x) = a and g = f elsewhere is lower semi-continuous. When f is moreover lower

semi-computable and x is a computable point, dropping f(x) to a lower semi-computable

number a leaves f lower semi-computable.

The following proposition says that when x is µ-Kurtz random and µ({x}) = 0, f(x)

is the maximal possible value.

Proposition 3.1.4.6. Let f be a lower semi-computable random variable and x a µ-Kurtz random

point such that µ({x}) = 0. For each a ∈ R, define ga(x) = f(x) + a and ga = f elsewhere. For

each ε > 0, gε is not lower semi-continuous at x and g−ε is not lower semi-computable at x.

Proof. As g−ε coincides almost everywhere with f but at x, it cannot be lower semi-computable

by the preceding proposition.

Suppose gε is lower semi-continuous. Let α be a rational number such that f(x) < α <

gε(x). As g is lower semi-continuous, there is an ideal ball B containing x such that gε ≥ α

on B. Let B′ / B containing x, and C ′ = X \B′. As x is µ-Kurtz random, the full-measure

open set U = X \ {x} cannot be constructive. However, U is exactly C ′ ∪ f−1(α,+∞]:

contradiction.

3.2 Randomness on a computable probability space

When fixing a computable probability measure, the enumeration of randomness tests

is a consequence of theorem 1.4.2.1 applied to the pseudo-computable enumerative lattice

C(X,R+).

Proposition 3.2.0.7. Let (X,µ) be a computable probability space. Consider the pseudo-computable

enumerative lattice C(X,R+). The set of lower semi-continuous functions f : X → R+ which sat-

isfy
∫
fdµ ≤ 1 is a constructive closed subset of C(X,R+).
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Proof. A = {t :
∫
tdµ ≤ 1} is closed. To a finite set Fk ⊂ N corresponds a finite supremum

of step functions fk = sup{StqjBi
: 〈i, j〉 ∈ Fk}. Define fk = sup{Stqj

Bi
: 〈i, j〉 ∈ Fk}.

One has the interesting property that if fk / fk′ then
∫
fkdµ = 0 or

∫
fkdµ <

∫
fk′dµ.

Indeed, there is ε > 0 such that fk + ε ≤ fk′ on the set U where fk is supported, so∫
fkdµ+ εµ(U) ≤

∫
U fk′dµ ≤

∫
fk′dµ. If

∫
fkdµ > 0 then µ(U) > 0.

We claim that A∩ ⇑fk 6= ∅ ⇐⇒
∫
fkdµ < 1. Indeed, if there is k′ with fk / fk′ ∈ A,

there is j such that fk / fj / fk′ . As fk ≤ fk′ ,
∫
fkdµ ≤

∫
fjdµ <

∫
fk′dµ ≤ 1. Conversely,

suppose that
∫
fkdµ < 1: as fk is the point-wise infimum of {fj : fk /fj}, by the monotone

convergence theorem
∫
fkdµ = inf{

∫
fjdµ : fk / fj} so there is fj / fk such that

∫
fjdµ <

1.

We study the particular case of a computable measure. As a morphism of computable

probability spaces is compatible with measures and computability structures, it shall be

compatible with algorithmic randomness. Indeed:

Proposition 3.2.0.8. Morphisms of computable probability spaces are defined on Martin-Löf, ran-

dom points and preserve randomness.

Proof. Let F : D ⊆ X → Y be a morphism. Every Kurtz random (and hence every ML-

random, Schnorr-random) point is in D.

Let tν : Y → R+ be the universal ν-test. The function tν ◦ F : D → R+ is lower

semi-computable, i.e. it is a constructive element of C(D,R+). It is the restriction to D of

a constructive function f ∈ C(X,R+). As µ(D) = 1,
∫
tν ◦ Fdµ is well defined and equals∫

fdµ. As F is measure-preserving,
∫
tν ◦Fdµ =

∫
tνdν ≤ 1. Hence f is a µ-test. Let x ∈ X

be a µ-random point: as x ∈ D, tν(F (x)) = f(x) < +∞, so F (x) is ν-random.

Corollary 3.2.0.3. Let (F,G) : (X,µ) � (Y, ν) be an isomorphism of computable probability

spaces. Then F|Rµ
and G|Rν are total computable bijections between Rµ and Rν , and (F |Rµ)−1 =

G|Rν .

In particular:

Corollary 3.2.0.4. Let ρ be a binary representation on a computable probability space (X,µ). Each

point having a µρ-random expansion is µ-random and each µ-random point has a unique expansion,

which is µρ-random.
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On a computable probability space, Borel-Cantelli tests are equivalent to Schnorr ran-

dom tests (this is why we called Schnorr random points those points which pass all Borel-

Cantelli tests).

Definition 3.2.0.7. A Schnorr-test is a sequence of uniformly constructive open sets Un

such that µ(Un) < 2−n and µ(Un) are uniformly computable real numbers.

Proposition 3.2.0.9 (Schnorr tests vs Borel-Cantelli tests). On a computable probability space,

Schnorr-tests and Borel-Cantelli tests are equivalent. More precisely, for every Schnorr-test (Vn)n,

there is a BC test (An)n such that
⋂
n Vn ⊆ lim supnAn; for every BC test (An)n, there is a

Schnorr-test (Vn)n such that lim supnAn ⊆
⋂
n Vn.

Proof. Let (An) be a BC test, and Un = X \ An. Expressing Un as a constructive union

of almost decidable balls, one can construct a sequence of sets A′n ⊆ Un which are finite

unions of almost decidable closed balls, such that µ(A′n) > 1−2−n. Let Vn = X \A′n: (Vn)n

is a Schnorr-test, and lim supnAn ⊆ lim supn Vn. The sets
⋃
k>n Vk form a Schnorr-test.

Conversely, let (Vn)n be a Schnorr-test: if Vk = ∅ for some k, then take An = X for all

n. Otherwise, we express Vn as a union of almost decidable sets which are disjoint up to

null sets. There is a total recursive function ϕ such that Vn =
⋃
iB

µ
ϕ(i,n) =

⋃
iB

µ
ϕ(i,n) (Bµ

k

are almost decidable balls). Let us define U〈k,n〉 =
⋃
i≤k B

µ
ϕ(i,n) and

A〈0,n〉 = B
µ
ϕ(0,n) A〈k+1,n〉 = B

µ
ϕ(k+1,n) \ U〈k,n〉

One has U〈k,n〉 ⊆ A〈0,n〉 ∪ A〈1,n〉 ∪ . . . ∪ A〈k,n〉 (easy by induction on k) and Vn =⋃
k U〈k,n〉 =

⋃
k A〈k,n〉.

All A〈k,n〉 are almost decidable sets so their measures are uniformly computable. If

k 6= k′ then A〈k,n〉 and A〈k′,n〉 are disjoint up to a null set, so
∑

k,n µ(A〈k,n〉) =
∑

n µ(Vn)

is computable. It follows that the sequence µ(Ai) is effectively summable. As Ai are uni-

formly Π1 sets, (Ai) is a Borel-Cantelli test.

Now,
⋂
n Vn ⊆ lim supiAi. Indeed, if x ∈

⋂
n Vn then for each n there is k such that

x ∈ A〈k,n〉, so x is in infinitely many Ai’s.

Combination of measures

We denote the set of µ-Martin-Löf random points by Rµ. We state simple observa-

tions on the decomposition of the set of random points induced by the decomposition of a

probability measure. The same results hold for Schnorr and Kurtz random points.
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Lemma 3.2.0.2. Let µ1, µ2 be computable probability measures and α ∈ (0, 1) a computable real

number. Let µ = αµ1 + (1 − α)µ2. Let Rµ be the set of µ-Martin-Löf random points: Rµ =

Rµ1 ∪Rµ2 .

Proof. αµ1 ≤ µ so for every µ-test t, αt is a µ1-test. It implies thatRµ1 ⊆ Rµ. If t1 is a µ1-test

and t2 a µ2-test, then min(t1, t2) is a µ-test and min(t1(x), t2(x)) < ∞ ⇐⇒ t1(x) < ∞ or

t2(x) <∞. So Rµ ⊆ Rµ1 ∪Rµ2 .

When µ is a probability measure on X and A is a subset of X with positive measure,

the induced measure µA is defined by µA(B) = µ(B|A) = µ(B ∩A)/µ(A).

Lemma 3.2.0.3. Let µ be a computable measure and U be a constructive open set such that µ(U)

is a computable real number. Let F = X \ U : then µU and µF are computable measures, and

Rµ = RµU ]RµF .

Proof. Indeed, µU (V ) = µ(U ∩ V )/µ(U) and µF (V ) = µ(U ∪ V )/µ(U)− 1.

µ = αµU +(1−α)µF where α = µ(U), soRµ = RµU ∪RµF by lemma 3.2.0.2. Moreover,

RµU ⊆ U as µU (U) = 1, and RµF ⊆ Supp(µF ) ⊆ F as µF (F ) = 1. So RµU ∩RµF = ∅.

A characterization using Kolmogorov complexity ? The binary representation enables

one to get a notion of Kolmogorov complexity of points in a computable metric space. The

characterization of Martin-Löf randomness in terms of complexity directly follows. For

points x which have a unique expansion ω, define:

Kn(x) = K(ω0..n−1) and Γn(x) = ρ([ω0..n−1])

Corollary 3.2.0.5. Let ρ be a binary representation on a computable probability space (X,µ). Then

x is µ-Martin-Löf random if and only if there is c such that for all n:

Kn(x) ≥ − logµ(Γn(x))− c

However, the meaning of this complexity is not clear and depends on the particular

binary representation that is involved. On a computable metric space, it is possible to

define the algorithmic complexity of x up to ε as the minimal complexity of an ideal ball

of radius ε containing x, which is the local algorithmic version of the ε-entropy defined by

Kolmogorov and Tikhomirov in [KT59], [KV61]. This was proposed by Galatolo in [Gal99],

where a link is proved between this local algorithmic entropy and dimension.
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On the Cantor space where ideal balls are cylinders, this approach has been intensively

studied during the past ten years, defining constructive versions of Hausdorff, packing,

box counting dimension and relating Kolmogorov complexity with these constructive di-

mensions (see for instance [May01], [Lut03], [Rei04], [Sta05]). It is possible to extend these

ideas to computable metric spaces. Lacking time, we do not address this here; however,

in the last section, we will apply these ideas to dynamical systems, in order to relate the

algorithmic complexity of orbits to the topological entropy of the system.

