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Abstract. We continue to explore the relationship between notions of
effective measure theory and properties of algorithmically random ele-
ments, as started in [1]. We prove a tight quantitative equivalence be-
tween effective versions of absolute continuity and preservation of ran-
domness. We then relate these to the computability of the Radon-Nikodym
derivative, as an element of L1. In doing this we show how algorithmic
randomness enables direct and short proofs when concerned with L1-
computability.
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1 Introduction

This paper is concerned with the theory of algorithmic randomness in connec-
tion with Computable Analysis and Measure Theory. Theorems about random
points are usually presented as strengthened versions of results from ordinary
probability theory. On the other hand, computable analysis generally provides
effective versions of notions from probability theory, that in turn imply results
about random points.

For example, if fn is a sequence of computable random variables, then

Effective µ-a.e. convergence =⇒ convergence on MLµ =⇒ µ-a.e. convergence,

and no implication can be reversed. Indeed, there are examples (convergence of
martingales, or ergodic theorems) where the convergence is not effective and yet
it holds at each random element.

Thus, the result for random elements stands somewhere between the com-
putable world and the ordinary one, and there is, in general, no exact correspon-
dence. Nevertheless, the theory of algorithmic randomness provides additional
structure which allows to quantify the degree at which a given point is random.
In this way, random points can be stratified via their randomness deficiency (see
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Section 1.1). When this information is taken into account, much sharper results
are possible. In our example above, if d(x) denotes the randomness deficiency of
x, an exact correspondence can be obtained as follows (see [1]):

Effective µ-a.e. convergence ⇐⇒ convergence on each x ∈ MLµ,
at a rate computable from d(x).

In this paper we investigate from the above point of view the relationship
between absolute continuity of measures and preservation of randomness. It can
be seen as a continuation of [2] where the authors showed that preservation
of randomness implies absolute continuity, and that this implication cannot be
reversed.

Our main result is a tight quantitative relationship between the modulus of
absolute continuity of a measure µ w.r.t. a measure λ and the change in the
randomness deficiencies from µ-random to λ-random points. In particular, this
gives a characterization of effective absolute continuity in terms of randomness
deficiency, showing that the above picture also holds in this case.

We then apply this result and obtain various connections between the com-
putability of the Radon-Nikodym derivative, the effectivity of the absolute con-
tinuity and randomness preservation. In particular, we prove a converse to the
second main result from [3] which asserts that computable normability of a mea-
sure µ relative to a measure λ (see Section 3) is a sufficient condition for the
computability of the density, as an element of L1. We show that this condition
is also necessary. We also provide an alternative counter-example to show that
even if the absolute continuity is effective, the Radon-Nikodym derivative need
not be computable, as an element of L1. In all the proofs we present, random-
ness deficiency and layerwise computability play an essential role to capture and
manipulate integrable functions.

The paper is organized as follows. In the rest of this section we recall the
relevant definitions and properties that we will need. In Section 2 we introduce
the notion of effective absolute continuity and prove our main result. In Section
3 we present the already mentioned applications.

1.1 Background

Computability. Let us first recall some basic results established in [4, 5]. We
work on the well-studied computable metric spaces (see [6–10]).

Definition 1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,
2. S = {si : i ∈ IN} is a countable dense subset of X with a fixed numbering,
3. d(si, sj) are uniformly computable real numbers.

S is called the set of simple points. If x ∈ X and r > 0, the metric ball
B(x, r) is defined as {y ∈ X : d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈
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Q, q > 0} of simple balls, which is a basis of the topology, has a canonical
numbering B = {Bi : i ∈ IN}. An effective open set is an open set U such
that there is a r.e. set E ⊆ IN with U =

⋃
i∈E Bi. If X ′ is another computable

metric space, a function f : X → X ′ is computable on a set D if there
are uniformly effective open sets Ui ⊆ X such that f−1(B′i) ∩ D = Ui ∩ D for
every i. Let IR := IR ∪ {−∞,+∞}. A function f : X → IR is lower semi-
computable on a set D if there are uniformly effective open sets Ui ⊆ X such
that f−1(qi,+∞] ∩D = Ui ∩D for every i (where q0, q1, . . . is a fixed effective
enumeration of the set of rational numbers Q).

A study of effective version of general measurable spaces was carried on
in [11]. In the present paper, we restrict our attention to metric spaces endowed
with the Borel σ-field (the σ-field generated by the open sets) over which we
consider probability measures. Let (X, d,S) be a computable metric space.

