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Abstract

This article deals with the generalization performance of margin multi-category

classifiers, when minimal learnability hypotheses are made. In that context, the deriva-

tion of a guaranteed risk is based on the handling of capacity measures belonging to

three main families: Rademacher/Gaussian complexities, metric entropies and scale-

sensitive combinatorial dimensions. The usefulness of the scale-sensitive combinatorial

dimensions rests on the availability of two types of results. Combinatorial results con-

nect them to metric entropies. Structural results perform the transition from the

multi-class case to the bi-class one. The results currently available for the standard

scale-sensitive combinatorial dimension, the fat-shattering dimension, make it useless.

We establish the advantages springing from replacing it with two γ-Ψ-dimensions: the

margin Graph dimension and the margin Natarajan dimension. Two major conclusions

can be drawn:

1. involving the margin Graph dimension always improves the combinatorial results;

2. the margin Natarajan dimension can be used to exploit basic features of the

classifier so as to bypass the main weakness of the fat-shattering dimension: its

structural result.

1 Introduction

One of the main open problems of the theory of margin multi-category pattern classification

is the characterization of the way the confidence interval of an upper bound on the proba-

bility of error should vary as a function of the three basic parameters which are the sample

sizem, the number C of categories and the margin parameter γ (see Kontorovich and Weiss,

2014, for a survey). When working under minimal learnability hypotheses, the derivation

of such a guaranteed risk is based on the handling of capacity measures belonging to three

main families: Rademacher/Gaussian complexities (Bartlett and Mendelson, 2002), metric

entropies (Kolmogorov and Tihomirov, 1961) and scale-sensitive combinatorial dimensions

(Kearns and Schapire, 1994; Guermeur, 2007). The usefulness of the scale-sensitive com-

binatorial dimensions to derive guaranteed risks rests on the availability of two types of

results. Combinatorial results (Alon et al., 1997; Mendelson and Vershynin, 2003; Rudelson

and Vershynin, 2006; Musayeva et al., 2019) connect them to metric entropies. Structural

results (Duan, 2012; Maurer, 2016; Guermeur, 2017; Mohri et al., 2018) perform the tran-

sition from the multi-class case to the bi-class one. The structural result dedicated to the

main scale-sensitive combinatorial dimension, the fat-shattering dimension (Kearns and
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Schapire, 1994), is of no use to derive a bound. This motivates the exploration of an al-

ternative option: replacing this dimension with the two main γ-Ψ-dimensions (Guermeur,

2007), i.e., the margin Graph dimension and the margin Natarajan dimension. This arti-

cle introduces the corresponding combinatorial and structural results. The dependence on

m, C and γ of the resulting guaranteed risks is then characterized. This establishes that

involving the margin Graph dimension always improves the combinatorial results. Further-

more, the margin Natarajan dimension appears very promising to take into account basic

features of the classifier so as to produce efficient structural results. When this happens,

then the improvement of the confidence interval primarily regards the dependence on γ.

The organization of the paper is as follows. Section 2 introduces the theoretical frame-

work. Section 3 highlights the need for new structural results to improve the multi-class

bounds. Section 4 characterizes the connections between the three combinatorial dimen-

sions considered. Sections 5 and 6 introduce and discuss the new combinatorial and struc-

tural results dedicated to the two γ-Ψ-dimensions. The corresponding bounds on the metric

entropies and guaranteed risks are derived in Section 7. At last, we draw conclusions in

Section 8. To make reading easier, all technical lemmas and proofs have been gathered in

appendix.

2 Margin Multi-category Classifiers

We work under minimal assumptions on the data and the classifiers, which exhibit one

important feature: for each description, they return one score per category.

2.1 Theoretical Framework

Let Jn−;n+K denote the set of integers ranging from n− to n+. We consider the case of C-

category pattern classification problems with C ∈ N\J0; 2K. X is the description space and

Y = J1;CK the set of categories. Their connection is utterly characterized by an unknown

probability measure P . Let Z = (X,Y ) be a random pair with values in Z = X × Y,

distributed according to P . We are given an m-sample Zm = (Zi)16i6m = ((Xi, Yi))16i6m

made up of independent copies of Z (in short Zm ∼ Pm). The classifiers are based on

classes of vector-valued functions with one component function per category. We add a

basic learnability hypothesis: the classes of component functions are uniform Glivenko-

Cantelli (uGC) (Dudley et al., 1991). Those classes must be uniformly bounded up to

additive constants. We replace this property by a slightly stronger one: the vector-valued
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functions take their values in a hypercube of RC . To sum up, we make minimal hypotheses

to ensure that all capacity measures met in the sequel are finite (none of the bounds

formulated is trivial).

Definition 1 (Margin classifier). Let {Gk : 1 6 k 6 C} be a set of classes of functions from

X into [−MG ,MG ] with MG ∈ [1,+∞) (∀k ∈ J1;CK , Gk ⊂ [−MG ,MG ]X ). These classes

are supposed to be uGC. Let G be a subset of
∏C
k=1 Gk (G is a class of functions from X into

[−MG ,MG ]C). An operator dr named decision rule maps every function g = (gk)16k6C ∈ G

to a margin multi-category classifier drg in (Y
⋃
{∗})X . For every pair (g, x) ∈ G × X ,

drg (x) is either the index of the component function of g taking the highest value at x, or

the dummy category ∗ in case of ex æquo.

The generalization capabilities of such classifiers can be characterized by means of the

values taken by the differences of the component functions. This calls for the definition of

standard concepts of the theory of margin multi-category pattern classification.

Definition 2 (Margin operator ρ). Let G be a function class defined as in Definition 1.

Define ρ as an operator on G such that:

ρ : G −→ ρG

g 7→ ρg

∀ (x, k) ∈ Z, ρg (x, k) =
1

2

(
gk (x)−max

l 6=k
gl (x)

)
.

The function ρg is the margin function associated with g.

The risk of g ∈ G is given by: L (g) = E(X,Y )∼P
[
1{ρg(X,Y )60}

]
= P (drg (X) 6= Y ).

Definition 3 (Margin loss functions). A class of margin loss functions φγ parameterized

by γ ∈ (0, 1] is a class of nonincreasing functions from R into [0, 1] satisfying:∀γ ∈ (0, 1] , φγ (0) = 1 and φγ (γ) = 0

∀ (γ, γ′) ∈ (0, 1]2 , γ < γ′ =⇒ φγ′ majorizes φγ
.

Given φγ , the risk with margin γ of g, Lγ (g), is defined as: Lγ (g) = EZ∼P [φγ ◦ ρg (Z)].

Lγ,m (g) designates the corresponding empirical risk, measured on Zm. When using φγ ,

the behaviour of the margin functions outside the interval [0, γ] is irrelevant to characterize

the generalization performance. The idea to exploit this property by means of a squashing

operator can be traced back to Bartlett (1998). The present study uses the operator πγ .

3



Definition 4 (Squashing operator πγ). Let F ⊂ RT . For γ ∈ (0, 1], define the piecewise-

linear squashing operator πγ as:

πγ : F −→ Fγ
f 7→ fγ

∀t ∈ R, fγ (t) = f (t)1{f(t)∈(0,γ]} + γ1{f(t)>γ}.

When deriving a guaranteed risk, replacing the class of margin functions ρG with its

image by πγ , the class ρG,γ , has only advantages. On the one hand, it induces a decrease

of the capacity (see Section 3.1) which can narrow the confidence interval. On the other

hand, it does not affect the data-fit term (since ∀γ ∈ (0, 1] , φγ ◦ πγ = φγ). Thus, making

the best of it is a major challenge.

2.2 Guaranteed Risks

In the theoretical framework of interest, the starting point of the derivation of a guaranteed

risk is a supremum inequality taking the form:

Pm

{
sup
g∈G

(L∗ (g)− Lγ,m (g)) > Fi (m, γ, δ, cap (ρG,γ))

}
6 δ, (1)

where L∗ is either L or Lγ and the capacity measure cap (ρG,γ) involved in the expression

of the function Fi depends on the choice of φγ . Then, the problem consists in upper

bounding cap (ρG,γ) as a function of the basic parameters m, C and γ, so that eventually,

with probability 1− δ, the supremum of the empirical process of interest is bounded from

above by a function Ff of m, C, γ and δ only, i.e.,

sup
g∈G

(L∗ (g)− Lγ,m (g)) 6 Ff (m,C, γ, δ) .

We now introduce the three types of capacity measures considered in this study, in their

order of appearance in the derivation of the bounds.

Definition 5 (Rademacher complexity). Let (T ,AT , PT ) be a probability space and let T

be a random variable distributed according to PT . For n ∈ N∗, let Tn = (Ti)16i6n be an

n-sample made up of independent copies of T and let σn = (σi)16i6n be a Rademacher se-

quence. Let F be a class of real-valued functions with domain T . The empirical Rademacher

complexity of F given Tn is

R̂n (F) = Eσn∼{±1}n

[
sup
f∈F

1

n

n∑
i=1

σif (Ti)

∣∣∣∣∣ Tn

]
.
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The Rademacher complexity of F is

Rn (F) = ETn∼PnT

[
R̂n (F)

]
.

The classes F considered here are endowed with empirical (pseudo-)metrics derived

from the Lp-norms. For n ∈ N∗, let tn = (ti)16i6n ∈ T n. Then,

∀
(
f, f ′

)
∈ F2,

∀p ∈ [1,+∞) , dp,tn (f, f ′) =
(

1
n

∑n
i=1 |f (ti)− f ′ (ti)|p

) 1
p

d∞,tn (f, f ′) = max16i6n |f (ti)− f ′ (ti)|
.

Definition 6 (Covering numbers and metric entropy). Let F be a class of real-valued

functions on T endowed with the pseudo-metric dp,tn. Let F̃ be a totally bounded subset

of (F , dp,tn). Then for every ε ∈ R∗+, the ε-covering number N
(
ε, F̃ , dp,tn

)
of F̃ is the

minimal cardinality of a subset F̄ of F satisfying:

∀f̃ ∈ F̃ , ∃f̄ ∈ F̄ : dp,tn

(
f̃ , f̄

)
< ε.

The definition of the proper/internal covering number N int
(
ε, F̃ , dp,tn

)
results from the

restriction F̄ ⊂ F̃ . The uniform covering numbers Np
(
ε, F̃ , n

)
and N int

p

(
ε, F̃ , n

)
are

given by: Np
(
ε, F̃ , n

)
= suptn∈T n N

(
ε, F̃ , dp,tn

)
N int
p

(
ε, F̃ , n

)
= suptn∈T n N

int
(
ε, F̃ , dp,tn

) .

The function mapping ε to the binary logarithm of the ε-covering number of a set is called

the metric entropy of this set.

There is a close connection between covering and packing properties of bounded subsets

in pseudo-metric spaces.

Definition 7 (Packing numbers). Let the pseudo-metric space (F , dp,tn) be defined as in

Definition 6. Then for every ε ∈ R∗+, its subset F̃ is ε-separated with respect to dp,tn if and

only if:

∀
{
f, f ′

}
⊂ F̃ , dp,tn

(
f, f ′

)
> ε.

If F̃ is totally bounded, then its ε-packing number M
(
ε, F̃ , dp,tn

)
is the maximal cardi-

nality of its ε-separated subsets. Mp

(
ε, F̃ , n

)
= suptn∈T nM

(
ε, F̃ , dp,tn

)
designates the

corresponding uniform packing number.

The scale-sensitive combinatorial dimensions evaluated here are γ-Ψ-dimensions, i.e.,

scale-sensitive extensions of the Ψ-dimensions (Ben-David et al., 1995).
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Definition 8 (γ-Ψ-dimensions, Definition 28 in Guermeur, 2007). Let F ⊂ RZ be such

that:

∀f ∈ F , ∀x ∈ X , max
16k<l6C

{f (x, k) + f (x, l)} = 0. (2)

Let Ψ be a family of mappings from Y into {−1, 0, 1}. For γ ∈ R∗+, a subset sZn =

{zi = (xi, yi) : 1 6 i 6 n} of Z is said to be γ-Ψ-shattered by F if there is a vector ψn =(
ψ(i)

)
16i6n ∈ Ψn satisfying

(
ψ(i) (yi)

)
16i6n = 1n, and a vector bn = (bi)16i6n ∈ Rn+ such

that, for every vector sn = (si)16i6n ∈ {−1, 1}n, there is a function fsn ∈ F satisfying

∀i ∈ J1;nK, si

(
si max
{k: ψ(i)(k)=si}

fsn (xi, k)− bi

)
> γ. (3)

The γ-Ψ-dimension of F , denoted by γ-Ψ-dim (F), is the maximal cardinality of a subset

of Z γ-Ψ-shattered by F , if such maximum exists. Otherwise, F is said to have infinite

γ-Ψ-dimension.

Remark 1. Let us consider the degenerate case C = 2. Then, si max{k: ψ(i)(k)=si} fsn (xi, k) =

fsn (zi), so that Formula (3) reduces to

∀i ∈ J1;nK, si (fsn (zi)− bi) > γ,

and thus Definition 8 reduces to the definition of the main scale-sensitive combinatorial

dimension, the fat-shattering or γ-dimension γ-dim (Kearns and Schapire, 1994; Bartlett

and Long, 1998), with a restricted domain for vector bn. Furthermore, if we define the

function class F(1) on X as follows: F(1) = {f (·, 1) : f ∈ F}, then

∀γ ∈ R∗+, γ-dim
(
F(1)

)
= γ-dim (F) ,

provided that the definition of γ-dim
(
F(1)

)
is the standard one (requiring only that bn ∈

Rn). Thus, in the bi-class case, the constraint bn ∈ Rn+ of Definition 8 establishes the

equivalence of the two definitions of the fat-shattering dimension, for the function class on

Z (classifier with two outputs) and the one on X (classifier with one single output).