Difficulties appear when trying to relate this algorithmic complexity to computable

measures, and it is hardly possible to get a characterization of randomness using complex-

ity, like the one given by theorem 3.1.1.1 on the Cantor space: the fact that the latter is

totally disconnected is an essential feature.

3.2.1 Pseudo-random points

Here, (X,µ) is a computable probability space. Although computable points are gen-

erally not algorithmically random at all (unless the measure is concentrated on it), com-

putable points may be random relatively to a particular probabilistic law.

Definition 3.2.1.1. Let T be a (Kurtz, Schnorr, Borel-Cantelli or Martin-Löf) randomness

test. A point x is pseudo-random for T if x passes the test and is a computable point.

The existence of pseudo-random points is desirable if one wants to carry out reliable

simulations of a probabilistic process on a computer. We briefly investigate this question

from an abstract point of view: in particular, we do not wonder if such pseudo-random

points can be computed in practice. We prove the following result:

Theorem 3.2.1.1. Every Kurtz test admits a sequence of uniformly pseudo-random points which

is dense in Supp(µ).

Every Borel-Cantelli test admits a sequence of uniformly pseudo-random points which is dense

in Supp(µ).

Proof. The proofs essentially use the computable Baire’s theorem (theorem 1.6.1.3).

Of course, the first point is directly implied by the second one. Nevertheless, it can

be directly proved in a simple manner: the support of µ is a constructive closed set (U ∩
Supp(µ) 6= ∅ ⇐⇒ µ(U) > 0) and hence a computable metric subspace (theorem 1.6.1.1);
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every Kurtz test induces, in the subspace Supp(µ), a dense constructive Gδ, to which the

computable Baire’s theorem can be applied.

By proposition 3.2.0.9, the second point is true for Borel-Cantelli tests if and only if it

is true for Schnorr-tests. We prove it for a Schnorr test (Vn)n. The restriction of µ to X \ Vn,

defined by νn(A) = µ(Vn ∩ A)/µ(Vn) is a computable measure (lemma 3.2.0.3) so again

its support is a constructive closed set. By theorem 1.6.1.2 there is a computable sequence

(xnk)k which is dense in Supp(νn). Note that everything is uniform in n, so we can mix

these sequences into a computable sequence y〈n,k〉 = xnk , which is dense in the support of

µ: indeed, as µ(Supp(νn)) = µ(X \ Vn) ≥ 1 − 2−n,
⋃
n Supp(νn) has µ-measure one so it is

dense in Supp(µ).

We also present an alternative proof, which does not use Schnorr-tests.

Proof. Let (An)n be a Borel-Cantelli test. There is a computable non-increasing sequence of

rational numbers (an)n which converges to 0, such that µ(
⋃
k≥nAn) < an. Let Un = X \An:

Un is a constructive open set, uniformly in n. LetB be an ideal ball of radius 1 and positive

measure. In B we construct a computable point which lies in
⋃
n

⋂
k≥n Uk.

To do this, let V0 = B and n0 such that µ(B) + µ(
⋂
k≥n0

Uk) > 1 (such an n0 can be

effectively found): from this we construct a sequence (Vi)i of uniformly constructive open

sets and a computable increasing sequence (ni)i of natural numbers satisfying:

1. µ(Vi) + µ(
⋂
k≥ni

Uk) > 1,

2. Vi ⊆
⋂
n0≤k<ni

Uk,

3. diam(Vi) ≤ 2−i+1,

4. V i+1 ⊆ Vi.

The last two conditions assure that
⋂
i Vi is a computable point (lemma 1.6.1.1), the

second condition assures that this point lies in
⋂
k Uk.

Suppose Vi and ni have been constructed.

Claim. There exist m > ni and an ideal ball B′ of radius 2−i−1 such that

µ(Vi ∩
⋂

ni≤k<m
Uk ∩B′) > am. (3.1)
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Proof of the claim. By the first condition, µ(Vi ∩
⋂
k≥ni

Uk) > 0 so there exists an ideal ball

B′ of radius 2−i−1 such that µ(Vi ∩
⋂
k≥ni

Uk ∩ B′) > 0. As am converges to 0 as m grows,

there is m > ni such that µ(Vi ∩
⋂
k≥ni

Uk ∩B′) > am, which implies the assertion.

As inequality (3.1) can be semi-decided, such an m and a B′ can be effectively found.

For Vi+1, take any finite union of balls whose closure is contained in Vi ∩
⋂
ni≤k<m Uk ∩B

′

and whose measure is greater than am. Put ni+1 = m. Conditions 2., 3. and 4. directly

follow from the construction, condition 1. follows from µ(Vi+1) > am > 1 − µ(
⋂
k≥m Uk).

Corollary 3.2.1.1. Let fn, f be almost computable random variables. If fn converge effectively

almost surely to f , then there is a sequence of uniformly computable points (xi)i which is dense in

Supp(µ), such that fn(xi) → f(xi).

Proof. The convergence can be Borel-Cantelli tested (proposition 3.1.4.1), so we can apply

theorem 3.2.1.1.

Application: computable absolutely normal numbers

Theorem 3.2.1.1 can be applied to prove the existence of computable absolutely normal

numbers, in an elementary way. We extended this to prove the existence of computable

µ-typical points for a class of dynamical systems. This extension is presented in [Roj08]

and in an article [GHR07b] that is currently submitted.

An absolutely normal (or just normal) number is, roughly speaking, a real number

whose digits (in every base) show a uniform distribution, with all digits being equally

likely, all pairs of digits equally likely, all triplets of digits equally likely, etc. While a gen-

eral, probabilistic proof can be given that almost all numbers are normal ([Bor09]), this proof

is not constructive and only very few concrete numbers have been shown to be normal. It

is for instance widely believed that the numbers
√

2, π and e are normal, but a proof re-

mains elusive. The first example of an absolutely normal number was given by Sierpinski

in 1917 ([Sie17]), twenty years before the concept of computability was formalized. Its con-

struction is quite complicated and is a priori unclear whether his number is computable or

not. In [BF02] a recursive reformulation of Sierpinski’s construction (equally complicated)

was given, furnishing a computable absolutely normal number.



Chapter 3: Algorithmic probability theory 86

As an application of theorem 3.2.1.1 we give a simple proof that computable absolutely

normal numbers are dense in [0, 1].

For b ≥ 2 let Db be the set of real numbers in [0, 1] which are not b-adic: it is a con-

structive dense Gδ with Lebesgue full measure. Let w ∈ {0, 1, . . . , b − 1}∗. For n ≥ 0 and

x ∈ Db define fn(x) to be the mean number of occurrences of w in the first n digits of its

b-ary expansion ω:

fn(x) =
1
n

#{i ≤ n : ωi..i+|w|−1 = w}

fn are uniformly computable onDb. The fact that λ-almost every real x ∈ [0, 1] is normal in

base b is expressed by the almost sure convergence of fn to the constant function f = b−|w|.

The proof of this is a slight modification of the proof of the strong law of large numbers,

which originally requires the independence of the random variables involved.

Here, fn and fp are independent if |n− p| ≥ |w|. One can prove the following:

P [|fn − f | ≥ ε] ≤ 2|w|
ε2n

(3.2)

which only implies the effective convergence in probability of fn to f . Furthermore,

using the particular form of fn (a mean of eventually independent random variables), it

can be proved that fn(x) → f(x) if and only if fn2(x) → f(x). The random variables fn2

effectively converge almost surely to f , and this is uniform in b, w.

It follows that the convergence of fn to f can be Borel-Cantelli tested, uniformly in

b, w, so the simultaneous convergence of all f b,wn to f b,w for every b ≥ 2, w ∈ {0, . . . , b− 1}∗

can be Borel-Cantelli tested. Hence, there is a dense computable sequence of real numbers

which are absolutely normal.

Proof of (3.2). IfX is a random variable, EX is the expectation ofX , VX = E(X2)−E(X)2

its variance. Let Xi(x) = 1 if the b-expansion of x between ranks i and i + |w| − 1 is w,
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Xi(x) = 0 otherwise. EXi = EX2
i = β := b−|w| and Xi, Xj are independent if |i− j| ≥ |w|.

∑
i<j<n

EXiXj =
n−2∑
i=0

n−1∑
j=i+1

EXiXj

≤
n−2∑
i=0

i+|w|−1∑
j=i+1

EXiXj +
n−2∑
i=0

n−1∑
j=i+|w|

EXiXj

=
n−2∑
i=0

|w|−1∑
j=1

EX0Xj +
n−|w|−1∑
i=0

n−i−1∑
j=|w|

β2

= (n− 1)
|w|−1∑
j=1

EX0Xj +
(n− |w|)(n− |w|+ 1)

2
β2

≤ (n− 1)(|w| − 1) +
(n− |w|)(n− |w|+ 1)

2
β2

Let Sn = X0 + . . .+Xn−1.

VSn =
∑
i<n

EX2
i + 2

∑
i<j<n

EXiXj − (ESn)2

= nβ + 2
∑
i<j<n

EXiXj − (nβ)2

≤ (β + 2|w| − 2− (2|w| − 1)β2)n+ (|w| − 1)(|w|β2 − 2) ≤ 2|w|n

By Tchebychev inequality, P [|fn − f | ≥ ε] ≤ Vfn/ε2. As fn = Sn/n, (3.2) follows.





Chapter 4

Algorithmic ergodic theory

In a classical world, randomness is understood as deterministic unpredictability. The

world evolves deterministically, and our limited knowledge of the present state of nature

prevent us to predict what will happen in the future, so everything happens as if the evo-

lution had a random component. The model of determinism is the theory of dynamical

systems, while probability theory is a model of pure randomness. The goal of ergodic the-

ory is to look at dynamical systems from a probabilistic point of view. It talks about global

properties of a system, or generic behavior, instead of prediction of orbits.

The algorithmic theory of randomness, which is among others an attempt to improve

probability theory giving a notion of random object, is then to be applied to ergodic the-

ory. Part of this chapter and the following are gathered in an article [GHR07c] which is

following the submission process.

4.1 Background

We recall the bases of ergodic theory. More details can be found in standard references

[Bil65], [Wal82], [Pet83], [HK95], [HK02].

