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The problem
The problem

In real analysis

The following are equivalent:
e f:]0,a) — R has a continuous extension,
e f converges at a,

e f is uniformly continuous.

In computable analysis

Assuming a is computable, the following are equivalent:
e f:[0,a) — R has a computable extension,
o f converges effectively at a,

o f is effectively uniformly continuous.

Questions
What if @ is not computable? For which a’s does the equivalence hold?



The problem a

Our results

e Complete answer for the class of
sawtooth functions.

v

e Sufficient and necessary
conditions (S) and (N).

e Characterization of the a’s
for which (S) is also necessary.
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computable

e Characterization of the a’s
for which (N) is also sufficient.

e Separation of these two classes.
left-c.e.

E C N is any recursively enumerable set



The problem

A few definitions

We study the following cases:
e When a is computable, easy.

e When a is left-c.e., more interesting.

Definition

e a € R is computable if there is a computable rational
sequence (a;);cn such that:

Vi, |la; —a] < 27°

e a € R is left-c.e. if there is a computable rational
sequence (a;);en such that:

a; /a.

e f:[0,a) = R is computable if f(z) can be computed with

arbitrary precision, given = € [0, a) with arbitrary precision.
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The problem

First observations

Let
e a € [0,1] be left-c.e., non-computable,
e f:[0,a) = R be computable.

If f has a computable extension g on [0, 1], what can g look like?

Theorem

o g is essentially unique: every computable extension h must agree
with g on [0,a + €] for some € > 0,

o If f satisfies a property P then g essentially satisfies P,
when P C €([0,1]) is recursively compact.

Example

If f is 1-Lipschitz then g is 1-Lipschitz on [0, a + €] for some € > 0.



The problem

First observations

Two computable extensions g, h must agree on [0, a + €] for some € > 0:

Proof.

If g, h are computable extensions of f then

b:=inf{z € [0,1] : g(z) # h(x)}

is right-c.e. and b > a, so b > a. O



Sawtooth functions

Sawtooth functions

e Take a recursively enumerable set £ C N,

e Take a computable enumeration ng,ni,ns, ... of E,
e Define a =) 27" and the sawtooth function f:
f(=)
A
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When does f have a computable extension?
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Sawtooth functions

Theorem

The function associated with E = {ng,n1,...} has a computable
extension < there exists a computable linear ordering =< over N s.t.:

® Ny <nN3 <Ng < ...
e FE is an initial segment: n < p forn € E;p ¢ E.

f(z)
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Nno N1 no ng... | ! T
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Key ingredient: being sawtooth is a recursively compact property.
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Sawtooth functions

Negative case

Let E be the halting set. It is not an initial segment of a computable
linear ordering.

Positive case
There exists a computable linear ordering of order type w + w* whose
left part is a recursively enumerable, non-computable set E.
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Sufficient and necessary conditions

Sufficient condition

Definition

f converges effectively to 0 (at a) if

given € > 0 one can compute ¢ < a such that |f| < e on [g, a).

Examples

o If f decreases to 0 then f converges effectively to 0.

e Let £ C N be recursively enumerable. The sawtooth function fg
converges effectively to 0 iff E is computable.

Proposition

f converges effectively to 0 iff its null extension is computable.

10



Sufficient and necessary conditions a

Necessary condition

Definition

A function f is effectively uniformly continuous if given ¢ > 0
one can compute d > 0 such that

lz—yl <6 = [f(z) - fW) <e

Example

Every Lipschitz function (hence every sawtooth function) is effectively
uniformly continuous: take § :=¢/L.

Proposition

If f has a computable extension then f is eff. unif. cont.



Sufficient and necessary conditions
Implications

Condition (S)

f converges effectively to 0

Condition (Ext)
f has a computable extension on [0, 1].

Condition (N)
f is effectively uniformly continuous.

When a is computable When a is left-c.e.
(S) <= (Ext) < (N) (S) = (Ext) = (N)

The implications are strict: consider the two sawtooth functions
defined earlier (E = halting set/initial segment of linear ordering ... ).
For which a’s are they strict, exactly?