Definition 8 and Remark 1 suggest to adopt the following convention. The definition of

any scale-sensitive combinatorial dimension of a class of functions with domain Z includes

the restriction bn ∈ Rn+. On the contrary, when the domain is X , then the standard

hypothesis bn ∈ Rn applies. The relevance of this choice will appear gradually (sometimes

implicitly) in the sequel.
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Definition 9 (Margin Graph dimension and margin Natarajan dimension). Let F be a

function class defined as in Definition 8 and let γ ∈ R∗+. The Graph dimension with margin

γ of F , denoted by γ-G-dim (F), is the γ-Ψ-dimension of F corresponding to the following

choice for Ψ:

ΨG =
{(
ψk : y 7→ 1{y=k} − 1{y 6=k}

)
: k ∈ Y

}
.

The Natarajan dimension with margin γ of F , denoted by γ-N-dim (F), is the γ-Ψ-

dimension of F corresponding to the following choice for Ψ:

ΨN =
{(
ψk,l : y 7→ 1{y=k} − 1{y=l}

)
: {k, l} ⊂ Y

}
.

Remark 2. The instance of (3) associated with the margin Graph dimension is obtained

by setting ψn = (ψyi)16i6n so that

∀i ∈ J1;nK,

if si = 1, fsn (xi, yi)− bi > γ

if si = −1, maxk 6=yi fsn (xi, k) + bi > γ
.

In the case of the Natarajan dimension with margin γ, choosing ψn is equivalent to choosing

a vector cn = (ci)16i6n ∈ Yn satisfying for every i ∈ J1;nK, ci 6= yi. Then, ψn is set equal

to (ψyi,ci)16i6n, so that (3) becomes

∀i ∈ J1;nK,

if si = 1, fsn (xi, yi)− bi > γ

if si = −1, fsn (xi, ci) + bi > γ
.

2.3 Scheme of Derivation of the Guaranteed Risks

For all known instances of Formula (1), the scheme of derivation of function Ff involving

the families of capacity measures considered in this study is standard. It corresponds to

the directed graph depicted in Figure 1.

Here, the function class G0 is equal to
⋃C
k=1 Gk. The value ofm′ is eitherm or 2m, when

the derivation of Inequality (1) involves a ghost sample (Vapnik and Chervonenkis, 1971;

Pollard, 1984). When following a path from the source to the target, two types of transitions

are met. A first group, the horizontal arrows, corresponds to a change of capacity measure.

The standard sequence (from left to right) consists in the chaining method (Dudley, 1967;

Talagrand, 2014), to connect the Rademacher complexity to covering numbers, a transition

through the corresponding packing numbers, and then a combinatorial result, to switch

to a combinatorial dimension. The second group, the layer of vertical arrows, is that of

the structural results, performing the transition from the capacity of ρG,γ to that of G0
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Fi (m, γ, δ, cap (ρG,γ))

↙ ↘

Rm (ρG,γ)
chaining−−−−−→ N int

p (ε, ρG,γ ,m
′) 6 Mp (ε, ρG,γ ,m

′)
combinatorial result−−−−−−−−−−−−→ ε′-dim (ρG)y

y structural results

y
Rm (G0)

chaining−−−−−→ N int
p (ε′′,G0,m

′) 6 Mp (ε′′,G0,m
′)

combinatorial result−−−−−−−−−−−−→ ε′′′-dim (G0)

↘
y direct computations ↙

Ff (m,C, γ, δ)

Figure 1: Graph of the transitions from a function Fi to a function Ff .

(roughly speaking from the multi-class case to the bi-class one). As an example, the paths

in red are the ones explored in Guermeur (2017).

3 State-of-the-Art Structural Results

The literature provides us with structural results for all three types of capacity measures

considered.

3.1 Major Lemmas

The sharpest structural result for the Rademacher complexity of the class ρG,γ is obtained

by combining the proof of Theorem 9.2 in Mohri et al. (2018) with Talagrand’s contraction

lemma (see for instance Lemma 5.7 in Mohri et al., 2018).

Lemma 1. Let G be a function class defined as in Definition 1. Then,

∀γ ∈ (0, 1] , ∀n ∈ N∗, Rn (ρG,γ) 6 min {Rn (ρG) , CRn (G0)} .

The counterpart of Lemma 1 dealing with covering numbers is the following structural

result.

Lemma 2 (Lemma 1 in Guermeur, 2017). Let G be a function class defined as in Defini-

tion 1. For every γ ∈ (0, 1], ε ∈ R∗+, n ∈ N∗, p ∈ [1,+∞], and zn = ((xi, yi))16i6n ∈ Zn,

N int (ε, ρG,γ , dp,zn) 6 N int (ε, ρG , dp,zn) 6
C∏
k=1

N int
(
C
− 1
p ε,Gk, dp,xn

)
6
(
N int

(
C
− 1
p ε,G0, dp,xn

))C
,
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where xn = (xi)16i6n.

The main method available to derive structural results for the γ-dimension (see for

instance the proof of Lemma 6.2 in Duan, 2012) consists in three main steps: upper

bounding the dimension of interest in terms of a metric entropy of the same class, applying

a decomposition (similar to Lemma 2), and applying a combinatorial result. For the class

ρG,γ , it gives birth to the following Lemma.

Lemma 3. Let G be a function class defined as in Definition 1. For every γ ∈ (0, 1] and

ε ∈
(
0, γ2

]
,

ε-dim (ρG,γ) 6 ε-dim (ρG)

6 320 log2

(
24MG

√
C

ε

)
C∑
k=1

(
ε

96
√
C

)
-dim (Gk)

6 320 log2

(
24MG

√
C

ε

)
C

(
ε

96
√
C

)
-dim (G0) . (4)

3.2 Shortcomings of the State-of-the-Art Structural Results

We reviewed the state-of-the-art decomposition results associated with the three families of

capacity measures involved in this study. None is utterly satisfactory. The decomposition

involving Rademacher complexities (Lemma 1) can produce a function Ff depending at

least linearly on C. This behaviour is to be compared with the one of the decomposition

involving covering numbers (Lemma 2), that always ensures a sublinear dependence (see

for instance Theorem 3 in Musayeva et al., 2019). Furthermore, the upper bounds on

the metric entropies resulting from applying a combinatorial result to ρG,γ followed by

Lemma 3 are always worse than those obtained by application of Lemma 2 followed by the

same combinatorial result (applied to G0). The reason is simple: the two computations

are similar, except for an extra application of a combinatorial result in the first case. This

supplementary step introduces a multiplicative factor ln
(

1
ε

)
in the bounds. We illustrate

the phenomenon with the two state-of-the-art combinatorial results connecting the packing

numbers of a class of real-valued functions to its fat-shattering dimension: Lemma 3.5 in

Alon et al. (1997), for the L∞-norm, and Theorem 1 in Mendelson and Vershynin (2003),

for the L2-norm. The use of Lemma 2 produces for n >
(
ε
4

)
-dim (G0),

log2

(
N int
∞ (ε, ρG,γ , n)

)
6 C

{⌈( ε
4

)
-dim (G0) log2

(
4MGen

ε

)⌉
log2

(
16M2

Gn

ε2

)
+ 1

}
(5)
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and for n ∈ N∗,

log2

(
N int

2 (ε, ρG,γ , n)
)
6 20C

(
ε

48
√
C

)
-dim (G0) log2

(
12MG

√
C

ε

)
. (6)

Using instead Lemma 3 gives for n >
(
ε
4

)
-dim (ρG),

log2

(
N int
∞ (ε, ρG,γ , n)

)
6

⌈
320 log2

(
96MG

√
C

ε

)
C

(
ε

384
√
C

)
-dim (G0) log2

(
2γen

ε

)⌉
log2

(
4γ2n

ε2

)
+ 1 (7)

and for n ∈ N∗,

log2

(
N int

2 (ε, ρG,γ , n)
)
6 6400 log2

(
1152MG

√
C

ε

)
C

(
ε

4608
√
C

)
-dim (G0) log2

(
6γ

ε

)
.

(8)

A comparison of Inequalities (5) and (7) on the one hand, and Inequalities (6) and (8) on the

other, makes it possible to identify the extra logarithmic factors. With these observations

at hand, one could think that when the assumptions regarding the classifier are minimal,

then the best structural result is Lemma 2. Put in a different way, the paths in the graph

of Figure 1 generating the best functions Ff could be those marked in red. However,

Lemma 2 makes no use of the capacity reduction induced by the squashing (operator πγ).

When delaying the decomposition at this level, this squashing is only exploited upstream,

i.e., by the chaining formula. Those limitations raise a question.

Question 1. Can the introduction in the graph of transitions of γ-Ψ-dimensions of ρG

improve the dependence of function Ff on the basic parameters?

The answers to Question 1 should spring from replacing the classical graph of transitions

(Figure 1) with the one of Figure 2 and exploring in the new graph the paths highlighted

in blue.

This exploration takes the form of the derivation of new combinatorial and structural

results. The evaluation of this contribution rests on connections between the scale-sensitive

combinatorial dimensions which are established in the following section.

4 Connections Between the Scale-Sensitive Combinatorial Di-

mensions

We first consider the connections between the fat-shattering dimension and the margin

Graph dimension. It takes the form of a kind of “equivalence”.
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Fi (m, γ, δ, cap (ρG,γ))

↙ ↘

Rm (ρG,γ)
chaining−−−−−→ N int

p (ε, ρG,γ ,m
′) 6 Mp (ε, ρG,γ ,m

′)
combinatorial result−−−−−−−−−−−−→

ε
′-dim (ρG)

ε′-Ψ-dim (ρG)y
y structural results

y
Rm (G0)

chaining−−−−−→ N int
p (ε′′,G0,m

′) 6 Mp (ε′′,G0,m
′)

combinatorial result−−−−−−−−−−−−→ ε′′′-dim (G0)

↘
y direct computations ↙

Ff (m,C, γ, δ)

Figure 2: Paths from Fi to Ff involving combinatorial dimensions of the class ρG .

Lemma 4. Let F be a function class defined as in Definition 8. Then,

∀γ ∈ (0, 1] , ∀ε ∈
(

0,
γ

2

]
, ε-dim (Fγ) 6 ε-G-dim (F) 6 ε-dim (F) . (9)

To assess the scope of Lemma 4, one must consider the strategy implemented to es-

tablish combinatorial results for function classes Fγ under the sole hypothesis that the

fat-shattering dimension of F is defined. This strategy, used for instance in Bartlett

(1998), simply consists in upper bounding the packing numbers of Fγ as a function of its

fat-shattering dimension, and then upper bounding this dimension by the fat-shattering

dimension of F . Lemma 4 tells us that if the class F also has γ-Ψ-dimensions, then its

fat-shattering dimension can be replaced with its (smaller) margin Graph dimension, thus

improving the combinatorial result (whatever the Lp-norm used). The gain is conditioned

by the availability of non trivial upper bounds on the margin Graph dimension of F , i.e.,

bounds that no longer hold true if this dimension is replaced with the fat-shattering di-

mension of F . Lemma 5, a scale-sensitive counterpart of Theorem 10 in Ben-David et al.

(1995), provides a bound of this kind.

Lemma 5. Let F be a function class defined as in Definition 8. Suppose that γ ∈ R∗+ is

such that γ-G-dim (F) is finite. Then,

γ-N-dim (F) 6 γ-G-dim (F) 6 32 log2
2 (e (C − 1)) γ-N-dim (F)α(C) , (10)

where α (C) = 1 + 1
4 ln(C−1)+2 .
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It is easy to exhibit examples of function classes F with γ-Ψ-dimensions, and for which

the right-hand side inequality of Formula (10) no longer holds true with γ-G-dim (F)

replaced with γ-dim (F). Example 1 is of this kind.

Example 1. Let G be a set of two functions g(1) and g(2) on X = {x} given by g(1) (x) =(
3
4 ,

1
4 , 0
)T and g(2) (x) =

(
0, 1

2 ,
1
2

)T . Let us set γ = 1
4 . Then, γ-G-dim (ρG) = 0 and

γ-dim (ρG) = 1.

Indeed, by definition,
(
ρg(1) (x, k)

)
16k63

=
(

1
4 ,−

1
4 ,−

3
8

)T , and
(
ρg(2) (x, k)

)
16k63

=(
−1

4 , 0, 0
)T . Consequently, the formula maxk 6=l

{
ρg(1) (x, k) + ρg(2) (x, l)

}
= γ < 2γ implies

that none of the three singletons {(x, k)} is γ-G-shattered by ρG . On the contrary,ρg(1) (x, 1) > γ

−ρg(2) (x, 1) > γ
,

i.e., the class ρG γ-shatters {(x, 1)} for b = 0. To sum up, γ-dim (ρG) = 1 but γ-N-dim (ρG) =

γ-G-dim (ρG) = 0 (so that the last term of Formula (10) is also equal to 0).