Let (X, d) be a metric space: the topology generates the Borel σ-field, which makes X

a measurable space. Let T : X → X be a measurable map. A probability measure µ on

X is invariant under T if for all Borel set A, µ(A) = µ(T−1A), that is µ is a fixed point

of the operator µ 7→ µ∗ defined by µ∗ = µT−1. We also say that T preserves µ, or that

T is an endomorphism of the probability space (X,µ). Given such an endomorphism, a

Borel set A is T -invariant if T−1A = A (mod 0), i.e. the symmetric difference A∆T−1A

89
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has µ-measure 0. The system (X,µ, T ) (or the measure µ) is said to be ergodic if every T -

invariant set has measure 0 or 1: the system has no proper subsystem (where proper means

“of non-trivial measure”). Another characterization is that every observable f ∈ L1(X,µ)

which is invariant under T , i.e. satisfying f = f ◦ T almost everywhere, is constant almost

everywhere (think of the particular case when f is the characteristic function of some Borel

set A).

Poincaré recurrence theorem Let T be an endomorphism of a probability space (X,µ).

If A is a measurable set with positive measure, then for µ-almost every point x ∈ A, there

is i ≥ 1 such that T ix ∈ A. In other words, µ(A ∩
⋃
i≥1 T

−iA) = µ(A). From this it is easy

to derive that the orbit of µ-almost every point x ∈ A comes back to A infinitely often.

Birkhoff ergodic theorem Let T be an endomorphism of a probability space (X,µ). The

Birkhoff ergodic theorem states that for any f ∈ L1(X,µ) and for µ-almost every x ∈ X ,

the following limit exists:

f∗(x) := lim
n→∞

1
n

n−1∑
i=0

f ◦ T i(x), (4.1)

Moreover, f∗ ∈ L1(X,µ), f∗ is T -invariant and
∫
f∗dµ =

∫
fdµ. If the system is moreover

ergodic, it follows that f∗ =
∫
fdµ almost everywhere.

In general there is no point x for which the limit exists for every f ∈ L1(X,µ): for each

x one can construct a pathological f making the Birkhoff mean oscillate. Nevertheless, for

any countable family {fi} of such functions, there is a full-measure set of points for which

the convergence holds for each fi. When the system is ergodic, defining:

µxn =
1
n

n−1∑
i=0

δT ix

the convergence of the Birkhoff mean (4.1) can be reformulated as µxnf → µf . When X is

a separable metric space, it is possible to find a countable family {fi} such that the weak

convergence of µxn to µ is characterized by the convergence µxnfi → µfi for every fi in this

family (see proposition 2.1.1.1).

Definition 4.1.0.2 (µ-typical points). Let (X, d) be a separable metric space, µ a probability

measure and T an endomorphism of (X,µ). A point x ∈ X is µ-typical with respect to T if

lim
n→∞

1
n

n−1∑
i=0

f ◦ T i(x) =
∫
fdµ
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for all continuous bounded real function f . Equivalently, x is µ-typical if µxn converges

weakly to µ.

From the discussion above, the set of µ-typical points for T has measure one when the

system is ergodic. In giving full weight to the set of µ-typical points, the measure µ selects

those orbits whose statistics reproduce µ.

Symbolic model Let T be an endomorphism of a (Borel) probability space (X,µ). A

classical idea is to simplify the dynamics watching it through a discrete filter. A finite

measurable partition is a finite collection ξ = {C1, . . . , Ck} of pairwise disjoint Borel sets,

called cells or atoms, such that µ(∪iCi) = 1. To (X,µ, T ) is then associated a symbolic

dynamical system, in the following way. Let ΣN be the set of infinite sequences of elements

of Σ = {1, . . . , k}. To a point x ∈ X corresponds an infinite sequence ω = (ωi)i∈N = φξ(x) ∈
ΣN defined by:

ωj = i ⇐⇒ T j(x) ∈ Ci

The imageXξ ofX by φξ is a subset of ΣN which is invariant under the shift transformation

σ : ΣN → ΣN defined by σ(ω)i = ωi+1 for all i. The measure µ induces a probability

measure µξ = µφ−1
ξ on Xξ, which is invariant under σ. The system (Xξ, µξ, σ) is then

called the symbolic model associated to (X,µ, T, ξ).

Symbolic models are of great importance when dealing with information theory. They

are mainly used to see the dynamical system as a source of strings in order to investi-

gate transmission problems as compression, and relating them to global properties of the

system.

4.2 Ergodic theory on computable probability spaces

4.2.1 Effective symbolic dynamics

The requirement of ξ being measurable makes the symbolic model appropriate from

the measure-theoretic point of view. On a computable probability space, symbolic models

shall be moreover constructive.

Definition 4.2.1.1. Let T be an endomorphism of a computable probability space (X,µ)

and ξ = {C1 . . . , Ck} a finite measurable partition. The associated symbolic model (Xξ, µξ, σ)
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is said to be an effective symbolic model if the map φξ : X → {1, . . . , k}N is a morphism of

computable probability spaces (here the space {1, . . . , k}N is endowed with the standard

computable structure).

We denote by ξ(x) the atom containing x (if there is one). Observe that φξ is con-

structively continuous on its domain only if the atoms are constructive open sets (in the

domain):

Definition 4.2.1.2 (Computable partitions). A measurable partition ξ is said to be a com-

putable partition if its atoms are constructive open sets.

Conversely:

Proposition 4.2.1.1. Let (X,µ) be a computable probability space and T : X → X an endomor-

phism. If ξ = {C1 . . . , Ck} is a finite computable partition, then the associated symbolic model is

effective.

Proof. Define the full-measure constructive Gδ:

D =
⋂
n∈N

T−n(C1 ∪ . . . ∪ Ck)

The sets φ−1
ξ ([i0, . . . , in]) = Ci0∩T−1Ci1∩. . .∩T−nCin are uniformly constructive open

in D, so φξ is constructively continuous on D.

The results obtained in section 2.2 directly give the following:

Corollary 4.2.1.1. On every computable probability space, there exists a family of uniformly com-

putable partitions which generates the Borel σ-field.

Proof. From the family of uniformly almost decidable balls {Bµ
k } provided by theorem

2.2.1.2, we consider the computable partitions ξk = {Bµ
k , X \Bµ

k}: as the almost decidable

balls form a basis of the topology, the σ-field generated by the Pk is the Borel σ-field.

4.2.2 Dynamics of random points

In this section we study two examples of probabilistic theorems from ergodic theory

and give their version for algorithmic random points: recurrence and statistical typicality.
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Recurrence

Definition 4.2.2.1. Let X be a metric space. A point x ∈ X is said to be recurrent for a

transformation T : X → X , if lim inf
n→∞

d(x, Tnx) = 0.

The version of the recurrence theorem for random points can be made very short,

using the classical theorem instead of making its proof constructive.

Proposition 4.2.2.1 (Random points are recurrent). Let (X,µ) be a computable probability

space. If x is µ-Kurtz random, then it is recurrent with respect to every endomorphism T on

(X,µ).

Proof. Let x be µ-Kurtz random and B an almost decidable neighborhood of x. As x is

µ-Kurtz random, one necessarily has µ(B) > 0. The measure µB(.) = µ(.|B) is computable

and x is also µB-Kurtz random by lemma 3.2.0.3. Let T be an endomorphism: there is a

constructive open set U such that: ⋃
n≥1

T−nB = U ∩D

where D is the domain of computability of T . By the Poincaré recurrence theorem, this set

has full measure for µB , so x, which is µB-Kurtz random, belongs to U . As x also belongs

to D, there is n ≥ 1 such that Tnx ∈ B. As T preserves µ-randomness, Tnx is µ-Kurtz

random, so the orbit of x visits B infinitely many times. And this holds for every almost

decidable B neighborhood of x.

It implies that for every open set U of positive measure, every µ-Kurtz random point

which belongs to U comes back infinitely often to U .

Statistical typicality This problem has already been studied by V’yugin ([V’y97]) on the

Cantor space and for computable observables. Using effective symbolic dynamics, it is

possible to extend this result in a straightforward way to computable probability spaces.

We will use the particular case of V’yugin’s theorem:

Lemma 4.2.2.1. Let µ be a computable shift-invariant ergodic measure on the Cantor space {0, 1}ω.

Then for each µ-Martin-Löf random sequence ω:

lim
n

1
n

n−1∑
i=0

ωi = µ([1]) (4.2)
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We are now able to prove:

Theorem 4.2.2.1 (Random points are typical). Let (X,µ) be a computable probability space.

Then each µ-Martin-Löf random point x is µ-typical for every ergodic endomorphism T .

Proof. Let fA be the characteristic function of the set A. First, let us show that if A is an

almost decidable set then for all µ-random point x:

lim
n

1
n

n∑
i=0

fA ◦ T i(x) = µ(A) (4.3)

Indeed, consider the computable partition defined by P := {U, V } with U and V as in

definition 2.2.1.2 and the associated symbolic model (XP , σ, µP). By proposition 4.2.1.1,

φP(x) is a well defined µP -random infinite sequence, so lemma 4.2.2.1 applies and gives

the result.

Now we apply proposition 2.1.1.1to prove that µn = 1
n

∑
i<n δT ix converges weakly

to µ: the countable family of almost decidable sets is a basis of the topology, closed under

finite unions, and µn(A) → µ(A) for every almost decidable set A.

It means that for any bounded continuous function f : X → R and any µ-Martin-Löf

random point x,

lim
n

1
n

n∑
i=0

f ◦ T i(x) =
∫
fdµ

with no computability assumption required on f .

Martin-Löf randomness, Schnorr randomness and typicality Martin-Löf randomness is

then strong enough to assure the convergence of the Birkhoff mean. Several questions re-

main open: is Martin-Löf randomness too strong for this purpose? Is Schnorr randomness

strong enough? In [GHR08] we show that Schnorr randomness assures typicality for a par-

ticular class of dynamical systems (namely mixing systems) and that it is tight: if a point

is not Schnorr random, there is a mixing system for which it is not typical (see [Roj08] for

a complete presentation).

In [V’y98] V’yugin constructs a computable shift-invariant measure µ for which the

convergence of the Birkhoff mean is not effective: hence proposition 3.1.4.1 cannot be ap-

plied in order to prove that the convergence holds for µ-Schnorr random points. Actually,

the constructed measure µ is a combination
∑

i αiµi of computable ergodic measures for
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which the shift is mixing. The set of µ-Schnorr random points is then the union of the sets

of µi-Schnorr random points (generalization of lemma 3.2.0.2), so the convergence holds

for µ-Schnorr random points.

It would be worth investigating the following problem: is there a computable shift-

invariant ergodic measure for which the convergence is not effective? If there is such a

measure µ, are there µ-Schnorr random points which are not µ-typical?