Definition 2 (from [5, 12, 13]). A Borel probability measure is computable if
for every effective open set U , µ(U) is lower semi-computable, uniformly in an
index of U . Equivalently, µ is computable if for every lower semi-computable
function f : X → [0,+∞],

∫
f dµ is lower semi-computable, uniformly in an

index of f .

Given two computable Borel probability measures µ and λ over X, it can
be proved that there is a computable sequence rn of real numbers that is dense
in (0,+∞) such that the balls B(s, rn) are all sets of µ-continuity3 and of
λ-continuity, for all s ∈ S (see [14]). The notion of effective open set could be
defined using this alternative basis, giving the same notions. While the mea-
sures of simple balls are in general only lower semi-computable, the numbers
µ(B(s, rn)) are all computable, uniformly in s, n.

Algorithmic Randomness. If µ is a computable measure, the set MLµ of
Martin-Löf random points is defined as the maximal set of measure one that
is effective in some particular sense (see [1] for more details). The set of random
points MLµ comes with a canonical decomposition into layers: MLµ =

⋃
nMLµn.

The layers MLµn have the properties:

(i) MLµn ⊆ MLµn+1,

(ii) µ(MLµn) > 1− 2−n and

(iii) X \MLµn is an effective open set, uniformly in n.

This decomposition is universal in the sense that, for any other sequence
of sets Kn satisfying the above three conditions, there exists a constant c (com-
putable from an index of the sequence Kn) for which

MLµn ⊆ Kn+c for all n. (1)

For such a sequenceKn, the setsX\Kn form what is known as a Martin-Löf
test. Another classical way of characterizing Martin-Löf randomness is using the

3 A set is of µ-continuity if the measure of its boundary is zero.
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notion of integrable test: an integrable test is a lower semi-computable function
t : X → [0,+∞] such that

∫
tdµ ≤ 1. For every computable measure µ there

exists a test, denoted tµ, which is universal in the sense that for any other test
t′ there exists a constant c (computable from an index of t′) such that t′ ≤ c · tµ.
The universal test tµ characterizes randomness as follows: a point x is µ-random
if and only if tµ(x) is finite. Observe that large values of tµ(x) are unlikely, by
Markov’s inequality. For a random point x, the randomness deficiency dµ(x)
is usually defined by dµ := log(tµ(x)). A slightly different way of measuring the
randomness deficiency of a random point x, is by considering the minimal n such
that x ∈ MLµn. Denoting this quantity by lµ(x), the relation between the two is
given by

dµ(x) ≤ lµ(x) + c ≤ dµ(x) + 2 log(dµ(x)) + 2c,

where c is a constant independent of x.
Once the layers have been fixed, virtually every computability notion has a

natural (weaker) layerwise counterpart, by restricting the requirements of the
definition to hold on every layer, in a uniform way. We will work with the fol-
lowing two instances.

Definition 3. A function f : X → Y is said to be µ-layerwise computable
if it is computable on every layer MLµn, uniformly in n.

In the language of representations, f is µ-layerwise computable if there is a
machine which takes n and a Cauchy representation of x ∈ MLn, and outputs
a Cauchy representation of f(x). Observe that a layerwise computable function
is computable in probability, in the sense that there is a machine which, upon
input n, computes the function f with a probability of error less than 2−n.

In the same vain, for real-valued functions, we define the layerwise version of
the notion of lower semi-computability.

Definition 4. A function f : X → IR is said to be µ-layerwise lower semi-
computable if it is lower-semi-computable on every layer MLµn, uniformly in
n.

A nice phenomenon is that the layerwise versions of many computability
notions inherit some of their properties. The integral of a lower semi-computable
nonnegative function is lower semi-computable, and it remains true for layerwise
lower semi-computable functions:

Proposition 1. Let µ be a computable measure and f : X → [0,+∞] a µ-
layerwise lower semi-computable function. The number

∫
f dµ is lower semi-

computable.

In [1], it is shown that there is a sharp correspondence between layerwise
computability notions and effective versions of measurability or integrability.
Among them we will use the following.