5 Combinatorial Results

The new results exposed in this section and the next one provide the building blocks needed

to derive upper bounds on the metric entropies of ρG,γ , for p > 2, following the blue paths

of Figure 2. However, the combinatorial results are more general, since they apply to any

pair (Fγ ,F) where F is a function class for which the γ-Ψ-dimensions are defined, and not

only the pairs (ρG,γ , ρG). To keep the comparison with the literature simple, we focus on

the two most popular options: p =∞ and p = 2, but the generalization is straightforward

using the ideas developed in the proof of Theorem 2 in Musayeva et al. (2019).

5.1 Margin Graph Dimension

In the case of the margin Graph dimension, the availability of Lemma 4 has a major

consequence: the new combinatorial results should be compared to those of the literature

applied to Fγ , with the fat-shattering dimension of Fγ replaced with the margin Graph

dimension of F (instead of its fat-shattering dimension, as is usually done). Our first result

deals with the case p =∞.

12



Lemma 6. Let F be a function class defined as in Definition 8. For ε ∈ R∗+, let dG (ε) =

ε-G-dim (F). Then for every γ ∈ (0, 1], ε ∈ (0, γ] and n ∈ N∗ such that n > dG
(
ε
4

)
,

M∞ (ε,Fγ , n) 6

(
6γn

ε

)dG( ε4) log2

(
2γen

dG( ε4 )ε

)
. (11)

Inequality (11) compares with the application of Lemma 3.5 in Alon et al. (1997). This

application produces

M∞ (ε,Fγ , n) < 2

(
4γ2n

ε2

)⌈dG( ε4) log2

(
2γen

dG( ε4 )ε

)⌉
.

A gain can be noticed, which appears especially clearly for ε = γ
2 , the combination of

practical interest as will be seen in Section 7.2. We now turn to the case p = 2.

Lemma 7. Let F be a function class defined as in Definition 8. For ε ∈ R∗+, let dG (ε) =

ε-G-dim (F). Then for every γ ∈ (0, 1], ε ∈ (0, γ] and n ∈ N∗,

M2 (ε,Fγ , n) 6

(
5γ

ε

)12dG( ε
24)

. (12)

Inequality (12) compares with the formula obtained with Theorem 1 in Mendelson

and Vershynin (2003). This time, the improvement is limited to an optimization of the

constants which is not induced by the direct connection between the packing numbers of

Fγ and the margin Graph dimension of F .

5.2 Margin Natarajan Dimension

As for the margin Natarajan dimension, with Lemma 5 at hand, Lemmas 6 and 7 also

provide us with combinatorial results involving this capacity measure. However, sharper

bounds should spring from following the direct path, i.e., working directly with this latter

dimension (without involving the margin Graph dimension). We now state the correspond-

ing combinatorial results (for p =∞ then p = 2) and perform the comparison.

Lemma 8. Let F be a function class defined as in Definition 8. For ε ∈ R∗+, let dN (ε) =

ε-N-dim (F). Then for every γ ∈ (0, 1], ε ∈ (0, γ] and n ∈ N∗ such that n > dN
(
ε
4

)
,

M∞ (ε,Fγ , n) 6

(
6γ
√
C − 1n

ε

)dN( ε4) log2

(
2γ(C−1)en

dN ( ε4 )ε

)
. (13)

Lemma 9. Let F be a function class defined as in Definition 8. For ε ∈ R∗+, let dN (ε) =

ε-N-dim (F). Then for every γ ∈ (0, 1], ε ∈ (0, γ] and n ∈ N∗,

M2 (ε,Fγ , n) 6

(
(C − 1)

(
4γ

ε

)5
) 3

2
log2

(
2( 14γ

ε )
2
(C−1)

)
dN( ε

28)

. (14)
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As expected, as close to 1 as α (C) may be, Inequalities (13) and (14) are better than

the bounds obtained by substitution of the right-hand side term of (10) in the formulas

involving the margin Graph dimension: (11) and (12), respectively. Precisely, in both

cases, the dependence on n is unchanged, while the dependences on C and ε are slightly

improved.

5.3 Discussion

Overall, we have seen that the combinatorial results involving directly the margin Graph

dimension, Lemmas 6 and 7, provide sharper bounds on the packing numbers of Fγ (and

thus also ρG,γ) than their counterparts from the literature: Lemma 3.5 in Alon et al.

(1997) and Theorem 1 in Mendelson and Vershynin (2003), respectively. The gain is more

important in the first case. Furthermore, the use of the margin Natarajan dimension

appears as a promising alternative. Indeed, Lemmas 8 and 9 provide sharper bounds than

those resulting from the combination of Lemmas 6 and 7 with Lemma 5.

6 Structural Results for the Margin Natarajan Dimension

Since the margin Graph dimension is upper bounded by the fat-shattering dimension

(Lemma 4), Lemma 3 is also a structural result for the margin Graph dimension. Loosely

speaking, this result can be improved by substituting in its proof the L2-norm with the

norm Ldlog2(C)e, i.e., by applying the idea developed in Musayeva et al. (2019). The gain

then regards the dependence of the bound on C. However, the prohibitive drawback iden-

tified in Section 3.2 remains. It is possible to upper bound directly (without resorting to

Lemma 3) the margin Graph dimension of specific classifiers from the literature, but this

comes at the expense of difficult computations, that go beyond the scope of this article.

In that respect, it is far easier to exploit the appealing properties of the margin Natarajan

dimension, as will be seen in the sequel.

Lemma 10. Let G be a function class defined as in Definition 1 and let DG be the function

class
{

1
2 (gk − gl) : g ∈ G, 1 6 k < l 6 C

}
. Then for every value of γ in (0,MG ],

γ-N-dim (ρG) 6

(
C

2

)
· γ-dim (DG) (15)

and

γ-N-dim (ρG) 6 384

(
C

2

)
log2

(
20MG
γ

)( γ
48

)
-dim (G0) . (16)
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Formula (16) is almost as unsatisfactory as Formula (4). However, Formula (15) can

be used to derive a sharper structural result for popular classifiers associated with function

classes G such that G0 has the closure property DG ⊂ G0. Corollary 1 illustrates this

behaviour.

Corollary 1. Let H(1) be a class of functions from X into a Hilbert space (H, 〈·, ·〉H) and

(Λ1,Λ2) ∈
(
R∗+
)2. Let H(2) be the class of functions h(2) from X into [−Λ1Λ2,Λ1Λ2]C of

the form:

∀x ∈ X , h(2) (x) =
(〈

wk, h
(1) (x)

〉
H

)
16k6C

,

where h(1) ∈ H(1) satisfies supx∈X
∥∥h(1) (x)

∥∥
H

6 Λ1 and the vector (wk)16k6C ∈ HC

satisfies max16k6C ‖wk‖H 6 Λ2. Let H(2)
0 be the class of all the component functions of

the functions in H(2). Then,

∀γ ∈ (0,Λ1Λ2] , γ-N-dim (ρH(2)) 6

(
C

2

)
· γ-dim

(
H(2)

0

)
. (17)

Corollary 1 is actually a consequence of Formula (15) since the class H(2) has been

specified so as to ensure the satisfaction of the closure property. It applies to classifiers of

reference such as the multi-layer perceptrons (MLPs) (Anthony and Bartlett, 1999) with

linear output units and the C-category support vector machines (SVMs) (Doğan et al.,

2016). In the second case, H(1) is restricted to one single function, the feature map,

which can be defined from the kernel κ (Berlinet and Thomas-Agnan, 2004) as: ∀x ∈ X ,

h(1) (x) = κx = κ (·, x). Then, H is the reproducing kernel Hilbert space (RKHS) of κ.

An application of the standard upper bound on the fat-shattering dimension of (binary)

SVMs, Theorem 4.6 in Bartlett and Shawe-Taylor (1999), produces the instantiation of

Inequality (17) for C-category SVMs:

∀γ ∈ (0,Λ1Λ2] , γ-N-dim (ρH(2)) 6

(
C

2

)(
Λ1Λ2

γ

)2

. (18)

It is noticeable that such a simple algebraic property as DG ⊂ G0 proves enough to replace

Inequality (16) with a far sharper bound. Corollary 1 provides a first illustration of the

capacity of the margin Natarajan dimension to exploit a coupling between the component

functions of the classifier. This exploitation can be carried out further. We illustrate the

phenomenon by refining the study of the case of the C-category SVMs. To than end, a

specific definition of these machines is used, which is based on the concept of RKHS of

RC-valued functions (Wahba, 1992).
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Definition 10 (RKHS Hκ,C). Let κ be a real-valued positive type function on X 2 and let(
Hκ, 〈·, ·〉Hκ

)
be its RKHS. Let κ̃ be the real-valued positive type function on Z2 deduced

from κ as follows: ∀ (z, z′) ∈ Z2, κ̃ (z, z′) = δy,y′κ (x, x′), where δ is the Kronecker delta.

For every z ∈ Z, let us define the RC-valued function κ̃(C)
z on X by the formula

κ̃(C)
z (·) = (κ̃ (z, (·, k)))16k6C . (19)

The RKHS of RC-valued functions at the basis of a C-category SVM with kernel κ,
(
Hκ,C , 〈·, ·〉Hκ,C

)
,

consists of the linear manifold of all finite linear combinations of functions of the form

(19) and its closure with respect to the inner product: ∀ (z, z′) ∈ Z2,
〈
κ̃

(C)
z , κ̃

(C)
z′

〉
Hκ,C

=

κ̃ (z, z′).

With Definition 10 at hand, the specification of the function class at the basis of a C-

category SVM rests on the condition controlling the capacity through a coupling between

the component functions. We consider the standard one, used for instance by Lei et al.

(2015).

Definition 11 (Function class HΛ). Let κ be a kernel on X 2 and let Λ ∈ R∗+. Let(
Hκ,C , 〈·, ·〉Hκ,C

)
be the RKHS of RC-valued functions spanned by κ according to Defi-

nition 10. Then the function class HΛ associated with the C-category SVM parameterized

by (κ,Λ) is: HΛ =
{
h = (hk)16k6C ∈ Hκ,C :

∑C
k=1 hk = 0Hκ and ‖h‖Hκ,C

6 Λ
}
.

The class HΛ can be seen as an instance of the class H(2) of Corollary 1 for which

Λ1 = supx∈X ‖κx‖Hκ
and Λ2 = 2−

1
2 Λ. This instance exhibits a stronger coupling between

the component functions. Lemma 11 takes this property into account to produce a sharper

bound on the margin Natarajan dimension.

Lemma 11. For Λ ∈ R∗+, let HΛ be the function class of Definition 11. Suppose that for

every x ∈ X , κx belongs to the closed ball of radius ΛX about the origin in Hκ. Then,

∀γ ∈ (0,ΛΛX ] , γ-N-dim (ρHΛ
) 6 C

(
ΛΛX
2γ

)2

. (20)

In words, the stronger coupling between the component functions could be exploited

so as to turn the quadratic dependence on C of Formula (18) into a linear one.

7 Guaranteed Risks

The combinatorial and structural results of the two previous sections provide us with

new upper bounds on the metric entropies which are based on the margin Natarajan
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dimension. Their comparison with the bounds of reference, for instance Inequalities (5)

and (6), requires two generic formulas. The first one is an upper bound on the γ-dimension

of the class G0. The second one is the corresponding structural result for the margin

Natarajan dimension of ρG .

7.1 Bounds on the Metric Entropies

For the first formula, we use the standard hypothesis: that of polynomial γ-dimensions

(van der Vaart and Wellner, 1996; Mendelson, 2003). We have already seen that it is

satisfied by SVMs (Formula (18)). This is also the case for MLPs with linear output units

(see for instance Theorem 14.19 in Anthony and Bartlett, 1999). The second formula

is designed to incorporate the hypothesis of polynomial γ-dimensions in a decomposition

result taking benefit from the coupling between the component functions of the functions

g. It is thus primarily inspired by Inequalities (17) and (20).

Hypothesis 1. We consider function classes G defined as in Definition 1 for which there

exists a quadruplet
(
dG,C , dG,γ ,KG0 ,KρG

)
∈ (0, 2]×

(
R∗+
)3 such that

∀ε ∈ (0,MG ] ,

{
ε-dim (G0) 6 KG0ε

−dG,γ (21a)

ε-N-dim (ρG) 6 KρGC
dG,C ε−dG,γ . (21b)

Under Hypothesis 1, the combinatorial results dedicated to the margin Natarajan di-

mension (Lemmas 8 and 9) give birth to the following bounds on the metric entropies.

Theorem 1. Let G be a function class satisfying Hypothesis 1. For every γ ∈ (0, 1],

ε ∈ (0, γ] and n ∈ N∗ such that n > KρGC
dG,C

(
4
ε

)dG,γ ,
log2

(
N int
∞ (ε, ρG,γ , n)

)
6 KρGC

dG,C log2
2

(
6γ (C − 1)n

ε

)(
4

ε

)dG,γ
. (22)

For every γ ∈ (0, 1], ε ∈ (0, γ] and n ∈ N∗,

log2

(
N int

2 (ε, ρG,γ , n)
)
6

3

2
KρGC

dG,C log2
2

(
(C − 1)

(
4γ

ε

)5
)(

28

ε

)dG,γ
. (23)

As expected, those two bounds are significantly better than the bounds obtained with

the structural result dedicated to the fat-shattering dimension of ρG : Lemma 3. Thus, a

partial answer to Question 1 emerges: the margin Natarajan dimension is the first scale-

sensitive combinatorial dimension which can be considered to handle the class of margin

functions ρG for a vast family of function classes G. The remaining comparison to be done

is with the bounds using the structural result involving covering numbers (Lemma 2), i.e.,
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Inequalities (5) and (6). The rest of the section is devoted to this comparison. To make it

more concrete, we use as touchstones the functions Fi corresponding to the state-of-the-art

basic supremum inequalities associated with the two most popular margin loss functions.

