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The problem

Let f : [0, a)→ R be computable and converge to 0 at a ∈ (0, 1).

x
0 1

f(x)

a

When can f be extended to a computable function over [0, 1]?

2 / 18



The problem Sawtooth functions Sufficient and necessary conditions Dependence on a

The problem

Let f : [0, a)→ R be computable and converge to 0 at a ∈ (0, 1).

x
0 1

f(x)

a

When can f be extended to a computable function over [0, 1]?

2 / 18



The problem Sawtooth functions Sufficient and necessary conditions Dependence on a

The problem

In real analysis
The following are equivalent:

• f : [0, a)→ R has a continuous extension,
• f converges at a,
• f is uniformly continuous.

In computable analysis
Assuming a is computable, the following are equivalent:

• f : [0, a)→ R has a computable extension,
• f converges effectively at a,
• f is effectively uniformly continuous.

Questions
What if a is not computable? For which a’s does the equivalence hold?
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Our results

• Complete answer for the class of
sawtooth functions.

10 a

• Sufficient and necessary
conditions (S) and (N).

• Characterization of the a’s
for which (S) is also necessary.

• Characterization of the a’s
for which (N) is also sufficient.

• Separation of these two classes.
left-c.e.

∑
n∈E 1/n2∑
n∈E 2−n

computable

right-generic

simple

E ⊆ N is any recursively enumerable set
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A few definitions
We study the following cases:

• When a is computable, easy.
• When a is left-c.e., more interesting.

Definition

• a ∈ R is computable if there is a computable rational
sequence (ai)i∈N such that:

∀i, |ai − a| ≤ 2−i.

• a ∈ R is left-c.e. if there is a computable rational
sequence (ai)i∈N such that:

ai ↗ a.

• f : [0, a)→ R is computable if f(x) can be computed with
arbitrary precision, given x ∈ [0, a) with arbitrary precision.
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First observations

Let
• a ∈ [0, 1] be left-c.e., non-computable,
• f : [0, a)→ R be computable.

If f has a computable extension g on [0, 1], what can g look like?

Theorem

• g is essentially unique: every computable extension h must agree
with g on [0, a+ ε] for some ε > 0,

• If f satisfies a property P then g essentially satisfies P

,
when P ⊆ C ([0, 1]) is recursively compact.

Example
If f is 1-Lipschitz then g is 1-Lipschitz on [0, a+ ε] for some ε > 0.
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First observations

Two computable extensions g, h must agree on [0, a+ ε] for some ε > 0:

Proof.
If g, h are computable extensions of f then

b := inf{x ∈ [0, 1] : g(x) 6= h(x)}

is right-c.e. and b ≥ a, so b > a.
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Sawtooth functions

• Take a recursively enumerable set E ⊆ N,
• Take a computable enumeration n0, n1, n2, . . . of E,
• Define a =

∑
n∈E 2−n and the sawtooth function f :

0
x

f(x)

1
n0n1 n2 n3 . . .

2−n3

2−n3−1

a

When does f have a computable extension?
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Sawtooth functions

Theorem
The function associated with E = {n0, n1, . . .} has a computable
extension ⇔ there exists a computable linear ordering � over N s.t.:

• n0 ≺ n1 ≺ n2 ≺ . . .
• E is an initial segment: n ≺ p for n ∈ E, p /∈ E.

0
x

f(x)

1
n0n1 n2 n3 . . . a

Key ingredient: being sawtooth is a recursively compact property.
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Sawtooth functions

Negative case
Let E be the halting set. It is not an initial segment of a computable
linear ordering.

Positive case
There exists a computable linear ordering of order type ω + ω∗ whose
left part is a recursively enumerable, non-computable set E.{

E
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Sufficient condition

Definition
f converges effectively to 0 (at a) if

given ε > 0 one can compute q < a such that |f | ≤ ε on [q, a).

Examples

• If f decreases to 0 then f converges effectively to 0.
• Let E ⊆ N be recursively enumerable. The sawtooth function fE
converges effectively to 0 iff E is computable.