4.3 When the measure is not computable

Let X be a compact metric space and T : X → X a continuous map. The Krylov-

Bogoliubov theorem states that the set MT (X) of T -invariant Borel probability measures

is non-empty. It can also be shown that it is a compact and convex subset of M(X), whose

extremal points are the ergodic T -invariant measures.

When X is a (still compact) computable metric space and T is computable, it is not

known yet if there exist computable T -invariant probability measures. It can be shown

that the complement of MT (X) is a constructive open subset of M(X). In particular,

when X is compact in a constructive way, so are M(X) and MT (X). In this context, the

only invariant measure of a uniquely ergodic computable map is always computable.

But in general, the computability of invariant measures is an open issue. In [GHR07b]

and [GHR07a] we solve the problem for classes of dynamical systems (namely mixing

systems) for which we prove the existence of a computable invariant measure. This is

developed in [Roj08].

But in general, the computability of invariant measures is an open issue. Another

problem which should be investigated is the ergodic decomposition of invariant measures:

ergodic measures are the extremal points of the convex setMT (X), so every invariant mea-

sure can be decomposed as a mixture of ergodic measures (which corresponds to a decom-

position of a system into “minimal” subsystems). If an invariant measure is computable,

is this decomposition also computable ?

If a system has few computable invariant measures, what has been developed in

this chapter cannot be applied. We show how V’yugin’s result can be extended to non-

computable invariant measures.

Theorem 4.3.0.2 (Birkhoff ergodic theorem for random points). LetX be a computable metric
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space and µ be a probability measure on X . Let T : X → X be a measure-preserving map and

f : X → R an integrable function. Suppose T and f are computable on a full-measure constructive

Gδ.

1. For every µ-random point x, the following limit exists:

f∗(x) := lim
n→∞

1
n

n−1∑
i=0

f ◦ T ix

2. If µ is ergodic, then f∗(x) =
∫
fdµ for every µ-random point x.

V’yugin’s proof is based on the constructive proof of Birkhoff’s theorem by Bishop,

defining a function which measures the number of oscillations of the Birkhoff mean. Let

us outline his proof of the first point.

Outline of V’yugin’s proof. Let fn = 1
n

∑
i<n f ◦ T i. For rational numbers α < β, define

σ(ω, α, β) := sup
{
N : ∃n1 < n2 < . . . n2N with fn2k−1

(x) < α, fn2k
(x) > β

}
which is infinite when lim infn fn(ω) < α < β < lim supn fn(ω). Using the invariance of the

measure, he proves that
∫
σ(ω, α, β)dµ is finite. If f and T are computable, then σ(ω, α, β)

is lower semi-computable, and hence is a test (up to a multiplicative constant).

It follows that σ(ω, α, β) < ∞ for every µ-Martin-Löf random sequence. As α < β are

arbitrary, fn(x) converges for all µ-Martin-Löf random point x.

Let us now remark some facts:

1. everything is defined as well on a computable metric space X ,

2. the function σ does not depend on µ, and is a µ-test for every invariant measure µ,

even if µ is not computable,

3. it is not necessary to assume that f and T are computable everywhere, but on a con-

structive full-measure Gδ instead. Indeed, from this there is a constructive Gδ of full

measure, D where all fn are computable: σ(x, α, β) is then lower semi-computable

on D and can be extended to a lower semi-computable function t on all X : t is then

a µ-test, which coincides with σ(x, α, β) on D.
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These remarks allow to obtain the first result: as every µ-Martin-Löf random point x is

also µ-Kurtz random, x belongs to D so t(x) = σ(x, α, β) < ∞ and hence fn(x) converges

(α, β are arbitrary).

The second result cannot be so simply obtained: when µ is ergodic, the test used to

prove that f∗(x) =
∫
fdµ for each µ-random point depends on µ. Fortunately, we can use

proposition 3.1.4.3 to conclude: as fn converges almost surely to the constant c =
∫
fdµ,

and fn are uniformly almost computable, lim infn fn(x) ≤
∫
fdµ ≤ lim supn fn(x) for all

µ-Kurtz random point x. As every µ-Martin-Löf random point x is µ-Kurtz random and

fn(x) converges by the first result, the limit must be
∫
fdµ.





Chapter 5

Entropy and orbit complexity

In [Bru83], Brudno defined an algorithmic complexity K(x, T ) for the orbits of a con-

tinuous dynamical system on a compact space, and proved the following results:

Theorem (Brudno). Let X be a compact topological space and T : X → X a continuous map.

1. For any ergodic probability measure µ the equality K(x, T ) = hµ(T ) holds for µ-almost all

x ∈ X .

2. For all x ∈ X , K(x, T ) ≤ h(T ).

where hµ(T ) is the Kolmogorov-Sinaı̈ entropy of (X,T ) with respect to µ and h(T ) is

the topological entropy of T . This result seems miraculous as no computability assump-

tion is required on the space or on the transformation T . Actually, this miracle lies in the

compactness of the space, which makes it finite when observations are made with finite

precision (open covers of the space can be reduced to finite open covers). Indeed, when

the space is not compact, it is possible to construct systems for which the algorithmic com-

plexity of orbits is correlated in no way to their dynamical complexity (see [WB96]). In

[Gal00], Galatolo generalized Brudno’s definition to non-compact spaces endowed with

a computable structure (computable metric spaces), and requiring the transformation to

be computable. He shows that his definition coincides with Brudno’s one in the compact

case.

Brudno and Galatolo’s definitions are actually inspired from the topological approach

of dynamical systems. We show that the measure-theoretic setting provides a natural no-

tion of algorithmic complexityKµ(x, T ) defined almost everywhere (in particular on Kurtz

99
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random points) and for which the first result in Brudno’s theorem comes easily. We go fur-

ther in showing:

Theorem (5.1.4.2). Let T be an ergodic endomorphism of the computable probability space (X,µ),

Kµ(x, T ) = hµ(T ) for all ML-random point x.

In the topological context, we then use Galatolo’s definition of algorithmic complexity

of orbits K(x, T ), and strengthen the second part of Brudno’s theorem, showing:

Theorem (5.2.3.1). Let T be a computable map on a compact computable metric space X ,

sup
x∈X

K(x, T ) = h(T )

Remark that this was already implied by Brudno’s theorem, using the variational prin-

ciple: h(T ) = sup{hµ(T ) : µ T -invariant}. Nevertheless, our proof uses purely topological

and algorithmic arguments and no measures. In particular, it does not use the variational

principle, and can be thought as an alternative proof of it.

We finally prove that the two notions of algorithmic complexity of orbits coincide on

Martin-Löf random points:

Theorem (5.3.0.3). Let T be an ergodic endomorphism of the computable probability space (X,µ),

where X is compact,

Kµ(x, T ) = K(x, T ) for all ML-random point x.

5.1 The measure point of view

Suppose discrete objects (symbolic strings for instance) are produced by some source.

The tendency of the source toward producing such objects more than others can be mod-

eled by a probability distribution, which gives more information than the crude set of

possible outcomes. The Shannon entropy of the probabilistic source measures the degree

of uncertainty that lasts when taking the probability distribution into account.

Any ergodic dynamical system (X,T, µ) can be seen as a source of outputs. Kol-

mogorov and Sinaı̈ adapted Shannon’s theory to dynamical systems in order to measure

the degree of unpredictability or chaoticity of an ergodic system. The first step consists in

discretizing the spaceX using finite partitions. Let ξ = {C1, . . . , Cn} be a finite measurable
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partition ofX . Then let T−1ξ be the partition whose atoms are the pre-images T−1Ci. Then

let

ξn = ξ ∨ T−1ξ ∨ T−2ξ ∨ . . . ∨ T−(n−1)ξ

be the partition given by the sets of the form

Ci0 ∩ T−1Ci1 ∩ . . . ∩ T−(n−1)Cin−1 ,

varying Cij among all the atoms of ξ. Knowing which atom ξn a point x belongs to comes

to knowing which atoms of the partition ξ the orbit of x visits up to time n− 1.

The measure-theoretical entropy of the system w.r.t the partition ξ can then be thought

as the rate (per time unit) of gained information (or removed uncertainty) when observa-

tions of the type “Tn(x) ∈ Ci” are performed. This is of great importance when classifying

dynamical systems: it is a measure-theoretical invariant, which enables one to distinguish

non-isomorphic systems.

We briefly recall the definition. For more details, we refer the reader to [Bil65], [Wal82],

[Pet83], [HK95].

5.1.1 Entropy with Shannon information

Given a partition ξ and a point x, ξ(x) denotes the atom of the partition x belongs to.

Let us consider the Shannon information function relative to the partition ξn (the informa-

tion which is gained by observing that x ∈ ξn(x)),

Iµ(x|ξn) := − logµ(ξn(x))

and its mean, the entropy of the partition ξn,

Hµ(ξn) :=
∫
X
Iµ(.|ξn)dµ =

∑
C∈ξn

−µ(C) logµ(C)

The measure-theoretical or Kolmogorov-Sinaı̈ entropy of T relative to the partition ξ

is defined as:

hµ(T, ξ) = lim
n→∞

1
n
Hµ(ξn).

(which exists and is an infimum, since the sequence Hµ(ξn)n is sub-additive). With the

Shannon information function, it is possible to define a kind of point-wise notion of en-

tropy with respect to a partition ξ:

lim sup
n

1
n
Iµ(x|ξn).
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This local entropy is related to the global entropy of the system by the celebrated Shannon-

McMillan-Breiman theorem:

Theorem (Shannon-McMillan-Breiman). Let T be an ergodic endomorphism of the probability

space (X,B, µ) and ξ a finite measurable partition. Then for µ-almost every x,

lim
n→∞

1
n
Iµ(x|ξn) = hµ(T, ξ). (5.1)

The convergence also holds in L1(X,B, µ).

Now we suppress the partition-dependency: the Kolmogorov-Sinaı̈ entropy of (X,T, µ)

is

hµ(T ) := sup{hµ(T, ξ) : ξ finite measurable partition}

We recall the following two results that we will need later. The first proposition follows

directly from the definitions.

Proposition 5.1.1.1. If (ΣN, µξ, σ) is the symbolic model associated to (X,µ, T, ξ) then hµ(T, ξ) =

hµξ
(σ).

The next proposition is taken from [Pet83]:

Proposition 5.1.1.2. If (ξi)i∈N is a family of finite measurable partitions which generates the Borel

σ-field up to sets of measure 0, then hµ(T ) = supi hµ(T, ξ0 ∨ ... ∨ ξi).