7.2 Guaranteed Risk for the Indicator Margin Loss Function

The class of margin loss functions contains two main families: the family of indicator

functions and the one of Lipschitz continuous functions. Our first guaranteed risk involves

the classical indicator function: φ∞,γ . It is given by:

∀t ∈ R, φ∞,γ (t) = 1{t<γ}.

To the best of our knowledge, the sharpest instance of Inequality (1) involving this loss

function is provided by Theorem 2 in Guermeur (2017). This bound corresponds to the

case L∗ = L and produces:

Fi (m, γ, δ, cap (ρG,γ)) =

√
2

m

(
ln
(
N int
∞

(γ
2
, ρG,γ , 2m

))
+ ln

(
2

δ

))
+

1

m
. (24)

By application of (22) (for m > 1
2KρGC

dG,C
(

8
γ

)dG,γ
):

log2

(
N int
∞

(γ
2
, ρG,γ , 2m

))
6 KρGC

dG,C log2
2 (24 (C − 1)m)

(
8

γ

)dG,γ
. (25)

The function Ff obtained by substitution of (25) into (24) decreases with the sample sizem

as a O
(

ln(m)√
m

)
. This convergence rate is that of the literature (for the margin loss function

considered). The dependence on the number C of categories is a O
(
C
dG,C

2 ln (C)

)
, imply-

ing that it is always sublinear except in the worst case dG,C = 2. At last, the dependence

on 1
γ is a O

((
1
γ

) dG,γ
2

)
. Even though the decrease of Ff with γ was expected, it calls for

an explanation, since for a fixed value of the scale parameter ε, the metric entropy and its

upper bound (Formula (22)) increase with γ. The obvious reason is that Fi introduces a

linear dependence of ε on γ (ε = γ
2 ).

7.3 Guaranteed Risk for the Parameterized Truncated Hinge Loss

In the family of Lipschitz continuous margin loss functions, the option of choice is the

parameterized truncated hinge loss φ2,γ given by:

∀t ∈ R, φ2,γ (t) = 1{t60} +

(
1− t

γ

)
1{t∈(0,γ]}.
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For this loss function, the best instance of Inequality (1) is provided by Theorem 5 in

Guermeur (2017). It corresponds to L∗ = Lγ and the analytical expression of function Fi

is:

Fi (m, γ, δ, cap (ρG,γ)) =
2

γ
Rm (ρG,γ) +

√
ln
(

1
δ

)
2m

. (26)

Formula (26) calls for a discussion. On the one hand, a non trivial expression for the

function Ff should decrease with γ. On the other hand, the Rademacher complexity is

increasing with this parameter. This implies that we are looking for an upper bound on

Rm (ρG,γ) increasing at most linearly with γ. In accordance with both graphs of transitions

(Figures 1 and 2), this capacity measure is upper bounded as a function of the L2-norm

metric entropy by means of Dudley’s chaining method. We use the following formula, whose

degrees of freedom can be exploited to optimize the dependence on the basic parameters.

Theorem 2 (Theorem 9 in Guermeur, 2017). Let F be a class of bounded real-valued

functions on T . For n ∈ N∗, let tn ∈ T n and let diam (F) be the diameter of F with

respect to the pseudo-metric d2,tn. Let h be a positive and decreasing function on N such

that h (0) > diam (F). Then for N ∈ N∗,

R̂n (F) 6 h (N) + 2

N∑
j=1

(h (j) + h (j − 1))

√
ln (N int (h (j) ,F , d2,tn))

n
. (27)

A substitution of Inequality (23) into (27) gives:

Rm (ρG,γ) 6 h (N) +
8

3

√
F1 (C)

m

∑
j∈J

h (j) + h (j − 1)

h (j)
dG,γ

2

log2

(
(C − 1)

(
4γ

h (j)

)5
)

(28)

where

F1 (C) = 28dG,γKρGC
dG,C , (29)

with J = {j ∈ J1;NK : h (j) 6 γ}. With the last formula at hand, the derivation of the

confidence interval amounts to studying the phase transitions highlighted by Theorem 18

in Mendelson (2003).

Theorem 3. Let G be a function class satisfying Hypothesis 1. The following statements

hold true for every value of γ in (0, 1].

If dG,γ ∈ (0, 2), then

Rm (ρG,γ) 6 12

(
1 + 2

2
2−dG,γ

)√
F1 (C)

m
F2 (C) γ1−

dG,γ
2 ,

where F1 (C) is given by Equation (29) and F2 (C) = ln
(
(C − 1) 45

)
+ 101+ln(2)

2−dG,γ .
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If dG,γ = 2 and m > 2, then

Rm (ρG,γ) 6 γ
log2 (m)√

m
+ 8

√
F1 (C)

m

⌈
log2

( √
m

log2 (m)

)⌉
log2

(
(C − 1)

(
4

√
m

log2 (m)

)5
)
.

At last, if dG,γ > 2 and m > 2, then

Rm (ρG,γ) 6 γ

(
log2 (m)

m

) 1
dG,γ

×

1 +
16

3

(
1 + 2

2
dG,γ−2

)(
1

γ

) dG,γ
2

√
F1 (C)

log2 (m)
log2

(C − 1)

(
4

(
m

log2 (m)

) 1
dG,γ

)5
 .

The dependence of Ff on m is that of Mendelson’s formulas, except for a multiplicative

factor
√

ln (m) in the case when dG,γ > 2 (complex classifiers). The dependences on C and
1
γ are the same as with the indicator margin loss function.

7.4 Comparison with the Use of the State-of-the-Art Structural Results

Compared to the use of the structural result involving Rademacher complexities (Lemma 1),

the obvious advantage of our approach is to allow to exploit a possible coupling between

the component functions of the classifier to produce a sublinear dependence of Ff on

the number C of categories. The comparison with the decomposition involving covering

numbers (Lemma 2) produces a mixed result. On the one hand, whatever the choice of

the margin loss function, the dependence of Ff on the inverse of the margin parameter γ is

improved. The gain is a factor ln
(

1
γ

)
with the indicator margin loss function and a factor√

ln
(

1
γ

)
with the parameterized truncated hinge loss. The only prize to pay occurs for

this latter margin loss function, when dG,γ > 2 (complex classifiers). Then, the dependence

on the sample size m increases by a factor
√

ln (m).

8 Conclusions

We have established that the combinatorial results involving the fat-shattering dimension

of the class of margin functions ρG can always be improved by replacing this dimension

with the margin Graph dimension of the same class (Lemmas 4, 6 and 7). Currently, the

gain is limited by the lack of a structural result specific to the margin Graph dimension (a

structural result that would be significantly better than Lemma 3). Fortunately, the use of

another γ-Ψ-dimension, the margin Natarajan dimension, makes it possible to exploit basic

features of the classifier of interest (Corollary 1 and Lemma 11) to derive useful structural
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results. The major consequence is an improved dependence of the confidence interval of

the guaranteed risk on the margin parameter γ. This holds true both with the L∞-norm

(Inequality (25)) and the L2-norm (Theorem 3). Except in the worst case dG,C = 2, the

dependence on the number C of categories is sublinear. The only drawback is that the

convergence rate of the guaranteed risk associated with the parameterized truncated hinge

loss can be worsened by a factor
√

ln (m) when the class G0 is complex (large value of dG,γ).

The phenomenon is a direct consequence of the appearance of the logarithmic function of
γ
ε in the exponent of the right-hand side of Inequality (14) (compared to Formula 2 in

Mendelson and Vershynin, 2003). Whether this term can be replaced with a logarithmic

function of C only is an open question which is the subject of an ongoing research.
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A Proofs of the Connections Between the Scale-Sensitive Com-

binatorial Dimensions

The proofs in this appendix and the following ones make use of a standard convention: a

function class F is said to γ-N-shatter a triplet (sZn ,bn, cn) if F γ-N-shatters sZn and

(bn, cn) is a witness to this shattering. The corresponding convention for the margin Graph

dimension is also used. The proof of Lemma 4 is the following one.

Proof. Let f be any function in F and z = (x, y) ∈ Z. Let γ ∈ (0, 1], ε ∈
(
0, γ2

]
and

b ∈ [ε, γ − ε]. Then,

fγ (z)− b > ε =⇒ fγ (z) > 2ε > 0 =⇒ f (z) > fγ (z) .

Consequently,

fγ (z)− b > ε =⇒ f (z)− b > ε. (30)

Suppose that fγ (z) = 0 (implying that f (z) 6 0). Then it results from Equation (2) that

−fγ (z) 6 max
k 6=y

f (x, k) 6 −f (z) .

Suppose now that fγ (z) > 0. Then,

−fγ (z) + b > ε =⇒ fγ (z) 6 γ − 2ε < γ.

Thus, fγ (z) belongs to the open interval (0, γ), so that f (z) = fγ (z). Consequently,

−fγ (z) = max
k 6=y

f (x, k) = −f (z) .

To sum up, for all possible values of fγ (z) (positive or null),

− fγ (z) + b > ε =⇒ max
k 6=y

f (x, k) + b > ε =⇒ −f (z) + b > ε. (31)

Formula (9) directly springs from Formulas (30) and (31).

The proof of Lemma 5 is the following one.

Proof. The left-hand side inequality of Formula (10) is obvious. Let us set dG = γ-G-dim (F)

and dN = γ-N-dim (F). The right-hand side inequality of Formula (10) is trivially true

for dG = 0. Thus, we prove it under the assumption that dG > 1. Let F̃ be any sub-

set of F of cardinality 2dG that γ-G-shatters a subset sZdG of Z of cardinality dG. The

proof rests on the derivation of a separating tree of F̃ . For notational simplicity, we set
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sZdG = {zi : 1 6 i 6 dG}. A subset of sZdG of cardinality n ∈ J1; dN K is denoted by

s′Zn = {z′i : 1 6 i 6 n}, with the convention

∀ (i, j) : 1 6 i < j 6 n,
(
z′i, z

′
j

)
= (zv, zw) =⇒ 1 6 v < w 6 dG.

Let the vector bdG = (bi)16i6dG
∈ RdG+ be a witness to the γ-G-shattering of sZdG by F̃

and let (s′Zn ,b
′
n, c
′
n) be any triplet such that

s′Zn ⊂ sZdG

b′n ∈ Rn+ : ∀i ∈ J1;nK , z′i = zj =⇒ b′i = bj

c′n ∈ Yn : ∀i ∈ J1;nK , c′i ∈ Y \ {y′i}

.

For every subset F̄ of F̃ , let s
(
F̄
)
denote the number of triplets (s′Zn ,b

′
n, c
′
n) γ-N-shattered

by F̄ . Combinatorics produces

s
(
F̃
)
6

dN∑
n=1

(
dG
n

)
(C − 1)n ,

which gives birth to a handy formula thanks to a well-known computation (see for instance

the proof of Corollary 3.18 in Mohri et al., 2018):

s
(
F̃
)
6

(
(C − 1) edG

dN

)dN
− 1. (32)

The derivation of the separating tree of F̃ provides us with a lower bound on s
(
F̃
)
. Let

F̄ be any of its nodes such that
∣∣F̄∣∣ > 2 (inner node). Its two sons, F̄+ and F̄−, are built

as follows. Split F̄ arbitrarily into
⌊
|F̄|
2

⌋
pairs (with possibly a function remaining alone).

For each pair (f, f ′), find zi ∈ sZdG such thatf (zi)− bi > γ

maxk 6=yi f
′ (xi, k) + bi > γ

or vice versa. By the pigeonhole principle, the same example is picked for at least
⌈⌊
|F̄|
2

⌋
1
dG

⌉
pairs. Let zi0 be such an example, and let (f+, f−) denote the corresponding pairs, whose

components are reordered (when needed) so thatf+ (zi0)− bi0 > γ

maxk 6=yi0 f− (xi0 , k) + bi0 > γ
.
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F̄+ is the set of the functions f+. Once more by the pigeonhole principle, there exists a

value ci0 ∈ Y \ {yi0} such that at least
⌈⌈⌊
|F̄|
2

⌋
1
dG

⌉
1

C−1

⌉
functions f− satisfy

f− (xi0 , ci0) + bi0 > γ.