Theorem 1 (from [1]). A function f : X → IR is L1(µ)-computable if and only
if it is equivalent to a µ-layerwise computable function and

∫
f dµ is a computable

number.
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We recall that when µ is a computable Borel probability measure over X, the
spaces Lp(µ) (we will only use p = 1, 2) can be made computable metric spaces
using any computable dense sequence F0 = {g0, g1, . . .} of bounded computable
functions (such that a bound for gi can be computed from i) as ideal elements. We
say then that a function f ∈ Lp(µ) is Lp(µ)-computable if its equivalence class
is a computable element of Lp(µ). The above theorem says that the computable
elements (equivalent classes) of L1(µ) are exactly those that contain a µ-layerwise
computable representative whose integral is a computable number.

2 Absolute continuity

Let µ and λ be computable Borel probability measures. Classically, measure µ
is said to be absolutely continuous w.r.t. λ (denoted µ � λ) if µ(A) = 0,
whenever A is a Borel set and λ(A) = 0. In [2] it is proved that MLµ ⊆ MLλ

(preservation of randomness), implies µ� λ. It is also proved that the converse
does not hold in general. In this Section we show that an equivalence can be
obtained under a natural effectivity assumption. It is easy to see that absolute
continuity of µ w.r.t. λ is equivalent to the following: there is a function φ :
IN → IN such that for all Borel sets A and all n ∈ IN, if λ(A) < 2−ϕ(n) then
µ(A) < 2−n. The obvious effective version is therefore as follows.

Definition 5. Let µ, λ be two Borel probability measures. We say that µ is ab-
solutely continuous w.r.t. λ, effectively, if there is a computable function
ϕ : IN→ IN such that for all Borel sets A and all n ∈ IN, if λ(A) < 2−ϕ(n) then
µ(A) < 2−n. This is denoted µ�eff λ.

It is straightforward to see that if µ and λ are computable, µ�eff λ implies
MLµ ⊆ MLλ, as µ(Uλn ) converges effectively to 0, where Uλn is a universal λ-test.
One obtains the following picture:

µ�eff λ =⇒ MLµ ⊆ MLλ =⇒ µ� λ.

Remark 1. There is a weaker notion of randomness, due to Schnorr. It is also
straightforward to see that µ �eff λ implies that µ-Schnorr random points are
λ-Schnorr random. In [2], it is proved that there exist computable measures µ, λ
such that MLµ ⊆ MLλ but Schµ * Schλ. From this, MLµ ⊆ MLλ does not imply
µ�eff λ.

With the next theorem we show that an equivalence can be obtained when
the randomness deficiency is taken into account:

µ�eff λ ⇐⇒ MLµn ⊆ MLλψ(n) for some computable ψ : IN→ IN.

Moreover, the modulus of absolute continuity and the variation in random-
ness deficiency are sharply related.



6

Theorem 2. Let µ, λ be two computable Borel probability measures. The follow-
ing are equivalent:

1. µ�eff λ,

2. there is a computable ψ : IN→ IN such that MLµn ⊆ MLλψ(n) for all n.

Moreover, given ϕ in 1, one can compute c such that ψ(n) := ϕ(n+ c) satisfies
2, and given ψ in 2, one can compute c such that ϕ(n) := ψ(n) + c satisfies 1.

Proof. 1⇒ 2. Suppose µ�eff λ with a function ϕ and put Kn = MLλϕ(n). Then,

since λ(Kn) > 1 − 2ϕ(n), the effective absolute continuity implies µ(Kn) >
1− 2−n. Therefore, by the universality property (1) of MLµn, one can compute c
such that MLµn ⊆ Kn+c for all n, which means that MLµn ⊆ MLλϕ(n+c) for all n.
Thus, the function ψ(n) = ϕ(n+ c) satisfies the requirements of 2.

2⇒ 1. We will need the following lemma.

Lemma 1. Let µ, λ be computable measures. Let α < β be two rational numbers.
If there is a Borel set A such that µ(A) > α and λ(A) < β, then there exists a
finite union of µ-continuity and λ-continuity balls A′ = Bn1∪ . . .∪Bnk

satisfying
µ(A′) > α and λ(A′) < β.

Proof. Let A be a Borel set satisfying λ(A) < β and µ(A) > α. By regularity
of Borel measures, there exists an open set U ⊇ A such that λ(U) < β. Let
B1, B2, ... be an enumeration of the (µ and λ)-continuity balls introduced after
Definition 2. Since U is open, there is a sequence n1, n2, ... such that U = ∪iBni

.
Moreover, since

µ(∪ki=1Bni)↗ µ(U) as k →∞ and µ(U) ≥ µ(A) > α,

there must be k such that A′ = ∪ki=1Bni
satisfies µ(A′) > α. As A′ ⊆ U ,

λ(A′) < β. The Lemma is proved.