5.1.2 Entropy with Kolmogorov information

In this section, T is an endomorphism of the computable probability space (X,µ) and

ξ = {C1, . . . , Ck} is a computable partition. Let (ΣN, µξ, σ) be the effective symbolic model

of (X,µ, T, ξ) where Σ = {1, . . . , k} (see section 4.2.1).

Kolmogorov introduced algorithmic complexity as a quantity of information, on the

same level as Shannon information. When the measure, the transformation and the par-

tition are computable, it makes sense to define the algorithmic equivalents of the notions

defined above. It turns out that the two points of view are strongly related.

An atom C of the partition ξn can then be seen as a word of length n on the alphabet

Σ, which allows one to consider its Kolmogorov complexityK(C). For those points whose
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iterates are covered by ξ (they form a constructive dense Gδ of full measure), we define the

Kolmogorov information function relative to the partition ξn:

I(x|ξn) := K(ξn(x))

which is independent of µ (this was originally defined by Brudno, for a not necessarily

computable partition). We then define the algorithmic entropy of the partition ξn as the

mean of I:

Hµ(ξn) :=
∫
X
I(.|ξn)dµ =

∑
C∈ξn

µ(C)K(C).

We also define a local notion of algorithmic entropy, which we call symbolic orbit

complexity:

Definition 5.1.2.1 (Symbolic orbit complexity). Let T be an endomorphism of the com-

putable probability space (X,µ). For any finite computable partition ξ, we defineKµ(x, T |ξ) :=

lim supn
1
nI(x|ξn). Then,

Kµ(x, T ) := sup{Kµ(x, T |ξ) : ξ computable partition}

As there are only countably many computable partitions, Kµ(x, T ) is defined almost

everywhere (at least on Kurtz random points). The quantity Kµ(x, T |ξ) was introduced by

Brudno in [Bru83] without any computability restriction on the space, the measure nor the

transformation. He proved:

Theorem 5.1.2.1 (Brudno). Kµ(x, T |ξ) = hµ(T, ξ) for µ-almost every point.

Taking the supremum of Kµ(x, T |ξ) over all – not necessarily computable – finite par-

titions ξ generally gives an infinite quantity, that is why Brudno did not go further (he did

not have a computable structure at his disposal), and proposed a topological definition

using open covers instead of partitions.

As we now show, the hypothesis of definition 5.1.2.1 enables one to derive Brudno’s

theorem in a rather simple manner.

5.1.3 Equivalence

The theory of randomness and Kolmogorov complexity on the space of symbolic se-

quences provides powerful results (theorem 3.1.1.1 and proposition 3.1.1.1) which enable
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us to relate the algorithmic entropies Iµ and Hµ to the Shannon entropies Iµ and Hµ (in-

equalities (5.3), (5.5)). We recall these two results: if ΣN is endowed with a computable

probability measure ν, then for all ω ∈ ΣN,

− log ν[ω0..n−1]− dν(ω) ≤ K(ω0..n−1) <
+ − log ν[ω0..n−1] +K(n) (5.2)

where dν is the deficiency of randomness, which satisfies
∫
ΣN dνdν < 1 and is finite exactly

on Martin-Löf random sequences (the constant in <
+

does not depend on ω and n).

Equivalence between local entropies Applying (5.2) to ν = µξ directly gives:

Iµ(.|ξn)− dµ ◦ φξ ≤ I(.|ξn) <
+

Iµ(.|ξn) +K(n) (5.3)

where it is defined (almost everywhere, at least on Kurtz random points). Every µ-Martin-

Löf random point x is mapped by φξ on a µξ-Martin-Löf random sequence (see proposition

3.2.0.8), whose randomness deficiency is finite. It then follows that the local entropies using

Shannon information and Kolmogorov information coincide on µ-random points:

Kµ(x, T |ξ) = lim sup
n

1
n
I(x|ξn) for every µ-Martin-Löf random point x (5.4)

This equality together with the Shannon-McMillan-Breiman theorem (5.1) give directly

Brudno’s theorem (theorem 5.1.2.1).

Equivalence between global entropies Now, the Kolmogorov-Sinaı̈ entropy, originally

expressed using Shannon entropy, can be expressed using algorithmic entropy. Taking the

mean in (5.3), one obtains:

Hµ(ξn)− 1 ≤ Hµ(ξn) <
+

Hµ(ξn) +K(n) (5.5)

So,

hµ(T |ξ) = lim
n

Hµ(ξn)
n

= lim
n

Hµ(ξn)
n

As the collection of computable partitions is generating (see corollary 4.2.1.1), the Kolmogorov-

Sinaı̈ entropy of (X,µ, T ) can be characterized by:

hµ(T ) = sup
{

lim
n

Hµ(ξn)
n

: ξ finite computable partition
}
.

It then follows that Kµ(x, T ) = hµ(T ) for µ-almost every x. We now strengthen this,

proving that it holds for all Martin-Löf random points.
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5.1.4 Symbolic orbit complexity of random points

On the Cantor space, V’yugin ([V’y97]) and later Nakamura ([Nak05]) proved a slightly

weaker version of the Shannon-McMillan-Breiman for Martin-Löf random sequences. In

particular, we will use:

Theorem 5.1.4.1 (V’yugin). Let µ be a computable shift-invariant ergodic measure on ΣN. Then,

for any µ-Martin-Löf random sequence ω,

lim sup
n→∞

− 1
n

logµ([ω0..n−1]) = hµ(σ).

Note that it is not known yet if the limit exists for all random sequences.

Using effective symbolic models, this can be easily extended to any computable prob-

ability space.

Corollary 5.1.4.1 (Shannon-McMillan-Breiman for random points). Let T be an ergodic en-

domorphism of the computable probability space (X,µ), and ξ a computable partition. For every

µ-Martin-Löf random point x,

lim sup
n→∞

− 1
n

logµ(ξn(x)) = hµ(T, ξ).

Proof. Since ξ is computable, the symbolic model (Xξ, µξ, σ) is effective. Every µ-Martin-

Löf random point x is mapped by proposition 3.2.0.8 to a µξ-Martin-Löf random sequence

ω, for which the preceding theorem holds. Using the facts that µ(ξn(x)) = µξ([ω0..n−1]) and

hµ(T, ξ) = hµξ
(σ) allows to conclude.

Finally, this implies our first announced result:

Theorem 5.1.4.2. Let T be an ergodic endomorphism of the computable probability space (X,µ).

For every µ-Martin-Löf random point x:

Kµ(x, T ) = hµ(T ).

Proof. We use equality (5.4): for every random point x, Kµ(x, T |ξ) = lim supn
1
nIµ(x|ξn)

which equals hµ(T, ξ) by the preceding result. Since the collection of all computable parti-

tions generates the Borel σ-field (corollary 4.2.1.1), sup{hµ(T, ξ) : ξ computable partition} =

hµ(T ) (see proposition 5.1.1.2).
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5.2 The topological point of view

Let X be a compact metric space and T : X → X a continuous map. The topological

entropy of the system (X,T ) measures the growth rate of the number of distinguishable

orbits of the system. It is a topological invariant, in particular it does not depend on the

metric inducing the topology. The original definition by Adler, Konheim and McAndrew

([AKM65]) uses open covers of the space. Brudno’s definition of algorithmic complexity

of orbits is underlay by this definition, and then is defined only for compact spaces.

Bowen ([Bow71],[Bow73]) gave a characterization of the topological entropy of a sys-

tem inspired of the ε-entropy of Kolmogorov and Tikhomirov ([KT59]), which makes sense

for non-compact spaces. Using this idea, Galatolo extended the notion of algorithmic com-

plexity of orbits to the non-compact case ([Gal00]). We denote by K(x, T ) the algorithmic

complexity of the orbit of x under T .

Using topological and algorithmic arguments, we prove:

Theorem. LetX be a compact computable metric space and T : X → X a computable map. Then,

h(T ) = sup
x∈X

K(x, T ).

where h(T ) is the topological entropy of the system.

5.2.1 Topological entropy

Bowen’s definition is reminiscent of the capacity (or box counting dimension) of a to-

tally bounded subset of a metric space. In order to prove the theorem mentioned above, we

will also use a characterization of topological entropy, expressing it as a kind of Hausdorff

dimension. We first present Bowen’s definition.

In this section, X is a metric space and T : X → X a continuous map.

Entropy as a capacity

For n ≥ 0, let us define the distance dn(x, y) = max{d(T ix, T iy) : 0 ≤ i < n} and the

Bowen ball Bn(x, ε) = {y : dn(x, y) < ε}, which is open by continuity of T . Given a totally

bounded set Y ⊆ X and numbers n ≥ 0, ε > 0, let N(Y, n, ε) be the minimal cardinality of

a cover of Y by Bowen balls Bn(x, ε). A set of points E such that {Bn(x, ε) : x ∈ E} is a

cover of Y is also called an (n, ε)-spanning set of Y . One then defines:
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h1(T, Y, ε) = lim sup
n→∞

logN(Y, n, ε)
n

which is non-decreasing as ε→ 0, so the following limit exists:

h1(T, Y ) = lim
ε→0

h1(Y, T, ε).

When X is compact, the topological entropy of T is h(T ) = h1(T,X). It measures the

exponential growth-rate of the number of distinguishable orbits of the system.

The topological entropy can be defined using separated sets instead of open covers:

a subset A of X is (n, ε)-separated if for any distinct points x, y ∈ A, dn(x, y) > ε. Let us

define M(Y, n, ε) as the maximal cardinality of an (n, ε)-separated subset of Y . It is easy

to see that M(Y, n, 2ε) ≤ N(Y, n, ε) ≤ M(Y, n, ε), and hence h1(T, Y ) can be alternatively

defined using M(Y, n, ε) in place of N(Y, n, ε).

Entropy as a dimension

Pesin instead defined a topological entropy which is an analog of Hausdorff dimen-

sion. His definition coincides with the classical one in the compact case. Hausdorff di-

mension has stronger stability properties than box dimension, which has important con-

sequences, as we will see in what follows. We refer the reader to [Pes98], [HK02] for more

details.

Let X be a metric space and T : X → X a continuous map. The ε-size of E ⊆ X is 2−s

where

s = sup{n ≥ 0 : diam(T iE) ≤ ε for 0 ≤ i < n}.

It measures how long the orbits starting from E are ε-close. As ε decreases, the ε-size of E

is non-decreasing. The 2ε-size of a Bowen ball Bn(x, ε) is less than 2−n.