Let F̄− be the set of these functions f−. The two sons F̄+ and F̄− of F̄ have been built in

such a way that
∣∣F̄+

∣∣ > |F̄|3dG
,
∣∣F̄−∣∣ > |F̄|

3dG(C−1) and∀f+ ∈ F̄+, f+ (zi0)− bi0 > γ

∀f− ∈ F̄−, f− (xi0 , ci0) + bi0 > γ
. (33)

Since F̄+
⋃
F̄− ⊂ F̄ , any triplet γ-N-shattered by either F̄+ or F̄− is also γ-N-shattered

by F̄ . Furthermore, according to (33), if the triplet (s′Zn ,b
′
n, c
′
n) is γ-N-shattered by both

F̄+ and F̄−, then F̄ also γ-N-shatters the triplet
(
s′′Zn+1 ,b

′′
n+1, c

′′
n+1

)
such that s′′Zn+1 =

s′Zn
⋃
{zi0}, the vector b′′n+1 is deduced from b′n by inserting the component bi0 , and the

vector c′′n+1 is deduced from c′n by inserting the component ci0 . Clearly, neither F̄+ nor

F̄− γ-N-shatters the triplet
(
s′′Zn+1 ,b

′′
n+1, c

′′
n+1

)
, simply because (contrary to F̄) they do

not γ-N-shatter the triplet ({zi0} , bi0 , ci0). A synthesis of the different cases produces:

s
(
F̄
)
> s

(
F̄+

)
+ s

(
F̄−
)

+ 1. (34)

To further bound frow below s
(
F̄
)
, we introduce the function ` which returns the number

of leaves of the (sub)tree whose root is its argument. Using (34), the following simple

connection between the two functions can be proved by induction:

s
(
F̄
)
> `

(
F̄
)
− 1. (35)

Once more by induction, we now establish that any node F̄ (even a leaf) satisfies:

`
(
F̄
)
>
∣∣F̄∣∣ 1

log2(3
√
C−1dG) . (36)

Inequality (36) is obviously true for the leafs (for which `
(
F̄
)

=
∣∣F̄∣∣ = 1). Suppose now

that it holds true for the two sons F̄+ and F̄− of the inner node F̄ . Then,
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`
(
F̄
)

= `
(
F̄+

)
+ `
(
F̄−
)

>

( ∣∣F̄∣∣
3dG

) 1
log2(3

√
C−1dG)

+

( ∣∣F̄∣∣
3dG (C − 1)

) 1
log2(3

√
C−1dG)

=
1

2

((√
C − 1

) 1
log2(3

√
C−1dG) +

(√
C − 1

)− 1
log2(3

√
C−1dG)

) ∣∣F̄∣∣ 1
log2(3

√
C−1dG)

>
1

2
min
t∈R∗+

(
t+

1

t

) ∣∣F̄∣∣ 1
log2(3

√
C−1dG)

=
∣∣F̄∣∣ 1

log2(3
√
C−1dG) .

Since
∣∣∣F̃∣∣∣ = 2dG , we thus get for the whole tree:

`
(
F̃
)
> 2

dG
log2(3

√
C−1dG) . (37)

A substitution of (37) into (35) provides the lower bound on s
(
F̃
)
announced:

s
(
F̃
)
> 2

dG
log2(3

√
C−1dG) − 1. (38)

Combining (38) and the upper bound, (32), gives by transitivity:

dG 6 dN log2

(
(C − 1) edG

dN

)
log2

(
3
√
C − 1dG

)
6

1

ln2 (2)
dN ln

(
F (C)

dG
dN

)
ln (F (C) dG) , (39)

where F (C) = e (C − 1). To bound from above the right-hand side of Inequality (39), we

resort to the following statement:

∀ (u, u0) ∈ [1,+∞)2 , ln (u) 6 2u0u
1

4u0 , (40)

with u0 = ln (F (C)). We then obtainln
(
F (C) dGdN

)
6 2e

1
4 ln (F (C))

(
dG
dN

) 1
4 ln(F (C))

ln (F (C) dG) 6 2e
1
4 ln (F (C)) d

1
4 ln(F (C))

G

.

By substitution into (39),
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dG 6
4
√
e

ln2 (2)
ln2 (F (C)) d

1
2 ln(F (C))

G d
4 ln(F (C))−1

4 ln(F (C))

N

6

(
4
√
e

ln2 (2)

) 2 ln(F (C))
2 ln(F (C))−1

(ln (F (C)))
4 ln(F (C))

2 ln(F (C))−1 d
4 ln(F (C))−1
4 ln(F (C))−2

N

=

(
4
√
e

ln2 (2)

) 2 ln(F (C))
2 ln(F (C))−1

(ln (F (C)))
2

2 ln(F (C))−1 ln2 (2) log2
2 (F (C)) d

4 ln(F (C))−1
4 ln(F (C))−2

N

< 32 log2
2 (F (C)) d

1+ 1
4 ln(F (C))−2

N .

B Proofs of the Combinatorial Results

This appendix gathers the proofs of the four new combinatorial results. It starts with three

lemmas which are common to all proofs.

B.1 Shared Technical Lemmas

Each of the combinatorial results in the literature is built upon a basic lemma that involves

two (possibly identical) function classes whose codomains are discrete. The domain and

codomain of the first one are finite sets, so that its cardinality is also finite. This cardinality

is upper bounded in terms of a combinatorial dimension of the second function class. In

the case of margin classifiers, the combinatorial dimension of the basic lemma is a variant

of the scale-sensitive dimension of the combinatorial result, variant designed to take benefit

from the aforementioned restrictions. The first capacity measure of this kind is a variant

of the γ-dimension: the strong dimension (Definition 3.1 in Alon et al., 1997). The strong

Ψ-dimensions extend the γ-Ψ-dimensions according to the same principle.

Definition 12 (Strong Ψ-dimensions). Let F be a function class defined as in Definition 8.

Suppose further that the functions in F take their values in Z. Let Ψ be a family of

mappings from Y into {−1, 0, 1}. A subset sZn = {zi = (xi, yi) : 1 6 i 6 n} of Z is said

to be strongly Ψ-shattered by F if there is a vector ψn =
(
ψ(i)

)
16i6n ∈ Ψn satisfying(

ψ(i) (yi)
)

16i6n = 1n, and a vector bn = (bi)16i6n ∈ Nn such that, for every vector sn =

(si)16i6n ∈ {−1, 1}n, there is a function fsn ∈ F satisfying

∀i ∈ J1;nK, si

(
si max
{k: ψ(i)(k)=si}

fsn (xi, k)− bi

)
> 1.

28



The strong Ψ-dimension of F , denoted by S-Ψ-dim (F), is the maximal cardinality of a

subset of Z strongly Ψ-shattered by F , if such maximum exists. Otherwise, F is said to

have infinite strong Ψ-dimension.

In what follows, the finiteness of the domain is simply obtained by application of a

restriction to (projection on) an appropriately chosen set of data points. The discretization

of the codomain results from the application of the following operator.

Definition 13 (η-discretization operator, Definition 33 in Guermeur, 2007). Let F ⊂ RT .

For η ∈ R∗+, define the η-discretization as an operator on F such that:

(·)(η) : F −→ F (η)

f 7→ f (η)

∀t ∈ T , f (η) (t) = sign (f (t)) ·
⌊
|f (t)|
η

⌋
.

The transitions from continuous functions to discrete ones and back are obtained by

application of the two following lemmas.

Lemma 12. Let F be a class of functions on T taking nonnegative values (F ⊂ RT+). For

n ∈ N∗, let tn = (ti)16i6n ∈ T n. Let N be a positive integer. For every ε ∈ R∗+ and every

η ∈
(

0, ε
N+1

]
,

∀
(
f, f ′

)
∈ F2, d2,tn

(
f, f ′

)
> ε =⇒ d2,tn

(
f (η), f ′

(η)
)
> N, (41)

with the consequence that if the subset F̄ of F is ε-separated with respect to the pseudo-

metric d2,tn, then it is in bijection with the subset F̄ (η) of F (η), which is N -separated with

respect to the same pseudo-metric. Similarly, for every ε ∈ R∗+ and every η ∈
(
0, ε2
]
,

M (ε,F , d∞,tn) 6M
(

2,F (η), d∞,tn

)
. (42)

Proof. For f ∈ F and i ∈ J1;nK, let us denote the Euclidean division of f (ti) by η as

follows:

∀i ∈ J1;nK, f (ti) = ηf (η) (ti) + ri.

With the notation introduced above,

d2,tn

(
f, f ′

)2
=

1

n

n∑
i=1

(
η
(
f (η) (ti)− f ′(η)

(ti)
)

+ ri − r′i
)2
.
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For i ∈ J1;nK, let δi =
∣∣∣f (η) (ti)− f ′(η) (ti)

∣∣∣.
(
d2,tn

(
f, f ′

)
> ε
)
and

(
η ∈

(
0,

ε

N + 1

])
=⇒

(
1

n

n∑
i=1

(
ηδi +

∣∣ri − r′i∣∣)2
) 1

2

> ε

=⇒

(
1

n

n∑
i=1

(δi + 1)2

) 1
2

>
ε

η

=⇒

(
1

n

n∑
i=1

(δi + 1)2

) 1
2

> N + 1 (43)

=⇒

(
1

n

n∑
i=1

δ2
i

) 1
2

+ 1 > N + 1 (44)

=⇒ d2,tn

(
f (η), f ′

(η)
)
> N,

where the transition from (43) to (44) is provided by the triangle inequality. To sum up,

we have established (41), i.e., the part of the lemma dealing with the L2-norm. To prove

(42), it is enough to observe that

f (t)− f ′ (t) > ε⇐⇒ ε

2

(
f( ε2) (t)− f ′(

ε
2) (t)

)
+ r − r′ > ε

=⇒ ε

2

(
f( ε2) (t)− f ′(

ε
2) (t) + 1

)
> ε

=⇒ f( ε2) (t)− f ′(
ε
2) (t) > 2.

Lemma 13. Let F be a function class defined as in Definition 8. For every η ∈ R∗+ and

every ε ∈
(
0, η2
]
,

S-Ψ-dim
(
F (η)

)
6 ε-Ψ-dim (F) . (45)

Proof. To prove (45), it is enough to notice that any set sZn strongly Ψ-shattered by F (η)

according to the vector bn = (bi)16i6n ∈ Nn is also η
2 -Ψ-shattered by F according to

b′n =
(
η
(
bi + 1

2

))
16i6n ∈ Rn+.

Lemma 14. Let F be a function class defined as in Definition 8. Suppose that there exist

(f, f ′) ∈ F2, γ ∈ (0, 1], η ∈
(
0, γ2

]
, and z = (x, y) ∈ Z such that

f (η)
γ (z)− f ′γ

(η)
(z) > 2,

where f (η)
γ = (πγ ◦ f)(η) and f ′γ

(η) is defined accordingly. For every b ∈
r
f ′γ

(η) (z) + 1; f
(η)
γ (z)− 1

z

and c ∈ argmaxk 6=y f
′(η) (x, k),
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1. the set
{
f

(η)
γ , f ′γ

(η)
}

strongly shatters the pair ({z} , b);

2. the set
{
f (η), f ′(η)

}
strongly G-shatters the same pair;

3. the set
{
f (η), f ′(η)

}
strongly N-shatters the triplets ({z} , b, c).

Proof. 1. The first assertion directly springs from the definition of the fat-shattering

dimension.

2. The second assertion can be derived from the first one following the line of reasoning

of the proof of Lemma 4.

3. The third assertion directly springs from the second one and the definition of the

margin Natarajan dimension.

B.2 Margin Graph Dimension - Uniform Convergence Norm

The proof of Lemma 6 borrows from the proofs of classical results, including the two

state-of-the-art combinatorial results: Lemma 3.5 in Alon et al. (1997) and Theorem 1 in

Mendelson and Vershynin (2003). Central in this proof is the following basic combinatorial

result.

Lemma 15. Let F be a function class defined as in Definition 8. For every sZn =

{zi = (xi, yi) : 1 6 i 6 n} ⊂ Z, γ ∈ (0, 1] and η ∈
(
0, γ2

]
, if F (η)

γ

∣∣∣
sZn

is 2-separated in

the metric d∞,zn, then ∣∣∣∣F (η)
γ

∣∣∣
sZn

∣∣∣∣ 6 (3Mγn)log2(Σ) , (46)

where Σ =
∑dG

u=0

(
n
u

)
Mu
γ with Mγ =

⌊
γ
η

⌋
and dG = S-G-dim

(
F (η)

)
.

Proof. Notice first that Inequality (46) is trivially true for
∣∣∣∣F (η)

γ

∣∣∣
sZn

∣∣∣∣ = 1. Indeed, the

minimal value of its right-hand side, corresponding to dG = 0, is 1. Thus, the rest of the

proof makes use of the restriction
∣∣∣∣F (η)

γ

∣∣∣
sZn

∣∣∣∣ > 2. A direct consequence is that according

to Lemma 14, dG > 1. A subset of sZn of cardinality u ∈ J1;nK is denoted by s′Zu =

{z′i : 1 6 i 6 u}, with the convention

∀ (i, j) : 1 6 i < j 6 u,
(
z′i, z

′
j

)
= (zv, zw) =⇒ 1 6 v < w 6 n.