Proposition

f converges effectively to 0 iff its null extension is computable.
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Necessary condition

Definition
A function f is effectively uniformly continuous if given ε > 0
one can compute δ > 0 such that

|x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ ε.

Example
Every Lipschitz function (hence every sawtooth function) is effectively
uniformly continuous: take δ := ε/L.

Proposition

If f has a computable extension then f is eff. unif. cont.
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Implications

Condition (S)
f converges effectively to 0

Condition (Ext)
f has a computable extension on [0, 1].

Condition (N)
f is effectively uniformly continuous.

When a is computable

(S)⇐⇒ (Ext)⇐⇒ (N)

When a is left-c.e.

(S) =⇒ (Ext) =⇒ (N)

The implications are strict: consider the two sawtooth functions
defined earlier (E = halting set/initial segment of linear ordering . . . ).
For which a’s are they strict, exactly?
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Dependence on a

Condition (S)
f converges effectively to 0.

Condition (Ext)
f has a computable extension on [0, 1].

Condition (N)
f is effectively uniformly continuous.

(S) =⇒ (Ext) =⇒ (N)

Theorem
One has (S)⇐⇒ (Ext) exactly when a is right-generic or
computable.

Theorem
One has (Ext)⇐⇒ (N) exactly when a is simple.
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Right-generic reals

Definition
A real is right-generic if it is not contained in any “computable
small set”.

Nonexamples

• Computable x.

0 1x

• xE :=
∑

n∈E 2−n, where E ⊆ N is recursively enumerable.

0 1xE

Figure: The set of reals whose bits at positions in E are all 1.
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Simple reals
A presentation of a ∈ [0, 1] is a prefix-free recursively enumerable
set A ⊆ {0, 1}∗ such that

a =
∑
u∈A

2−|u|.

Definition ([Downey, LaForte 2002])

A left-c.e. real a is simple if every presentation of a is computable.

Nonexamples

• xE :=
∑

n∈E 2−n, where E ⊆ N is recursively enumerable, not
computable.

• ΩU :=
∑

w∈dom(U) 2−|w|, where U is a universal prefix-free Turing
machine.
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Simple vs right-generic

Proposition

Simple =⇒ right-generic.

What about the other direction?

Theorem
Simple ⇐=� right-generic.

Proof idea.
Let E ⊆ N be a non-computable c.e. set.

• xE :=
∑

n∈E 2−n is not simple, and not even right-generic.

• yE :=
∑

n∈E
1

n2
is not simple. It can be right-generic.
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Other a’s
We have studied the computable extension problem when a is:

• Computable,
• Left-c.e.

What about other cases?

computable
easy

left-c.e.
this talk

right-c.e.
always

∅′-right-c.e.

to study

always
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To conclude
Sum up

• Rich problem,
• Unexpected relationships with many concepts from computability
theory,

• Characterizations of classes of reals via computable analysis.

Many questions left

• When can f : [0, a)→ R be extended to [0, a]?
• When can f : [0, a]→ R be extended to [0, 1]?
• What if limx→a− f(x) 6= 0?
• What if f is non-decreasing?
• What happens when a is ∅′-right-c.e.?
• . . .

Thanks!
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Generic reals
• A real x ∈ [0, 1] is 1-generic if it does not belong to the
boundary of any effective open set [Jockusch 1977].

An open set,

0 1

its boundary,

0 1
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(Non-)examples

• No left-c.e. real x is 1-generic, as [0, x) is effectively open.

0 1x

• No right-c.e. real x is 1-generic, as (x, 1] is effectively open.
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0 1

its boundary,

0 1

. . . and its left-boundary.

0 1

• A real x ∈ [0, 1] is right-generic if it does not belong to the
left-boundary of any effective open set [H. 2014].

Theorem ([H. 2014])

Right-generic left-c.e. reals exist.
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Generic reals

(Non-)examples

• No right-c.e. real x is right-generic, as (x, 1) is effectively open.

0 1x

• If E ⊆ N is a non-computable c.e. set then

xE :=
∑
n∈E

2−n

is not right-generic.

Indeed, when enumerating E, we
confine xE =

∑
n∈E 2−n to a small set:

0 1

E = {

2, 5, 7, 9 . . .

}
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