We proceed with the proof of the theorem. Suppose MLµn ⊆ MLλψ(n) for all
n ∈ IN. We consider the following procedure: given c as input, search for a finite
union of (µ and λ)-continuity balls A = Bn1 ∪ . . . ∪ Bnk

and some n ∈ IN such
that

λ(A) < 2−ψ(n)−c but µ(A) > 2−n. (2)

Since the measures of finite unions of continuity balls are computable, one can
effectively find such an A and n, if they exist. Now, for each c, define Ac and nc
by

(Ac, nc) =

{
(A,n) if there exists A and n satisfying (2)

(∅, not defined) otherwise.

We have that the sets Ac are effectively open, uniformly in c. Moreover,
whatever the case one always has

λ(Ac) < 2−ψ(nc)−c < 2−c,
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so that the sequence Ac is a Martin-Löf test w.r.t. λ. We now modify the test
Ac by stretching it as much as possible in a way that it remains a λ-test. When
nc is defined, let

uc := ψ(nc) + c.

We first extract a nondecreasing subsequence uck by defining ck as follows:

• put c0 = 0;
• if ck has been defined, search for c > ck such that uc is defined and uc > uck .

If such a c exists, let ck+1 be the first one that is enumerated, otherwise ck+1

is not defined.

The modified test Ui is defined by

Ui =

{
Ack if there is k such that ck−1 and ck are defined, and uck−1

< i ≤ uck ,
∅ otherwise.

Again Ui is an effective open set, uniformly in i, and λ(Ui) < 2−i for all i:
indeed,

if uck−1
< i ≤ uck then λ(Ui) = λ(Ack) < 2−uck ≤ 2−i.

We now modify it a little further and define

Vi =
⋃

j≥i+1

Uj .

Clearly, λ(Vi) < 2−i so that Vi is a λ-test as well. By universality of MLλn,
one can therefore compute b ∈ IN such that

MLλi ∩ Vi+b = ∅ for all i. (3)

Observe that the above relation remains true for any b′ ≥ b since Vi+b′ ⊆ Vi+b.
In particular, assume there is k ∈ IN such that ck is defined and ck ≥ b. First,
we see that

MLλi ∩ Vi+ck = ∅ for all i ∈ IN,

so that for i = ψ(nck) one has

MLλψ(nck
) ∩ Vuck

= ∅ =⇒ MLλψ(nck
) ∩Ack = ∅.

We now use the hypothesis: MLµnck
⊂ MLλψ(nck

), which implies

MLµnck
∩Ack = ∅

and thus µ(Ack) < 2−nck , which contradicts the construction of Ack . The con-
clusion is that there cannot be a k such that ck is defined and ck ≥ b. Hence,
µ(A) < 2−n whenever λ(A) < 2−ψ(n)−b, as was to be shown.
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The implication 1⇒ 2 has a useful consequence.

Corollary 1. If µ, λ are computable measures satisfying µ �eff λ then every
λ-layerwise computable function is also µ-layerwise computable.

Proof. Let ψ be as in Theorem 2. Let f be λ-layerwise computable. Let M be
a machine that on input n and oracle x ∈ MLλn computes f(x). Let M ′ be the
machine that given n as input and x as oracle, simulates M on input ψ(n) and
oracle x. If x ∈ MLµn then x ∈ MLλψ(n) so M ′ will compute f(x).

In the particular case when µ is bounded by λ (up to a constant), one obtains
the following characterizations:

Proposition 2. Let µ, λ be computable Borel probability measures. The follow-
ing are equivalent:

1. L1(λ) ⊆ L1(µ),
2. dµ

dλ ∈ L
∞(λ),

3. µ ≤ c λ for some constant c,
4. MLµn ⊆ MLλn+c for some constant c,
5. tλ ≤ c tµ for some constant c,
6. tλ ∈ L1(µ).