For every subset F̄ of F , let s
(
F̄ (η)

)
denote the number of pairs (s′Zu ,b

′
u) with s′Zu ⊂

sZn and b′u ∈ J1;Mγ − 1Ku strongly G-shattered by F̄ (η) (the convention above has been
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introduced to avoid handling duplicates). Let F̃ be any subset of F such that F̃ (η)
γ

∣∣∣
sZn

=

F (η)
γ

∣∣∣
sZn

and
∣∣∣F̃∣∣∣ =

∣∣∣∣F (η)
γ

∣∣∣
sZn

∣∣∣∣ (F̃ and F (η)
γ

∣∣∣
sZn

are in bijection). Since F̃ (η) ⊂ F (η) and

dG > 1, combinatorics gives:

s
(
F̃ (η)

)
6 s

(
F (η)

)
6

dG∑
u=1

(
n

u

)
Mu
γ = Σ− 1. (47)

In order to derive a lower bound on s
(
F̃ (η)

)
, we build a 2-separating tree of F̃ , i.e., a

2-separating tree of F (η)
γ

∣∣∣
sZn

(see Definition 3.4 in Rudelson and Vershynin, 2006). Let F̄

be one of its nodes such that
∣∣F̄∣∣ > 2 (inner node). Its two sons, F̄+ and F̄−, are built

as follows. Split F̄ arbitrarily into
⌊
|F̄|
2

⌋
pairs (with possibly a function remaining alone).

For each pair (f, f ′), find zi ∈ sZn such that
∣∣∣f (η)
γ (zi)− f ′γ

(η) (zi)
∣∣∣ > 2. By the pigeonhole

principle, the same example is picked for at least
⌈⌊
|F̄|
2

⌋
1
n

⌉
pairs. Let zi0 be such an

example, and let (f+, f−) denote the corresponding pairs, whose components are reordered

(when needed) so that

f
(η)
+,γ (zi0) > f

(η)
−,γ (zi0) .

Among the functions f (η)
+,γ , at least

⌈⌈⌊
|F̄|
2

⌋
1
n

⌉
1

Mγ−1

⌉
take the same value at zi0 . Let

v (zi0) be such a value. We define F̄+ (resp. F̄−) to be the set of functions f+ (resp. f−)

belonging to a pair associated with (zi0 , v (zi0)). We obtain by construction:

∣∣F̄+

∣∣ =
∣∣F̄−∣∣ > ∣∣F̄∣∣

3Mγn
. (48)

Furthermore, according to Lemma 14, the sets F̄ (η)
+ and F̄ (η)

− satisfy:∀f+ ∈ F̄+, f
(η)
+ (zi0)− bi0 > 1

∀f− ∈ F̄−, maxk 6=yi0 f
(η)
− (zi0) + bi0 > 1

(49)

with bi0 = v (zi0) − 1. Since F̄ (η)
+

⋃
F̄ (η)
− ⊂ F̄ (η), obviously, any pair strongly G-shattered

by either F̄ (η)
+ or F̄ (η)

− is also strongly G-shattered by F̄ (η). Furthermore, according to (49),

F̄ (η) strongly G-shatters the pair ({zi0} , bi0) which is strongly G-shattered by neither F̄ (η)
+

nor F̄ (η)
− . At last, let us consider any pair (s′Zu ,b

′
u) strongly G-shattered by both F̄ (η)

+ and

F̄ (η)
− . Let the pair

(
s′′Zu+1 ,b

′′
u+1

)
be such that s′′Zu+1 = s′Zu

⋃
{zi0} and the vector b′′u+1 is

deduced from b′u by inserting the component bi0 at the right place. Clearly, neither F̄ (η)
+

nor F̄ (η)
− strongly G-shatters

(
s′′Zu+1 ,b

′′
u+1

)
, simply because they do not strongly G-shatter
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the pair ({zi0} , bi0). On the contrary, it springs once more from (49) that
(
s′′Zu+1 ,b

′′
u+1

)
is

strongly G-shattered by F̄ (η). Summarizing, for each pair (s′Zu ,b
′
u) strongly G-shattered by

both F̄ (η)
+ and F̄ (η)

− , we can exhibit by means of an injective mapping a pair
(
s′′Zu+1 ,b

′′
u+1

)
strongly G-shattered by F̄ (η) but not by F̄ (η)

+ or F̄ (η)
− . Collecting all terms, we obtain

s
(
F̄ (η)

)
> s

(
F̄ (η)

+

)
+ s

(
F̄ (η)
−

)
+ 1

> `
(
F̄
)
− 1, (50)

where the function ` returns the number of leaves of the (sub)tree whose root is its argu-

ment. Thus, finishing the proof boils down to exhibiting the appropriate lower bound on

`
(
F̄
)
. To that end, we proceed by induction on the depth of the node. The hypothesis is

that

`
(
F̄
)
>
∣∣F̄∣∣ 1

log2(3Mγn) . (51)

It is obviously true for the leaves (which are of cardinality 1). Suppose now that it is true

for the two sons of an inner node. Then, Inequality (48) gives:

`
(
F̄
)

= `
(
F̄+

)
+ `

(
F̄−
)

>
∣∣F̄+

∣∣ 1
log2(3Mγn) +

∣∣F̄−∣∣ 1
log2(3Mγn)

> 2

( ∣∣F̄∣∣
3Mγn

) 1
log2(3Mγn)

=
∣∣F̄∣∣ 1

log2(3Mγn) .

The induction hypothesis has been proved. Combining Inequalities (47), (50) and (51)

produces by transitivity: ∣∣∣F̃∣∣∣ 1
log2(3Mγn) 6 Σ,

or equivalently ∣∣∣F̃∣∣∣ 6 Σlog2(3Mγn)

= (3Mγn)log2(Σ) ,

i.e., Inequality (46), the result announced.

With Lemma 15 at hand, the proof of Lemma 6 is straightforward.

Proof. Let us consider any vector zn ∈ Zn and let sZn = {zi : 1 6 i 6 n} be the smallest

subset of Z containing all the components of zn. Note that its cardinality can be strictly
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inferior to n, in case that zn has two identical components. Setting η = ε
2 in (42), one

obtains:

M (ε,Fγ , d∞,zn) 6M
(

2,F ( ε
2

)
γ , d∞,zn

)
.

Furthermore, by definition,

M
(

2,F ( ε
2

)
γ , d∞,zn

)
=M

(
2, F ( ε

2
)

γ

∣∣∣
sZn

, d∞,zn

)
.

Let F̃ be a subset of F such that F̃ ( ε
2

)
γ

∣∣∣
sZn

is 2-separated in the metric d∞,zn and of

cardinality M
(

2, F ( ε
2

)
γ

∣∣∣
sZn

, d∞,zn

)
(maximal cardinality). F̃ has been built so as to

satisfy the hypotheses of Lemma 15. Since
∣∣∣∣ F̃ ( ε

2
)

γ

∣∣∣
sZn

∣∣∣∣ = M
(

2, F ( ε
2

)
γ

∣∣∣
sZn

, d∞,zn

)
and

S-G-dim
(
F̃ ( ε

2
)
)
6 S-G-dim

(
F ( ε

2
)
)
, the application of the lemma provides us with:

M
(

2, F ( ε
2

)
γ

∣∣∣
sZn

, d∞,zn

)
6

(
6γn

ε

)log2(Σ)

(52)

where Σ =
∑dG

u=0

(
n
u

) (2γ
ε

)u
with dG standing for S-G-dim

(
F ( ε

2
)
)
. According to (45),

S-G-dim
(
F ( ε

2
)
)
6 dG

( ε
4

)
.

Since by hypothesis, n > dG
(
ε
4

)
, Σ can be bounded from above by replacing in its formula

dG with dG
(
ε
4

)
and resorting to Corollary 3.18 in Mohri et al. (2018), leading to:

Σ 6

dG( ε4)∑
u=0

(
n

u

)(
2γ

ε

)u

6

(
2γen

dG
(
ε
4

)
ε

)dG( ε4)

, (53)

where the standard convention that the last term takes the value 1 for dG
(
ε
4

)
= 0 is

made. Substituting (53) into (52) and taking the supremum over Zn concludes the proof

of (11).

B.3 Margin Graph Dimension - L2-norm

The sketches of the proofs of the two L2-norm combinatorial results, Lemma 7 and Lemma 9,

are basically the same. Compared to the sketch of the proof of Lemma 6, they exhibit two

major differences. First, the construction of the 2-separating tree is more sophisticated,

since it rests on a small deviation principle (in place of the sole pigeonhole principle). Sec-

ond, one additional step is involved, which implements a probabilistic extraction principle.
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This additional step makes the result dimension free. We begin the proof with the for-

mulation of the small deviation principle. This extension of Lemma 5 in Mendelson and

Vershynin (2003) is tailored to our needs.

Lemma 16. Let T be a random variable taking values in J0;MK with M > 2. Suppose

that Var [T ] > 9. Then there exists either (α, β) ∈ J1;M − 1K×
[

1
M2 ,

1
2

]
such thatP {T > α+ 1} > max

{
1
2β,

1
M2

}
P {T 6 α− 1} > 1− β

or (α′, β′) ∈ J1;M − 1K×
[

1
M2 ,

1
2

]
such thatP {T > α′ + 1} > 1− β′

P {T 6 α′ − 1} > max
{

1
2β
′, 1
M2

} .

Proof. We first note that the hypothesis Var [T ] > 9 implies that M > 6. Let MT be

the smallest median of T belonging to J0;MK. Then, several cases must be distinguished,

according to the values of MT and M −MT . Since they can all be treated the same and

the one implying the largest upper bound on the variance, i.e., the one from which springs

the hypothesis on the variance, is M −MT > 2 and MT > 2, we focus on it in the sequel.

Let us define the sequences (βk)k∈N∗ and (β′k)k∈N∗ as follows:

∀k ∈ N∗,

βk = P {T >MT + k}

β′k = P {T 6MT − k}
.

Note that by definition of MT , both β1 and β′1 are inferior or equal to 1
2 . Assume that the

conclusion of the lemma fails. We claim that
∀k ∈ J2;M −MT K , βk 6 max

{
2(M−MT )−k+1

(M−MT )3 , 1
2k

}
∀k ∈ J2;MT K , β′k 6 max

{
2MT−k+1

M3
T

, 1
2k

} .

Indeed, assume that βk > max
{

2(M−MT )−k+1

(M−MT )3 , 1
2k

}
for some k ∈ J2;M −MT K and let

k0 be the smallest such index. By construction, βk0 > max
{

1
2βk0−1,

1
(M−MT )2

}
(even for

k0 = 2 and k0 = M −MT ), so thatP {T >MT + k0} = βk0 > max
{

1
2βk0−1,

1
M2

}
P {T 6MT + k0 − 2} = 1− P {T >MT + k0 − 1} = 1− βk0−1

.
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Since βk0−1 > βk0 > 1
M2 and βk0−1 6 β1 6 1

2 , so that βk0−1 ∈
[

1
M2 ,

1
2

]
, this implies

that the conclusion of the lemma would hold with α being MT + k0 − 1 and β = βk0−1,

which contradicts the assumption that the conclusion of the lemma fails. The inequality

β′k 6 max
{

2MT−k+1
M3
T

, 1
2k

}
can be proved in a symmetrical way. As a consequence, upper

bounding the maxima by the corresponding sums gives:

Var [T ] = Var [T −MT ]

6 E
[
(T −MT )2

]
=

+∞∑
t=0

P
{

(T −MT )2 > t
}

=
+∞∑
t=0

(
P
{
T > MT +

√
t
}

+ P
{
T < MT −

√
t
})

=

M−MT∑
k=1

(2k − 1)βk +

MT∑
k=1

(2k − 1)β′k

< 2
+∞∑
k=1

2k − 1

2k
+

M−MT∑
k=2

(2k − 1)
2 (M −MT )− k + 1

(M −MT )3 +

MT∑
k=2

(2k − 1)
2MT − k + 1

M3
T

6 6 + 2 max
∆∈N\{1,2}

(8∆ + 11) (∆− 1)

6∆2

< 9.

This is in contradiction with the hypothesis that Var [T ] > 9 and thus concludes the

proof.

Proposition 1. Let T = {ti : 1 6 i 6 n} be a finite set and tn = (ti)16i6n. Let F be

a class of functions from T into J0;MFK with MF > 2. Suppose that F is of cardinality

at least 2 and ε ∈ R∗+ is such that F is ε-separated in the metric d2,tn. Then there exists

i0 ∈ J1;nK such that

Var [f (ti0)] >
ε2

4
.

Proof. Let us endow F with the uniform (counting) measure. Then, the separation as-

sumption on F can be used to derive a lower bound on E
[
d2

2,tn (f, f ′)
]
. Indeed, with

probability 1− |F|−1 we have f 6= f ′ and, whenever this event occurs, d2,tn (f, f ′) > ε. As

a consequence,

E
[
d2

2,tn

(
f, f ′

)]
>
(

1− |F|−1
)
ε2

>
ε2

2
.
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Furthermore,

E
[
d2

2,tn

(
f, f ′

)]
=

1

n

n∑
i=1

E
[(
f (ti)− f ′ (ti)

)2]
=

2

n

n∑
i=1

Var [f (ti)] .

Thus, there exists i0 ∈ J1;nK such that

Var [f (ti0)] >
1

2
E
[
d2

2,tn

(
f, f ′

)]
>
ε2

4
.

Lemma 17. Let T = {ti : 1 6 i 6 n} be a finite set and tn = (ti)16i6n. Let F be a class

of functions from T into J0;MFK with MF > 2. Suppose that F is of cardinality at least

2 and is 6-separated in the metric d2,tn. Then there exist an index i0 ∈ J1;nK and either

(α, β) ∈ J1;MF − 1K×
[

1
M2
F
, 1

2

]
such that|{f ∈ F : f (ti0) > α+ 1}| > max

{
1
2β,

1
M2
F

}
|F|

|{f ∈ F : f (ti0) 6 α− 1}| > (1− β) |F|

or (α′, β′) ∈ J1;MF − 1K×
[

1
M2
F
, 1

2

]
such that|{f ∈ F : f (ti0) > α′ + 1}| > (1− β′) |F|

|{f ∈ F : f (ti0) 6 α′ − 1}| > max
{

1
2β
′, 1
M2
F

}
|F|

.