S
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Dependence on a
Condition (S)
f converges effectively to 0.
Condition (Ext)
f has a computable extension on [0, 1].
Condition (N)

f is effectively uniformly continuous.

(S) = (Ext) = (N)

Theorem

One has (S) <= (Ext) exactly when a is right-generic or
computable.

Theorem

One has (Ext) <= (N) ezactly when a is simple.



Dependence on a

Right-generic reals

Definition

A real is right-generic if it is not contained in any “computable
small set”.

Nonexamples

e Computable z.

0 @ 1

e g = ZneE 27" where E C N is recursively enumerable.

0 TE 1

Figure: The set of reals whose bits at positions in E are all 1.



Dependence on a

Simple reals

A presentation of a € [0, 1] is a prefix-free recursively enumerable
set A C {0,1}* such that

a=3 ol

ucA

Definition ([Downey, LaForte 2002])

A left-c.e. real a is simple if every presentation of a is computable.

Nonexamples
e rp =), p27" where E C N is recursively enumerable, not
computable.

e Qu =), dom(U) 21"l where U is a universal prefix-free Turing
machine.



Simple vs right-generic

Proposition

Simple = right-generic.

What about the other direction?

Dependence on a



Dependence on a

Simple vs right-generic

Proposition

Simple => right-generic.

What about the other direction?

Theorem
Simple <4 right-generic.

Proof idea.
Let E C N be a non-computable c.e. set.

e rp =), .p2 " is not simple, and not even right-generic.

1
® Yp =) g 3 is not simple. It can be right-generic. O

16 /18



Dependence on a

Other a’s

We have studied the computable extension problem when a is:
e Computable,
o Left-c.e.

What about other cases?

always

('-right-c.e.
to study

left-c.e.

this talk always

computable
easy




Dependence on a

To conclude
Sum up

e Rich problem,

e Unexpected relationships with many concepts from computability
theory,

e Characterizations of classes of reals via computable analysis.

Many questions left

When can f : [0,a) — R be extended to [0, a]?
When can f : [0,a] — R be extended to [0, 1]?
What if lim, . f(z) # 07

What if f is non-decreasing?

What happens when a is (//-right-c.e.?



Dependence on a

To conclude
Sum up

e Rich problem,

e Unexpected relationships with many concepts from computability
theory,

e Characterizations of classes of reals via computable analysis.

Many questions left

When can f : [0,a) — R be extended to [0, a]?
When can f : [0,a] — R be extended to [0, 1]?
What if lim, . f(z) # 07

What if f is non-decreasing?

What happens when a is (//-right-c.e.?

Thanks!
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(Non-)examples

e No left-c.e. real = is 1-generic, as [0, ) is effectively open.

f |
0 . 1

e No right-c.e. real z is 1-generic, as (x, 1] is effectively open.

| {
0 z 1
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Generic reals

e A real z € [0,1] is 1-generic if it does not belong to the
boundary of any effective open set [Jockusch 1977].

An open sel,

—_—— ——— —_ —_
0 1
its boundary,
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0 1
... and its left-boundary.
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e A real z € [0,1] is right-generic if it does not belong to the
left-boundary of any effective open set [H. 2014].

Theorem ([H. 2014])

Right-generic left-c.e. reals exist.
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Generic reals

(Non-)examples

e No right-c.e. real z is right-generic, as (z, 1) is effectively open.

0 T

e If £ C N is a non-computable c.e. set then
TE = Z 2"
nek

is not right-generic. Indeed, when enumerating F, we

confine xp = ) ., 27" to a small set:

1

| -—_—— - ———

0

E=1{25 }
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(Non-)examples

e No right-c.e. real z is right-generic, as (z, 1) is effectively open.
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TE = Z 2"
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Generic reals

(Non-)examples

e No right-c.e. real z is right-generic, as (z, 1) is effectively open.

| |
0 T 1

e If £ C N is a non-computable c.e. set then

TE = Z 2"

nek

is not right-generic. Indeed, when enumerating F, we

confine xp = ) ., 27" to a small set:

0 1

E=1{2579...}
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