Proof. 1 ⇔ 2 ⇔ 3 is classical, 3 ⇔ 4 follows from Theorem 2, 5 ⇔ 6 is trivial,
as well as 1 ⇒ 6. We now prove 5 ⇒ 3. By contradiction, suppose for every n
there is a Borel set An such that µ(An) > 2nλ(An). Once again, by Lemma 1,
the sets An can be assumed to be a finite union of balls that are µ-continuity
and λ-continuity sets. Hence, the sets An can be effectively constructed. The
function f =

∑∞
n µ(An)−11An

is therefore lower semi-computable and
∫
f dλ =∑∞

n µ(An)−1λ(An) ≤
∑∞
n 2−n ≤ 1, so there is c such that f ≤ c tλ. If tλ ≤ c tµ

then f ≤ c tµ which is impossible as
∫
f dµ =

∑∞
n 1 = +∞. The proof is

complete.

3 Application: The Radon-Nikodym derivative

We now apply the Layerwise machinery to study from a computability point of
view the Radon-Nikodym theorem. In [3], it is shown that the Radon-Nikodym
operator has the degree of the (non-computable) operator EC. Moreover, an
explicit condition is given on the measures which implies computability of the
derivative. Namely, it is shown that

Theorem 3 ( [3]). For measures µ � λ, if µ is computably normable relative
to λ, then h = dµ

dλ is L1(λ)-computable, from λ and µ.

We now explain what it means for a measure to be computably normable
relative to another. Let µ and λ be Borel measures. Consider the linear operator
Lµ : L2(µ+ λ)→ IR be defined by

Lµ(f) :=

∫
f dµ.
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This is a bounded linear operator and it is easy to see that from µ, λ and f ,
one can compute the value Lµ(f). We recall that for a linear operator u acting
on the Hilbert space L2, the norm ‖u‖ is defined by

‖u‖ := sup{c ∈ IR : |u(f)| ≤ c‖f‖2} = sup
‖f‖2=1

|u(f)|.

Definition 6. A computable measure µ is said to be computably normable
relative to some other computable measure λ, if the operator Lµ (as defined
above) has a computable norm.

The Radon Nikodym theorem has also been studied in Bishop’s style con-
structive mathematics. A theorem very similar to Theorem 3 was presented for
example in [15]. In what follows we prove the following converse to Theorem
3, for computable measures. Observe that the statement does not involve algo-
rithmic randomness at all. The proof, however, relies heavily on the notion of
randomness deficiency via layerwise computability (especially point 3) to capture
and manipulate integrable functions in a simple way.

Theorem 4. Let λ be a computable probability measure. Let h : X → [0,+∞]
be a L1(λ)-computable function such that

∫
hλ = 1 and denote by µ the measure

with density h. Then

1. µ is computable,
2. not only µ� λ but µ�eff λ, and
3. µ is computably normable relative to λ.

Proof. By Theorem 1, we can assume without loss of generality that h is the
λ-layerwise computable representative of its equivalence class.

1. We have to prove that for effective open sets U , the values µ(U) are lower
semi-computable real numbers, uniformly in U . By definition, µ(U) =

∫
h1U dλ

and h1U is clearly λ-layerwise lower semi-computable, which implies the lower
semi-computability of µ(U) by Proposition 1.

2. As h is λ-layerwise computable, the functions h1{h<n} are uniformly λ-
layerwise lower semi-computable, so their λ-integrals are lower semi-computable
numbers which increase to 1. We can then compute a subsequence ni such that∫

h1{h≥ni} dλ < 2−i−1.

Now, for each i, put ϕ(i) = i+ 1 + dlog(ni)e. Let A be a Borel set such that
λ(A) < 2−ϕ(i). Then

µ(A) =

∫
h1A dλ =

∫
{h≥ni}

h1A dλ+

∫
{h<ni}

h1A dλ

≤ 2−i−1 + niλ(A)

< 2−i−1 + ni2
−ϕ(i) ≤ 2−i.
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3. The Radon-Nikodym derivative of µ with respect to (µ + λ) is given by
the function

g :=
h

h+ 1
.

Indeed, for f ∈ L1(µ),∫
f dµ =

∫
hf dλ =

∫
g(h+ 1)f dλ =

∫
gf d(µ+ λ).

The norm of Lλ is ‖g‖L2(µ+λ) =
√∫

g2 d(µ+ λ) =
√∫

g dµ. We prove that∫
g dµ is computable.