In a way that is reminiscent from the definition of Hausdorff measure, let us define

ms
δ(Y, ε) = inf

G

{∑
U∈G

(ε-size(U))s
}

where the infimum is taken over all countable covers G of Y by open sets of ε-size <

δ. This quantity is monotonically increasing as δ tends to 0, so the limit ms(Y, ε) :=

limδ→0+ ms
δ(Y, ε) exists and is a supremum. There is a critical value s0 such that ms(Y, ε) =

∞ for s < s0 and ms(Y, ε) = 0 for s > s0. Let us define h2(T, Y, ε) as this critical value:

h2(T, Y, ε) := inf {s : ms(Y, ε) = 0} = sup {s : ms(Y, ε) = ∞} .
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As less and less covers are allowed when ε → 0 (the ε-size of sets does not decrease), the

following limit exists

h2(T, Y ) := lim
ε→0+

h2(T, Y, ε)

and is a supremum. In [Pes98], it is proved that:

Theorem 5.2.1.1. When Y is a T -invariant compact set, h1(T, Y ) = h2(T, Y ).

In particular, if the space X is compact, then h(T ) = h1(T,X) = h2(T,X).

5.2.2 Orbit complexity

In this section, (X, d,S) is a computable metric space and T : X → X a transforma-

tion (for the moment, no continuity or computability assumption is put on T ). Galatolo

([Gal00]) defined an algorithmic complexity of the orbits of a dynamical system, which

quantifies the algorithmic information needed to describe the orbit of x with finite but ar-

bitrarily accurate precision. He proved it to coincide with Brudno’s definition on compact

spaces.

Given ε > 0 and n ∈ N, the algorithmic information needed to follow the n first iterates

of x up to ε is:

Kn(x, T, ε) := min{K(i0, . . . , in−1) : d(sij , T
jx) < ε for j = 0, . . . , n− 1}

where K is the self-delimiting Kolmogorov complexity. We then define the maximal and

minimal growth-rates of this quantity:

K(x, T, ε) := lim sup
n→∞

1
n
Kn(x, T, ε)

K(x, T, ε) := lim inf
n→∞

1
n
Kn(x, T, ε).

As ε tends to 0, these quantities increase (or at least do not decrease), hence they have

limits (which can be infinite).

Definition 5.2.2.1. The upper and lower orbit complexities of x under T are defined by:

K(x, T ) := lim
ε→0+

K(x, T, ε)

K(x, T ) := lim
ε→0+

K(x, T, ε).
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Remark 5.2.2.1. If T is computable, and assuming that ε takes only rational values, the

n first iterates of x could be ε-shadowed by the orbit of a single ideal point instead of a

pseudo-orbit of n ideal points. Actually it is easy to see that it gives the same quantities

K(x, T, ε) and K(x, T, ε): let K′n(x, T, ε) = min{K(i) : d(T jsi, T jx) < ε for j < n}, one has:

K′n(x, T, 2ε) <
+ Kn(x, T, ε) +K(ε)

Kn(x, T, ε) <
+ K′n(x, T, ε/2) +K(n, ε)

Indeed, from ε and i0, . . . , in−1 some ideal point can be algorithmically found in the con-

structive open set B(si0 , ε) ∩ . . . ∩ T−(n−1)B(sin−1 , ε), uniformly in i0, . . . , in−1. Its n first

iterates 2ε-shadow the orbit of x, which proves the first inequality. For the second inequal-

ity, some i0, . . . , in−1 can be algorithmically found from n, ε, and a point si whose n first

iterates ε/2-shadow the orbit of x, taking any sij ∈ B(T jsi, ε/2).

Remark 5.2.2.2. Under the same assumptions, one could defineK(Bn(si, ε)) to beK(i, n, ε),

and replace K(i) by K(Bn(si, ε)) in the definition of K′n(x, T, ε), without changing the

quantities K(x, T, ε) and K(x, T, ε). Indeed,

K(i) <
+
K(Bn(si, ε)) <

+
K(i) +K(n) +K(ε)

5.2.3 Relation between orbit complexity and topological entropy

In this section, we prove the following theorem:

Theorem 5.2.3.1 (Topological entropy vs orbit complexity). Let X be a compact computable

metric space, and T : X → X a computable map. Then

h(T ) = sup
x∈X

K(x, T ) = sup
x∈X

K(x, T ).

In order to prove this theorem, we define an effective version of the topological en-

tropy, which is strongly related to the complexity of orbits. The idea is not new and has

been deeply studied on the Cantor space, defining effective versions of many types of

dimensions and relating them to Kolmogorov complexity (see [CH94], [May01], [Lut03],

[Rei04], [Sta05]).

Effective entropy as an effective dimension

Before defining an effective version, we give a simple characterization which will ac-

commodate to effectivization.
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Definition 5.2.3.1. A null s-cover of Y ⊆ X is a set E ⊆ N3 such that:

1.
∑

(i,n,p)∈E 2−sn <∞,

2. for each k, p ∈ N, the set {Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k} is a cover of Y .

The idea is simple: every null s-cover induces open covers of arbitrary small size and

arbitrary small weight. Remark that any null s-cover of Y is also a null s′-cover for all

s′ > s.

Lemma 5.2.3.1. h2(T, Y ) = inf{s : Y has a null s-cover}.

Proof. Suppose s > h2(T, Y ). We fix p, k ∈ N and put ε = 2−p and δ = 2−k. Asms
δ(Y, ε) = 0,

there is a cover (Uj,k,p)j of Y by open sets of ε-size δj,k,p < δ with
∑

j δ
s
j,k,p < 2−(k+p). Let

si be any ideal point in Uj,k,p. If δj,k,p > 0, then δj,k,p = 2−n for some n. If δj,k,p = 0, take

any n ≥ (j + k + p)/s. In both cases, Uj,k,p is included in the Bowen ball Bn(si, ε). We

define Ek,p as the set of (i, n, p) obtained this way, and E =
⋃
k,pEk,p. By construction, for

each k, p, {Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k} is a cover of Y . Moreover,
∑

(i,n,p)∈Ek,p
2−sn ≤∑

j δ
s
j,k,p +

∑
j 2−(j+k+p) ≤ 2−(k+p)+2, so

∑
(i,n,p)∈E 2−sn <∞.

Conversely, if Y has a null s-cover E, take ε, δ > 0 and p, k such that ε > 2−p+1 and

δ > 2−k. For all k′ ≥ k, the family {Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k′} is a cover of Y by

open sets of ε-size smaller than 2−n ≤ δ. Moreover,
∑

(i,n,p)∈E,n≥k′ 2
−sn tends to 0 as k′

grows, so ms
δ(Y, ε) = 0. It follows that s ≥ h2(T, Y ).

By an effective null s-cover, we mean a null s-cover E which is a r.e. subset of N3.

Definition 5.2.3.2. The effective topological entropy of T on Y is defined by

heff
2 (T, Y ) = inf{s : Y has an effective null s-cover}

As less null s-covers are allowed in the effective version, h2(T, Y ) ≤ heff
2 (T, Y ). Of

course, if Y ⊆ Y ′ then heff
2 (T, Y ) ≤ heff

2 (T, Y ′). Hausdorff dimension has an important

stability property: dimY = supi∈N dimYi when
⋃
i∈N Yi = Y . This property has a much

stronger counterpart in the effective version: dimeff Y = supy∈Y dimeff{y}, which has sense

because the effective dimension of a point is generally positive. This remarkable result,

which has been proved on the Cantor space, can be extended on any computable metric

space and also holds for the effective topological dimension.
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Theorem 5.2.3.2 (Effective topological entropy vs lower orbit complexity). Let X be an ef-

fective metric space and T : X → X a continuous map. For all Y ⊆ X ,

heff
2 (T, Y ) = sup

x∈Y
K(x, T )

This theorem is a direct consequence of the two following lemmas.

Lemma 5.2.3.2. Let α ≥ 0 and Yα = {x : K(x, T ) ≤ α}. One has heff
2 (T, Yα) ≤ α.

Proof. Let β > α be a rational number. We define the r.e. set E = {(i, n, p) : K(i, n, p) <

βn}. Let p ∈ N and ε = 2−p. If x ∈ Yα then K(x, T, ε) ≤ α < β so for infinitely many

n, there is some si such that x ∈ Bn(si, ε) and K(i, n, p) < βn. So for all k, {Bn(si, 2−p) :

(i, n, p) ∈ E,n ≥ k} covers Yα. Moreover,
∑

(i,n,p)∈E 2−βn ≤
∑

(i,n,p)∈E 2−K(i,n,p) ≤ 1.

E is then an effective null β-cover of Yα, so heff
2 (T, Yα) ≤ β. And this is true for every

rational β > α.

Lemma 5.2.3.3. Let Y ⊆ X . For all x ∈ Y , K(x, T ) ≤ heff
2 (T, Y ).

Proof. Let s > heff
2 (T, Y ): Y has an effective null s-cover E. As

∑
(i,n,p)∈E 2−sn <∞, by the

coding theorem K(i, n, p) ≤ sn + c for some constant c, which does not depend on i, n, p.

If x ∈ Y , then for each p, k, x is in a ball Bn(si, 2−p) for some n ≥ k with (i, n, p) ∈ E. Then

Kn(x, T, 2−p) ≤ sn + c for infinitely many n, so K(x, T, 2−p) ≤ s. As this is true for all p,

K(x, T ) ≤ s. As this is true for all s > heff
2 (T, Y ), we can conclude.

Proof of theorem 5.2.3.2. By lemma 5.2.3.3, α := supx∈Y K(x, T ) ≤ heff
2 (T, Y ). Now, as Y ⊆

Yα, heff
2 (T, Y ) ≤ heff

2 (T, Yα) ≤ α by lemma 5.2.3.2.

The definition of an effective null α-cover involves a summable computable sequence.

The universality of the sequence 2−K(i) among summable lower semi-computable sequences

is at the core of the proof of the preceding theorem, which states that there is a universal

effective null α-cover, for every α ≥ 0. In other words, there is a maximal set of effective

topological entropy ≤ α, and this set is Yα = {x ∈ X : K(x, T ) ≤ α}.

The definition of the topological entropy as a capacity could be also made effective.

Classical capacity does not share with Hausdorff dimension the countable stability. For the

same reason, its effective version is not related with the orbit complexity as strongly as the

effective topological entropy is. Nevertheless, a weaker relation holds, which is sufficient

for our purpose: the upper complexity of orbits is bounded by the effective capacity. We
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do not develop this and only state the needed property (which implicitly uses the fact that

the effective capacity coincides with the classical capacity for a compact computable metric

space):

Lemma 5.2.3.4. LetX be a compact computable metric space. For all x ∈ X ,K(x, T ) ≤ h1(T,X).