Proof. According to Proposition 1, there exists i0 ∈ J1;nK such that

Var [f (ti0)] >
1

2
E
[
d2

2,tn

(
f, f ′

)]
> 9.

This implies that the random variable f (ti0) satisfies the hypotheses of Lemma 16, and

the conclusion then springs from the application of this lemma.

Lemma 17 will be used in the proof of the combinatorial result involving the margin

Natarajan dimension: Lemma 9. However, we established it in this section, because its

proof can be easily simplified to produce the following variant, appropriate for the margin

Graph dimension.
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Lemma 18. Let T = {ti : 1 6 i 6 n} be a finite set and tn = (ti)16i6n. Suppose that

F ⊂ ZT is of cardinality at least 2 and is 5-separated in the metric d2,tn. Then there exist

an index i0 ∈ J1;nK and either (α, β) ∈ Z×
(
0, 1

2

]
such that|{f ∈ F : f (ti0) > α+ 1}| > 1

2β |F|

|{f ∈ F : f (ti0) 6 α− 1}| > (1− β) |F|

or (α′, β′) ∈ Z×
(
0, 1

2

]
such that|{f ∈ F : f (ti0) > α′ + 1}| > (1− β′) |F|

|{f ∈ F : f (ti0) 6 α′ − 1}| > 1
2β
′ |F|

.

The following lemma is the basic combinatorial result underlying Lemma 7.

Lemma 19. Let F be a function class defined as in Definition 8. For every sZn =

{zi = (xi, yi) : 1 6 i 6 n} ⊂ Z, γ ∈ (0, 1] and η ∈
(
0, γ2

]
, if F (η)

γ

∣∣∣
sZn

is 5-separated in

the metric d2,zn, then ∣∣∣∣F (η)
γ

∣∣∣
sZn

∣∣∣∣ 6 Σ
3
2 , (54)

where Σ =
∑dG

u=0

(
n
u

)
Mu
γ with Mγ =

⌊
γ
η

⌋
and dG = S-G-dim

(
F (η)

)
.

Proof. The principle of the proof is the one of the proof of Lemma 15. Two of the three

main formulas still apply: Inequalities (47) and (50). For
∣∣∣∣F (η)

γ

∣∣∣
sZn

∣∣∣∣ > 2, the incidence

of the change of metric is concentrated in the derivation of the 2-separating tree of F̃

(or equivalently F (η)
γ

∣∣∣
sZn

), and thus the lower bound on `
(
F̃
)
. Since the inner nodes F̄

are such that the corresponding sets F̄ (η)
γ

∣∣∣
sZn

are 5-separated in the metric d2,zn , then

according to Lemma 18, for each of these nodes, we can ensure that there exists β ∈
(
0, 1

2

]
such that the two sons F̄+ and F̄− of F̄ verify either

∣∣F̄+

∣∣ > (1− β)
∣∣F̄∣∣ and ∣∣F̄−∣∣ > 1

2β
∣∣F̄∣∣

or vice versa (in place of (48)). As a consequence, the counterpart of (51) is:

`
(
F̄
)
>
∣∣F̄∣∣ 2

3 . (55)

Once more, the proof is an induction on the depth of the node. Inequality (55) is obviously

true for the leaves (which are of cardinality 1). Suppose now that it is true for the two

sons of an inner node. Then,

`
(
F̄
)

= `
(
F̄+

)
+ `

(
F̄−
)

>

[
(1− β)

2
3 +

(
β

2

) 2
3

] ∣∣F̄∣∣ 2
3

>
∣∣F̄∣∣ 2

3 .
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Note that the value of the constant, 2
3 , can be obtained by maximizing K over (0, 1] subject

to
(

1
2

)K [
1 +

(
1
2

)K]
> 1. Finally, combining Inequalities (47), (50) and (55) produces (54)

by transitivity.

The following lemma, a slight improvement of Lemma 13 in Mendelson and Vershynin

(2003), implements the probabilistic extraction principle.

Lemma 20. Let T = {ti : 1 6 i 6 n} be a finite set, tn = (ti)16i6n and MF ∈ R∗+. Let

F be a class of functions from T into [0,MF ] with finite cardinality |F| > 2. Assume that

for some ε ∈ (0,MF ], F is ε-separated with respect to the metric d2,tn, and let

r =
ln (|F|)
Keε4

with

Ke =
3

112M4
F
.

Then, there exists a subvector t′q of tn of size q 6 r such that F is ε
2 -separated with respect

to the metric d2,t′q .

Proof. This proof uses an abuse of notation that will be repeated in the sequel: the symbol

P designates different probability measures, some of which implicitly defined. We first

note that the statement is trivially true for r > n (it suffices to set t′q = tn). Thus, we

proceed under the hypothesis r ∈ [1, n). Let us set F = {fj : 1 6 j 6 |F|} and DF ={
fj − fj′ : 1 6 j < j′ 6 |F|

}
. The set DF has cardinality |DF | < 1

2 |F|
2. Let (εi)16i6n be

a sequence of n independent Bernoulli random variables with common expectation µ = r
2n .

Then, by application of the ε-separation property, for every δf ∈ DF ,

P

(
1

n

n∑
i=1

εiδf (ti)
2 <

ε2µ

2

)
6 P

(
1

n

n∑
i=1

(µ− εi) δf (ti)
2 >

ε2µ

2

)
. (56)

Since by construction, for every i ∈ J1;nK, E
[
(µ− εi) δf (ti)

2
]

= 0 and |µ− εi| δf (ti)
2 6

M2
F (1− µ) < M2

F with probability one, the right-hand side of (56) can be bounded from

above thanks to Bernstein’s inequality. Given that

1

n

n∑
i=1

E
[
(µ− εi)2 δf (ti)

4
]
6M4

Fµ (1− µ) < M4
Fµ,

we obtain
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P

(
1

n

n∑
i=1

εiδf (ti)
2 <

ε2µ

2

)
6 P

(
1

n

n∑
i=1

(µ− εi) δf (ti)
2 >

ε2µ

2

)

6 exp

(
− 3µnε4

4
(
6M4
F +M2

Fε
2
))

6 exp

(
− 3rε4

56M4
F

)
= |F|−2 .

Therefore, given the assumption on r, applying the union bound provides us with:

P

∃δf ∈ DF :

(
1

r

n∑
i=1

εiδf (ti)
2

) 1
2

<
ε

2

 = P

(
∃δf ∈ DF :

1

n

n∑
i=1

εiδf (ti)
2 <

ε2µ

2

)

6
∑

δf∈DF

P

(
1

n

n∑
i=1

εiδf (ti)
2 <

ε2µ

2

)

6 |DF | · |F|−2

<
1

2
. (57)

Moreover, if S1 is the random set {i ∈ J1;nK : εi = 1}, then by Markov’s inequality,

P (|S1| > r) = P

(
n∑
i=1

εi > r

)
6

1

2
. (58)

Combining (57) and (58) by means of the union bound provides us with

P


∃δf ∈ DF :

(
1

r

n∑
i=1

εiδf (ti)
2

) 1
2

<
ε

2

 or (|S1| > r)

 < 1

which implies that

P

{(
∀δf ∈ DF : ‖δf‖

L2

(
µ(ti)i∈S1

) >
ε

2

)
and (|S1| 6 r)

}
> 0.

This translates into the fact that there exists a subvector t′q of tn of size q 6 r such that

the class F is ε
2 -separated with respect to the metric d2,t′q , i.e., our claim.

The proof of Lemma 7 is the following one.
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Proof. Let us consider any vector zn ∈ Zn and let sZn = {zi : 1 6 i 6 n} be the smallest

subset of Z containing all the components of zn. Note that its cardinality can be strictly

inferior to n, in case that zn has two identical components. By defintion,

M (ε,Fγ , d2,zn) =M
(
ε, Fγ |sZn , d2,zn

)
.

Let F̃ be a subset of F of cardinalityM (ε,Fγ , d2,zn) such that F̃γ
∣∣∣
sZn

is ε-separated with

respect to the metric d2,zn and in bijection with F̃ . By construction, F̃γ
∣∣∣
sZn

satisfies the

hypotheses of Lemma 20, with MF = γ. Consequently, applying the lemma establishes

that there exists a subvector z′q of zn of size

q 6
ln
(∣∣∣F̃∣∣∣)
Kγε4

(59)

with Kγ = 3
112γ4 such that the class F̃γ

∣∣∣
sZn

is also ε
2 -separated with respect to the metric

d2,z′q . As a consequence, denoting sZq = {z′i = (x′i, y
′
i) : 1 6 i 6 q} (|sZq | 6 q), it appears

that
∣∣∣∣ F̃γ∣∣∣sZn

∣∣∣∣ =

∣∣∣∣ F̃γ∣∣∣sZq
∣∣∣∣ (and thus

∣∣∣∣ F̃γ∣∣∣sZq
∣∣∣∣ =

∣∣∣F̃∣∣∣). Applying (41) to the function class

F̃γ
∣∣∣
sZq

with N = 5 and the corresponding largest possible value for η, ε
12 , it appears that

F̃ ( ε
12

)
γ

∣∣∣
sZq

is a set of cardinality
∣∣∣F̃∣∣∣ which is 5-separated with respect to the metric d2,z′q .

Thus, Lemma 19 can be applied to F̃ as follows:∣∣∣F̃∣∣∣ =

∣∣∣∣ F̃ ( ε
12

)
γ

∣∣∣
sZq

∣∣∣∣
6

(
dG∑
u=0

(
q

u

)(
12γ

ε

)u) 3
2

6

(
12γeq

dGε

) 3dG
2

, (60)

where dG = S-G-dim
(
F̃ ( ε

12
)
)
. A substitution of the upper bound on q provided by (59)

into (60) gives: ∣∣∣F̃∣∣∣ 6
K (γ

ε

)5 ln
(∣∣∣F̃∣∣∣)
dG


3
2
dG

with K = 448e. In order to upper bound ln

(∣∣∣F̃∣∣∣ 1
dG

)
, we resort once more to (40), this

time with u0 = 1. Thus,

∣∣∣F̃∣∣∣ 1
dG 6 ln

3
2

(∣∣∣F̃∣∣∣ 1
dG

)(
K
(γ
ε

)5
) 3

2
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and
∣∣∣F̃∣∣∣ =M (ε,Fγ , d2,zn) imply that

M (ε,Fγ , d2,zn) 6

(
2K

(γ
ε

)5
) 12

5
dG

6

(
5γ

ε

)12dG

. (61)

Since F̃ ( ε
12

) ⊂ F ( ε
12

), by application of Formula (45),

S-G-dim
(
F̃ ( ε

12
)
)
6 S-G-dim

(
F ( ε

12
)
)

6 dG

( ε
24

)
. (62)

By substitution of (62) into (61), we obtain that for every vector zn ∈ Zn,

M (ε,Fγ , d2,zn) 6

(
5γ

ε

)12dG( ε
24)

. (63)

At last, (63) implies (12) since its right-hand side does not depend on zn.

B.4 Margin Natarajan Dimension - Uniform Convergence Norm

The proof of Lemma 8 is essentially that of Lemma 6, with the main differences being

concentrated in the basic combinatorial result (the counterpart of Lemma 15). Thus, we

only highlight these differences. The first one is that the number s
(
F̄ (η)

)
of pairs (s′Zu ,b

′
u)

strongly G-shattered by F̄ (η) is replaced with the number s′
(
F̄ (η)

)
of triplets (s′Zu ,b

′
u, c
′
u)

strongly N-shattered by F̄ (η). Let dN = S-N-dim
(
F (η)

)
. Once more, under the hypothesis

dN > 1, combinatorics provides us with:

s′
(
F (η)

)
6

dN∑
u=1

(
n

u

)
Mu
γ (C − 1)u = Σ′ − 1. (64)

In order to obtain the counterpart of (50), i.e.,

s′
(
F̄ (η)

)
> s′

(
F̄ (η)

+

)
+ s′

(
F̄ (η)
−

)
+ 1

> `
(
F̄
)
− 1, (65)

(49) must be replaced with∀f+ ∈ F̄+, f
(η)
+ (zi0)− bi0 > 1

∀f− ∈ F̄−, f
(η)
− (xi0 , ci0) + bi0 > 1

. (66)
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This calls for an additional application of the pigeonhole principle in the derivation of the

class F̄−, so that the lower bound on
∣∣F̄−∣∣ provided by (48) is replaced with

∣∣F̄−∣∣ > ∣∣F̄∣∣
3Mγ (C − 1)n

.