Since h is λ-layerwise computable, for any x ∈ MLλn one can compute h(x)

from x and n. Therefore, we can also compute h(x)
1+h(x) , which means that the func-

tion g is λ-layerwise computable too. By part 2, we know that µ�eff λ. By Corol-
lary 1, g is µ-layerwise computable too. Let ν = (µ + λ)/2. One easily obtains
MLνn = MLµn ∪MLλn, which implies that g is even ν-layerwise computable. Now,
since g is the density of µ w.r.t. (µ + λ), we get that

∫
g dν = 1

2

∫
g d(µ+ λ) =

1
2

∫
1 dµ = 1

2 which is a computable number, so g is L1(µ + λ)-computable by
Theorem 1. As µ ≤ µ+λ, it follows that g is also L1(µ)-computable (the L1(µ)-
norm is dominated by the L1(µ+ λ)-norm, so a computable sequence of simple
functions converging rapidly to g in L1(µ + λ) also converge rapidly to g in
L1(µ)). As a result,

∫
g dµ is computable, as was to be shown.

The following corollary states that in case the measures are equivalent, com-
putability of one of the densities entails the computability of the other.

Corollary 2. Let µ, λ be computable probability measures such that µ ∼ λ and
dµ
dλ is L1(λ)-computable. Then dλ

dµ is L1(µ)-computable and therefore µ ∼eff λ.

Moreover, if we assume dµ
dλ to be the λ-layerwise computable representative

of its class, then there are constants c1, c2 such that

dµ

dλ
(x) c1 ≤

tλ
tµ

(x) ≤ dµ

dλ
(x) c2 for every x ∈ MLλ = MLµ. (4)

Proof. Let h be a λ-layerwise computable representative of dµ
dλ . h−1 is λ-layerwise

computable. As µ �eff λ by Theorem 4, h−1 is also µ-layerwise computable by
Corollary 1. As

∫
h−1 dµ = 1 is a computable number, h−1 = dλ

dµ is L1(µ)-
computable by Theorem 1. Now, htµ is λ-layerwise lower semicomputable and∫
htµ dλ =

∫
tµ dµ ≤ 1, so there is a constant c such that htµ ≤ tλ c. Let then

c1 = c−1. By symmetry, switching µ and λ gives h−1tλ ≤ tµ c2 for some constant
c2. The two relations put together give (4), which finishes the proof.

Now, if µ, λ are computable and µ � λ, it was proved in [16] that the
Radon Nikodym derivative dµ

dλ is not necessarily L1(λ)-computable. Here we
prove that even under the stronger assumption µ �eff λ, the derivative need
not be computable. In particular, effective absolute continuity does not imply
computable normability.
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Proposition 3. There exist computable measures µ, λ such that µ ≤ c · λ for
some c, hence µ�eff λ, but dµ

dλ is not L1(λ)-computable.

Proof. Let Ω = [0, 1], let λ be the Lebesgue measure. We construct a fat Cantor
set K such that the restriction of µ to K (denoted µ := λ(.|K)) is computable,
but λ(K) is not computable. Let an be a computable sequence of positive real
numbers such that

∑
n an is finite and non-computable. Let bn = 2−an < 1:∏

n bn = 2−
∑

n an is positive and non-computable. We construct, for every word
w ∈ {0, 1}∗, a closed interval Iw, by induction on |w|. First Iε = [0, 1] (ε is the
empty word). Then, if Iw is defined, Iw0 and Iw1 are constructed removing an
open segment centered at the middle of Iw, such that |Iw0|+ |Iw1| = b|w||Iw|, as
depicted in figure 1.

Iw

Iw0 Iw1

Iw00 Iw01 Iw10 Iw11

Fig. 1. Construction of the building intervals of the set K.

Let K =
⋂
n

⋃
|w|=n Iw. By construction, λ(K) =

∏
n bn > 0. The bounds

of Ini are computable real numbers, uniformly in i, n. Let φ : {0, 1}IN → K be
the homeomorphism mapping a binary sequence ω to the single point lying in
the intersection of the intervals Iw with w prefix of ω. φ is clearly computable.

The measure µ = λ(.|K) = λ(.∩K)
λ(K) is the push-forward of the uniform mea-

sure over the Cantor space through φ, so µ is computable. The Radon-Nikodym
derivative f = dµ

dλ = λ(K)−11K is bounded but is not L1(λ)-computable. For
we could assume f to be the λ-layerwise computable representative and con-
sider λ(f−1(1,+∞)) = λ(K) which, as (1,+∞) is effectively open, should be
a lower semi-computable number. But λ(K) = 2−

∑
n an , which is only upper

semi-computable.
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