Proof. We first construct a r.e. set E ⊆ N3 such that for each n, p, {si : (i, n, p) ∈ E} is

a (n, 2−p)-spanning set and a (n, 2−p−2)-separated set. Let us fix n and p and enumerate

En,p = {i : (i, n, p) ∈ E}, in a uniform way. The algorithm starts with S = ∅ and i = 0. At

step i it analyzes si and decides to add it to S or not, and goes to step i+ 1. En,p is the set

of points which are eventually added to S.

Step i for each ideal point s ∈ S, test in parallel dn(si, s) < 2−p−1 and dn(si, s) > 2−p−2:

at least one of them must stop. If the first one stops first, reject si and go to Step

i+ 1. If the second one stops first, go on with the other points s ∈ S: if all S has been

considered, then add si to S and go to Step i+ 1.

By construction, the set of selected ideal points forms a (n, 2−p−2)-separated set. If

there is x ∈ X which is at distance at least 2−p from every selected point, then let si be an

ideal point si with dn(x, si) < 2−p−1: si is at distance at least 2−p−1 from every selected

point, so at step i it must have been selected, as the first test could not stop. This is a

contradiction: the selected points form a (n, 2−p)-spanning set.

From the properties of En,p it follows that N(X,n, 2−p) ≤ |En,p| ≤ M(X,n, 2−p−2),

and then

sup
p

(
lim sup

1
n

log |En,p|
)

= h1(T,X)

If β > h1(T,X) is a rational number, then for each p, there is k ∈ N such that log |En,p| < βn

for all n ≥ k.

Now, for si ∈ En,p, K(i) <
+

log |En,p| + 2 log log |En,p| +K(n, p) by proposition 1.8.3.1.

Take x ∈ X : x is in some Bn(si, 2−p) for each n, so K(x, T, 2−p) ≤ lim supn
1
n log |En,p| ≤ β

as log |En,p| < βn for all n ≥ k. As this is true for all p and all β > h1(T,X), K(x, T ) ≤
h1(T,X) and this for all x ∈ X .

We are now able to prove the main theorem, combining the several results established

above:
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h1(T,X) = h2(T,X) ≤ heff
2 (T,X) = supx∈X K(x, T ) ≤ supx∈X K(x, T ) ≤ h1(T,X)

(theorem 5.2.1.1) (theorem 5.2.3.2) (lemma 5.2.3.4)

5.3 Equivalence of the two notions of orbit complexity for ran-

dom points

We now prove:

Theorem 5.3.0.3. Let T be an ergodic endomorphism of the computable probability space (X,µ),

where X is compact. Then for every Martin-Löf random point x,

K(x, T ) = Kµ(x, T ).

Proof of K(x, T ) ≤ Kµ(x, T ). Let ε > 0. Choose a computable partition ξ of diameter < ε

(this is why we require X to be compact). To every cell of ξ, associate an ideal point which

is inside (as ξ is computable, this can be done in a computable way, but we actually do

not need that). The translation of symbolic sequences in sequences of ideal points through

this finite dictionary is constructive, and transforms the symbolic orbit of a point x into a

sequence of ideal points which is ε-close to the orbit of x. So K(x, T, ε) ≤ Kµ(x, T |ξ). The

inequality follows letting ε tend to 0.

To prove the other inequality, we recall some technical stuff. The self-delimiting Kol-

mogorov complexity of natural numbers k ≥ 1 satisfies

K(k) <
+
f(k)

where f(x) = log x + 1 + 2 log(log x + 1) for all x ∈ R, x ≥ 1. f is a concave increasing

function and x 7→ xf(1/x) is an increasing function on ]0, 1] which tends to 0 as x→ 0.

We recall that for finite sequences of natural numbers (k1, . . . , kn), one has

K(k1, . . . , kn) <
+
K(k1) + . . .+K(kn)

as the shortest descriptions for k1, . . . , kn can be extracted from their concatenation (this is

one reason to use the self-delimiting complexity instead of the plain complexity).
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Lemma 5.3.0.5. Let Σ be a finite alphabet and n ∈ N. Let u, v ∈ Σn and 0 < α < 1/2 such that

the density of the set of positions where u and v differ is less than α, that is:

1
n

#{i ≤ n : ui 6= vi} < α < 1/2

Then
∣∣ 1
nK(u)− 1

nK(v)
∣∣ < αf(1/α) + c

n where c is a constant independent of u, v and n.

Proof. Let (i1, . . . , ip) be the ordered sequence of indices where u and v differ. By hypothe-

sis, p/n < α. Put k1 = i1 and kj = ij − ij−1 for 2 ≤ j ≤ p.

We now show that u can be recovered from v and roughly αf(1/α)n bits more. Indeed

u can be computed from (v, k1, . . . , kp), constructing the string which coincides with v

everywhere but at positions k1, k1 + k2, . . . , k1 + . . . + kp, so K(u) <
+
K(v) + K(k1) +

. . .+K(kp) <
+
K(v) + f(k1) + . . .+ f(kp).

Now, as f is a concave increasing function, one has:

1
p

∑
j≤p

f(kj) ≤ f

1
p

∑
j≤p

kj

 = f

(
ip
p

)
≤ f

(
n

p

)
As a result,

1
n
K(u) ≤ 1

n
K(v) +

p

n
f

(
n

p

)
+
c

n

where c is some constant independent of u, v, n, p. As p/n < α < 1/2 and x 7→ xf(1/x) is

increasing for x ≤ 1/2, one has:

1
n
K(u) ≤ 1

n
K(v) + αf(1/α) +

c

n

Switching u and v gives the result (c may be changed).

We are now able to prove the other inequality.

Proof of Kµ(x, T ) ≤ K(x, T ). Fix some computable partition ξ. We show that for any β > 0

there is some ε > 0 such that for every Martin-Löf random point x,Kµ(x, T |ξ) ≤ K(x, T, ε)+

β. As K(x, T, ε) increases as ε→ 0+ and β is arbitrary, the inequality follows.

First take α < 1/2 such that αf(1/α) < β, and remark that

lim
ε→0+

µ
(
(∂ξ)ε

)
= µ(∂ξ) = 0

Hence there is some ε such that µ
(
(∂ξ)2ε

)
< α. From a sequence of ideal points we

will reconstruct the symbolic orbit of a random point with a density of errors less than α.

Lemma 5.3.0.5 will then allow to conclude.
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We define an algorithm A(ε, i0, . . . , in−1) with ε ∈ Q>0 and i0, . . . , in−1 ∈ N which

outputs a word a0 . . . an−1 on the alphabet ξ. To compute aj , A semi-decides in a dovetail

picture:

• sij ∈ C for every C ∈ ξ,

• s ∈ C for every s ∈ B(sij , ε) and every C ∈ ξ.

The first test which stops provides some C ∈ ξ: put aj = C.

Let x be a random point whose iterates are covered by ξ, and si0 , . . . , sin−1 be ideal

points which ε-shadow the first n iterates of x. We claim thatAwill halt on (ε, i0, . . . , in−1).

Indeed, as T jx belongs to some C ∈ ξ, C ∩ B(sij , ε) is a non-empty open set and then

contains at least one ideal point s, which will be eventually dealt with.

We now compare the symbolic orbit of x with the symbolic sequence computed by

A. A discrepancy at rank j can appear only if T jx ∈ (∂ξ)2ε. Indeed, if T jx /∈ (∂ξ)2ε

then B(T jx, 2ε) ⊆ C where C is the cell T jx belongs to. As d(sij , T
jx) < ε, B(sij , ε) ⊆

B(x, 2ε) ⊆ C, so the algorithm gives the right cell.

Now, as x is typical,

lim sup
n→∞

1
n

#{j < n : T jx ∈ (∂ξ)2ε} ≤ µ
(
(∂ξ)2ε

)
< α

so there is some n0 such that for all n ≥ n0, 1
n#{j < n : T jx ∈ (∂ξ)2ε} < α. This implies

that for all n ≥ n0 and ideal points si0 , . . . , sin−1 which ε-shadow the first n iterates of x

and with minimal complexity, the algorithm A(ε, i0, . . . , in−1) produces a symbolic string

u which differs from the symbolic orbit v of x of length n with a density of errors < α. As

K(u) <
+
K(ε) +Kn(x, T, ε) and αf(1/α) < β, applying lemma 5.3.0.5 gives:

1
n
K(ξn(x)) =

1
n
K(v) ≤ 1

n
K(u) + αf(1/α) +

c

n

≤ 1
n

(
Kn(x, T, ε) +K(ε) + c′

)
+ β +

c

n

where c′ is independent of n. Taking the lim sup as n→∞ gives:

Kµ(x, T |ξ) ≤ K(x, T, ε) + β

Combining theorem 5.3.0.3 and corollary 5.1.4.2, we obtain a version of Brudno’s the-

orem (theorem 5) for Martin-Löf random points.
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Corollary 5.3.0.1. Let T be an ergodic endomorphism of the computable probability space (X,µ),

where X is compact. Then for every Martin-Löf random point x:

K(x, T ) = hµ(T )
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nombres absolument normaux et détermination effective d’un tel nombre. Bul-
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Appendix A

Background from topology

Definition A.0.0.3 (Topology). Let X be a set. A topology on X is a class τ of subsets of

X which contains ∅ and X and is closed under the formation of unions and finite intersec-

tions. (X, τ) is called a topological space.

Definition A.0.0.4 (Continuity). Let (X, τX) and (Y, τY ) be topological spaces. A function

f : X → Y is continuous if for every U ∈ τY , f−1(U) ∈ τX .

A.1 Convergence

A.1.1 Sequences

Definition A.1.1.1 (Convergence). Let (X, τ) be a topological space. Let (xn)n∈N be a se-

quence of elements ofX . We say that xn converges to x, or that x is a limit of xn if for every

open set U ,

x ∈ U =⇒ ∃k, xn ∈ U for all n ≥ k

We denote it by xn → x.

In a space where the limit is unique, we can write limn→∞ xn = x. But we will meet

topological space in which a sequence may have many limits.

Conversely, any notion of convergence induces a topology.

Definition A.1.1.2 (Topology of convergence). Let X be a set, and →⊆ XN ×X a relation

between sequences and elements of X . The topology of →-convergence is the topology τ→

I
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defined by:

U ∈ τ→ ⇐⇒ for all x ∈ U and all sequence xn such that xn → x,∃k,∀n ≥ k, xn ∈ U

It is indeed a topology. Now, let (X, τ) be a topological space: definition A.1.1.1 gives

a canonical convergence relation → on X . Definition A.1.1.2 in turn provides a topology

τ→, called the sequential topology.

By definition of convergence, the sequential topology is finer than the primitive topol-

ogy: τ ⊆ τ→ so id : (X, τ→) → (X, τ) is continuous. The notion of convergence provided

by τ→ coincides with →.

Definition A.1.1.3 (Sequential continuity). Let (X, τX) and (Y, τY ) be topological spaces.

A function f : X → Y is sequentially continuous if for all sequence xn converging to some

x, f(xn) converges to f(x).

f is sequentially continuous if and only if f : (X, τX→) → (Y, τY ) is continuous, if and

only if f : (X, τX→) → (Y, τY→) is continuous.

Proposition A.1.1.1. Continuity implies sequential continuity.

Proof. If f is continuous, then f = f ◦ idX : (X, τX→) → (Y, τY ) is continuous.

A topological space (X, τ) is sequential if the sequential topology coincides with τ . A

function from a sequential space to a topological space is continuous if and only if it is se-

quentially continuous. Every second-countable topological space (space with a countable

basis) is sequential.

A.1.2 Nets

There is a generalization of the notions of sequence and converging sequence: nets and

converging nets. A sequence is indexed by the total order N, a net is indexed by a partial

order.

Definition A.1.2.1. Let X be a set. A net is a family (xd)d∈D of elements of X indexed by a

directed set (D,≤). We denote by Nets the set of nets.

Definition A.1.2.2. A net-convergence space is a set X with a relation →⊆ Nets × X be-

tween nets and elements, called the net-convergence relation.
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Every net-convergence relation induces a topology τnet, called the topology of net-

convergence, defined by:

A ∈ τnet ⇐⇒ ∀(xd)d∈D → x ∈ A,∃d ∈ D,xd′ ∈ U for all d′ ≥ d

It is indeed a topology. Now, let X be a set: every topology τ on X induces a net-

convergence relation, defined by:

(xd)d∈D → x ⇐⇒ [∀U ∈ τ, x ∈ U =⇒ ∃d ∈ D,xd′ ∈ U for all d′ ≥ d]

which in turn induces a topology τnet. By definition, τ ⊆ τnet. Actually,

Proposition A.1.2.1. Let (X, τ) be a topological space. Then τ = τnet.

Proof. Let A ∈ τnet and x ∈ A: we have to show that there is U ∈ τ such that x ∈ U ⊆ A.

DefineD = {U ∈ τ : x ∈ U} endowed with the order of reverse inclusion: U ≤ V if U ⊇ V .

D is a directed set. Now, suppose that for each U ∈ D, U * A: there exists yU ∈ U \A. The

net (yU )U∈D converges to x: if x ∈ U ∈ τ , then U ∈ D and for all V ≥ U , yV ∈ V ⊆ U . As

x ∈ A ∈ τnet, there is U ∈ D such that yU ∈ A: contradiction.





Appendix B

Background from order theory

In section 1.2 we introduce the notion of enumerative lattice. This appendix is intended

to place this notion in a wider context. We refer to [AJ94] for a complete introduction.

B.1 Directed complete partial order

Definition B.1.0.3. A directed complete partial order (dcpo) is a partial order (X,≤) such

that that every non-empty directed subset of X has a supremum in X .

Definition B.1.0.4 (Scott-topology). Let (X,≤) be a directed complete partial order. The

Scott-topology on X is defined by: U ⊆ X is Scott-open if and only if:

1. it is an upper set: x ∈ U, x ≤ y =⇒ y ∈ U ,

2. for every directed set D ⊆ X , supD ∈ U =⇒ D ∩ U 6= ∅.

The Scott-topology is made for the suprema to be seen as limits. This can be made

precise. For each directed set D, D can be seen as a net, indexed by itself: put xd = d for

each d ∈ D. The canonical net-convergence relation is then defined by:

D → x ⇐⇒ x ≤ supD

In other words, → is {(D,x) : D directed, x ≤ supD} ⊆ Nets × X . The Scott-topology is

then the topology of net-convergence induced by the canonical net-convergence relation.

Definition B.1.0.5 (Scott-continuity). Let (X,v) and (Y,≤) be two directed complete par-

tial orders. A function f : X → Y is Scott-continuous if:

V
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1. it is monotonic: x v x′ =⇒ f(x) ≤ f(x′),

2. it commutes with directed suprema: if D is a directed subset of X , then f(supvD) =

sup≤ f(D).

Proposition B.1.0.2. A function f : X → Y is Scott-continuous if and only if it is continuous

for the Scott-topologies on X and Y .

Proof. Use the fact that Uy0 = {y ∈ Y : y � y0} is Scott-open for each y0 ∈ Y .

Using these particular open sets directly gives:

Proposition B.1.0.3. x ≤ y ⇐⇒ [∀U Scott-open, x ∈ U =⇒ y ∈ U ]

The induced topological space is Kolmogorov or T0: for each x 6= y, there is an open

set U with x ∈ U and y /∈ U or the converse (take U = Ux or Uy).

B.2 Complete lattice

Definition B.2.0.6 (Complete lattice). A complete lattice (X,≤,⊥) is a partial order (X,≤)

with a least element ⊥ such that every subset of X has a supremum.

In a complete lattice, there is a greatest element >, and every subset of X has also an

infimum. Any complete lattice is in particular a directed complete partial order, on which

the Scott-topology is defined, and can be characterized in the following way:

Proposition B.2.0.4 (Scott-topology). Let (X,≤,⊥) be a complete lattice. A subset U of X is

Scott-open if and only if for every A ⊆ X , the following are equivalent:

1. supA ∈ U ,

2. there exists a finite subset A0 of A such that supA0 ∈ U

Proof. Easy (the set of suprema of finite subsets of A is directed).

Every complete lattice is compact for the Scott-topology: if X is covered by a family of

Scott-open sets, one of them contains ⊥ and then it contains the whole set X .

The characterization of the Scott-topology induces a characterization of Scott-continuity:
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Proposition B.2.0.5. Let (X,v) and (Y,≤) be two complete lattices. A function f : X → Y is

Scott-continuous if and only if for every A ⊆ X ,

f(supA) = sup{f(supA0) : A0 finite subset of A}

The set of Scott-continuous functions between complete lattices L,L′ is a complete

lattice, with the pointwise ordering f ≤ g ⇐⇒ ∀E, f(E) ≤ g(E). The supremum of a set

of Scott-continuous function G for this order is their pointwise supremum, i.e. the function

defined by f(x) = supg∈G g(x) for each x.

Let X be a set: (2X ,⊆, ∅, X) is a complete lattice. Let F be the collection of all finite

subsets of X . For F ∈ F , define UF = {A ⊆ X : F ⊆ A}: this is a Scott-open, and the

collection {UF : F ∈ F} is even a basis of the Scott-topology.

Proposition B.2.0.6. If finite infima distribute over arbitrary suprema, that is

inf{x, supA} = sup{inf{x, a} : a ∈ A}

for all subsets A of L, then inf : L× L→ L is Scott-continuous.

Proof. For seek of clarity, the function inf : L×L→ Lwill be called f : f(x, y) = inf{x, y} =

x ∧ y. f is monotonic: if (d1, d2) ≤ (d′1, d
′
2), i.e. d1 ≤ d′1 and d2 ≤ d′2, then d1 ∧ d2 ≤ d′1 ∧ d′2.

Let D ⊆ L × L be a directed set: we want to show that f(supD) = sup f(D) =

sup{f(d) : d ∈ D}. Let D1 = {d1 : ∃d2, (d1, d2) ∈ D} and D2 = {d2 : ∃d1, (d1, d2) ∈
D}: supD = (supD1, supD2), so f(supD) = f(supD1, supD2) = sup f(D1 × D2) by

distributivity of inf on sup.

As D ⊆ D1 × D2, sup f(D) ≤ sup f(D1 × D2). Now, if (d1, d
′
2) ∈ D1 × D2, there

are d2, d
′
1 such that (d1, d2) ∈ D and (d′1, d

′
2) ∈ D. As D is directed, there is (d′′1, d

′′
2) ∈

D with d1, d
′
1 ≤ d′′1 and d2, d

′
2 ≤ d′′2 . As f is monotonic, f(d1, d

′
2) ≤ f(d′′1, d

′′
2). Hence,

sup f(D1 ×D2) ≤ sup f(D).

A morphism of complete join-semilattices is a function which commutes with all sup-

rema. An isomorphism is a bijective morphism: its inverse is then necessarily a morphism

(and then an isomorphism). Between complete lattices, homeomorphisms (i.e. isomor-

phisms of topological spaces) and isomorphisms of complete lattices are the same (al-

though not every continuous function is a morphism of complete lattices).
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Convergence in a complete lattice

Proposition B.2.0.7. Let (L,≤) be a complete lattice. Let (xn)n∈N be a sequence of elements of L.

We define:

lim inf xn = sup{inf{xn : n ≥ k} : k ∈ N}

If x ≤ lim inf xn then xn converges to x in the Scott-topology.

Moreover, if xn ≤ xn+1 this is equivalent: xn converges to x if and only if x ≤ supn xn =

lim inf xn.

Proof. Let U be a Scott-open such that x ∈ U : then lim inf xn ∈ U , so there is k such that

inf{xn : n ≥ k} ∈ U , which implies xn ∈ U for all n ≥ k.

Suppose xn ≤ xn+1 and xn converges to x. As U = {y : y � supn xn} is Scott-open, if

x ∈ U then there is some xn ∈ U , which is impossible.

In a complete lattice, every sequence converges (in particular to its lim inf), but it has

many different limits.

B.2.1 Topology as a complete lattice

The Sierpiński space S = {⊥,>} is the set with two elements, endowed with the order

⊥ < >: it is a complete lattice, on which the Scott-topology is τS = {∅, {>}, {⊥,>}}.

Now, the set [X → S] of continuous functions from X to S is in turn a complete lattice,

with the pointwise ordering: we endow it with the Scott-topology. τX and [X → S] are

homeomorphic (or isomorphic): 1 : τ → [X → S] defined by 1(U)(x) = > if x ∈ U , ⊥
otherwise is an homeomorphism.
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