This implies that the counterpart of (51) is

`
(
F̄
)
>
∣∣F̄∣∣ 1

log2(3Mγ
√
C−1n) . (67)

Once more, it is proved by induction on the depth of the node. Inequality (67) is obviously

true for the leaves (which are of cardinality 1). Suppose now that it is true for the two

sons of an inner node. Then,

`
(
F̄
)

= `
(
F̄+

)
+ `
(
F̄−
)

>

( ∣∣F̄∣∣
3Mγn

) 1
log2(3Mγ

√
C−1n)

+

( ∣∣F̄∣∣
3Mγ (C − 1)n

) 1
log2(3Mγ

√
C−1n)

=
1

2

((√
C − 1

) 1
log2(3Mγ

√
C−1n) +

(√
C − 1

)− 1
log2(3Mγ

√
C−1n)

) ∣∣F̄∣∣ 1
log2(3Mγ

√
C−1n)

>
1

2
min
t∈R∗+

(
t+

1

t

) ∣∣F̄∣∣ 1
log2(3Mγ

√
C−1n)

=
∣∣F̄∣∣ 1

log2(3Mγ
√
C−1n) .

Combining Inequalities (64), (65) and (67), the counterpart of Inequality (46) is∣∣∣∣F (η)
γ

∣∣∣
sZn

∣∣∣∣ 6 (3Mγ

√
C − 1n

)log2(Σ′)
.

B.5 Margin Natarajan Dimension - L2-Norm

The main difference between the proof of Lemma 9 and the proof of Lemma 7 is located

in the small deviation principle (Lemma 17 replaces Lemma 18). Since the consequences

of this change appear in the derivation of the basic combinatorial result, we provide this

latter result with its full proof.

Lemma 21. Let F be a function class defined as in Definition 8. For every sZn =

{zi = (xi, yi) : 1 6 i 6 n} ⊂ Z, γ ∈ (0, 1] and η ∈
(
0, γ2

]
, if F (η)

γ

∣∣∣
sZn

is 6-separated in

the metric d2,zn, then∣∣∣∣F (η)
γ

∣∣∣
sZn

∣∣∣∣ 6 (Σ′)log2

(
M2
γ√

M2
γ−2

√
C−1

)
6
(
Σ′
) 1

2
log2(2M2

γ (C−1)) (68)

where Σ′ =
∑dN

u=0

(
n
u

)
Mu
γ (C − 1)u with Mγ =

⌊
γ
η

⌋
and dN = S-N-dim

(
F (η)

)
.
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Proof. Inequality (68) is trivially true for
∣∣∣∣F (η)

γ

∣∣∣
sZn

∣∣∣∣ = 1. Indeed, the minimal value of its

right-hand side, corresponding to dN = 0, is 1. Thus, the rest of the proof makes use of the

restriction
∣∣∣∣F (η)

γ

∣∣∣
sZn

∣∣∣∣ > 2. A direct consequence is that according to Lemma 14, dN > 1.

A subset of sZn of cardinality u ∈ J1;nK is denoted by s′Zu = {z′i : 1 6 i 6 u}, with the

convention

∀ (i, j) : 1 6 i < j 6 u,
(
z′i, z

′
j

)
= (zv, zw) =⇒ 1 6 v < w 6 n.

For every subset F̄ of F , denote by s′
(
F̄ (η)

)
the number of triplets (s′Zu ,b

′
u, c
′
u) with

s′Zu ⊂ sZn , b′u ∈ J1;Mγ − 1Ku and c′u ∈ Yu (with ∀i ∈ J1;uK, c′i 6= y′i) strongly N-shattered

by F̄ (η) (the convention above has been introduced to avoid handling duplicates). Since

dN > 1, Inequality (64) provides us once more with an upper bound on s′
(
F (η)

)
. In order

to derive a lower bound on the same quantity, we also build a 2-separating tree of F̃ . Let

F̄ be one of its nodes such that
∣∣F̄∣∣ > 2 (inner node). Its two sons, F̄+ and F̄−, are built

by application of Lemma 17 and the pigeonhole principle. According to Lemma 17, we can

ensure that there exist an index i0 ∈ J1;nK, (α, β) ∈ J1;Mγ − 1K×
[

1
M2
γ
, 1

2

]
and two subsets

F̄+ and F̂− of F̄ verifying either
∣∣F̄+

∣∣ > (1− β)
∣∣F̄∣∣ and ∣∣∣F̂−∣∣∣ > max

{
1
2β,

1
M2
γ

} ∣∣F̄∣∣ or vice
versa, such that ∀f+ ∈ F̄+, f

(η)
+,γ (zi0) > α+ 1

∀f− ∈ F̂−, f
(η)
−,γ (zi0) 6 α− 1

.

Setting bi0 = α, it springs from Lemma 14 that∀f+ ∈ F̄+, f
(η)
+ (zi0)− bi0 > 1

∀f− ∈ F̂−, maxk 6=yi0 f
(η)
− (xi0 , k) + bi0 > 1

,

i.e., (49) is obtained with F̄− replaced with F̂−. There comes the application of the

pigeonhole principle, to obtain Formula (66). The derivation of the corresponding function

classes is as follows. There exists ci0 ∈ Y \ {yi0} such that among the functions f− in F̂−,

at least
⌈
|F̂−|
C−1

⌉
of them satisfy ci0 ∈ argmaxk 6=yi0

f− (xi0 , k). We choose F̄− to be any such

subset of F̂−. With Formula (66) at hand, Inequality (65) is also available. Thus, finishing

the proof still boils down to deriving a lower bound on `
(
F̄
)
. The originality rests on the

fact that two cases must be considered, to take into account the two sources of asymmetry

between the cardinalities of F̄+ and F̄−. Indeed, we have either
∣∣F̄+

∣∣ > max
{

1
2β,

1
M2
γ

} ∣∣F̄∣∣
and

∣∣F̄−∣∣ > 1−β
C−1

∣∣F̄∣∣ or ∣∣F̄+

∣∣ > (1− β)
∣∣F̄∣∣ and ∣∣F̄−∣∣ > 1

C−1 max
{

1
2β,

1
M2
γ

} ∣∣F̄∣∣. The
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induction hypothesis is this time:

`
(
F̄
)
>
∣∣F̄∣∣

1

log2

 M2
γ√

M2
γ−2

√
C−1


. (69)

Once more, it is obviously true for the leaves. We prove it for the first case (the other one

is treated in the same way). The computation makes use of the following analytical result:

∀K ∈ (0, 1] , argmin

β∈
[

1

M2
γ
, 1
2

]
{(

1− β
C − 1

)K
+

(
max

{
β

2
,

1

M2
γ

})K}
=

2

M2
γ

.

Then,

`
(
F̄
)

= `
(
F̄+

)
+ `
(
F̄−
)

>

( 1

M2
γ

) 1

log2

 M2
γ√

M2
γ−2

√
C−1


+

(
M2
γ − 2

M2
γ (C − 1)

) 1

log2

 M2
γ√

M2
γ−2

√
C−1


∣∣F̄∣∣

1

log2

 M2
γ√

M2
γ−2

√
C−1



=
1

2


(√

C − 1

M2
γ − 2

) 1

log2

 M2
γ√

M2
γ−2

√
C−1


+

√M2
γ − 2

C − 1


1

log2

 M2
γ√

M2
γ−2

√
C−1




×
∣∣F̄∣∣

1

log2

 M2
γ√

M2
γ−2

√
C−1



>
1

2
min
t∈R∗+

(
t+

1

t

) ∣∣F̄∣∣
1

log2

 M2
γ√

M2
γ−2

√
C−1



=
∣∣F̄∣∣

1

log2

 M2
γ√

M2
γ−2

√
C−1


.

Combining Inequalities (64), (65) and (69) produces by transitivity:

∣∣∣F̃∣∣∣ 6 (Σ′)log2

(
M2
γ√

M2
γ−2

√
C−1

)
.

The left-hand side inequality of Formula (68) has been established. To conclude the proof,

it suffices to remember that Mγ > 2.

The proof of Lemma 9 is the following one.

Proof. The beginning of the proof is identical to the beginning of the proof of Lemma 7 up

to the use of Formula (41), which is now done with N = 6 (instead of N = 5). The reason

45



for this change is to satisfy the hypotheses of the basic combinatorial result, Lemma 21,

which replaces Lemma 19.

∣∣∣F̃∣∣∣ =

∣∣∣∣∣ F̃( ε
14)

γ

∣∣∣∣
sZq

∣∣∣∣∣
6

(
dN∑
u=0

(
q

u

)(
14γ

ε

)u
(C − 1)u

) 1
2

log2

(
2( 14γ

ε )
2
(C−1)

)

6

(
14γ (C − 1) eq

dN ε

) 1
2

log2

(
2( 14γ

ε )
2
(C−1)

)
dN

, (70)

where dN = S-N-dim
(
F̃( ε

14)
)
. A substitution of the upper bound on q provided by (59)

into (70) gives:

∣∣∣F̃∣∣∣ 6
K (C − 1)

(γ
ε

)5 ln
(∣∣∣F̃∣∣∣)
dN


1
2

log2

(
2( 14γ

ε )
2
(C−1)

)
dN

with K = 1568
3 e. In order to upper bound ln

(∣∣∣F̃∣∣∣ 1
dN

)
, we resort once more to (40), with

u0 = 1
4 log2

(
2
(

14γ
ε

)2
(C − 1)

)
. Thus,

ln

(∣∣∣F̃∣∣∣ 1
dN

)
6

1

2
log2

(
2

(
14γ

ε

)2

(C − 1)

)∣∣∣F̃∣∣∣ 1

log2

(
2( 14γ

ε )
2
(C−1)

)
dN

implies that

∣∣∣F̃∣∣∣ 6 (1

2
log2

(
2

(
14γ

ε

)2

(C − 1)

)
K (C − 1)

(γ
ε

)5
)log2

(
2( 14γ

ε )
2
(C−1)

)
dN

.

Since

2

(
14γ

ε

)2

(C − 1) > 16 =⇒ log2

(
2

(
14γ

ε

)2

(C − 1)

)
<

(
2

(
14γ

ε

)2

(C − 1)

) 1
2

=⇒ log2

(
2

(
14γ

ε

)2

(C − 1)

)
<

(
K

2
(C − 1)

(γ
ε

)5
) 1

2

,

the upper bound on
∣∣∣F̃∣∣∣ simplifies into

M (ε,Fγ , d2,zn) =
∣∣∣F̃∣∣∣ 6 ((C − 1)

(
4γ

ε

)5
) 3

2
log2

(
2( 14γ

ε )
2
(C−1)

)
dN

. (71)

46



Since F̃( ε
14) ⊂ F( ε

14), by application of Formula (45),

S-N-dim
(
F̃( ε

14)
)
6 S-N-dim

(
F( ε

14)
)

6 dN

( ε
28

)
. (72)

A substitution of (72) into (71) produces an upper bound on M (ε,Fγ , d2,zn) which does

not depend on zn, thus concluding the proof.

C Proofs of the Structural Results

This appendix gathers the proofs of the upper bounds on γ-N-dim (ρG). The proof of the

first of them, Lemma 10, makes use of three partial results which are now stated.

C.1 Technical Lemmas

Proposition 2. Let F be a function class defined as in Definition 8. Suppose that for

γ ∈ R∗+, the subset F̄ of F γ-N-shatters the triplet ({(xi, yi) : 1 6 i 6 n} ,bn, cn). Then

F̄ also γ-N-shatters another triplet, ({(xi, y′i) : 1 6 i 6 n} ,b′n, c′n), derived from the first

one as follows:

∀i ∈ J1;nK,

if yi < ci, y
′
i = yi, b

′
i = bi, c

′
i = ci

if yi > ci, y
′
i = ci, b

′
i = −bi, c′i = yi

.

As a consequence, the derivation of an upper bound on γ-N-dim (F) can make use of a

stronger hypothesis on (yn, cn): ∀i ∈ J1;nK, yi < ci, provided that the hypothesis of non-

negativity of the biases bi is relaxed.

Proof. Without loss of generality, we assume that F̄ is of minimal cardinality 2n and set

accordingly F̄ = {fsn : sn ∈ {−1, 1}n}. Consider the following bijection on {−1, 1}n:

B : {−1, 1}n −→ {−1, 1}n

sn 7→ s′n

∀i ∈ J1;nK,

if yi < ci, s
′
i = si

if yi > ci, s
′
i = −si

.

Then,

∀i ∈ J1;nK,

if s′i = 1, fs′n (xi, yi)− bi > γ

if s′i = −1, fs′n (xi, ci) + bi > γ
=⇒ ∀i ∈ J1;nK,

if si = 1, fs′n (xi, y
′
i)− b′i > γ

if si = −1, fs′n (xi, c
′
i) + b′i > γ

.
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By definition, the triplet (s′Zn ,b
′
n, c
′
n) is γ-N-shattered by F̄ , which concludes the proof.

Proposition 3 is an extension of Proposition 1.4 in Talagrand (2003) holding for the

Lp-norms with p ∈ N \ {0, 1} (instead of simply p = 2), that explicits the value of the

constant.

Proposition 3. Let F be a class of real-valued functions on T . For every γ ∈ R∗+ satisfying

γ-dim (F) > 0, n ∈ J1; γ-dim (F)K and p ∈ N \ {0, 1},

n 6 Kp log2 (Mp (γ,F , n))

with Kp =
(

2p

2p−1−1

)2
.

Proof. Suppose that for γ ∈ R∗+, the subset sT n = {ti : 1 6 i 6 n} of T is γ-shattered by

F and bn = (bi)16i6n ∈ Rn is a witness to this shattering. By definition, there exists a

subset F̄ = {fsn : sn ∈ {−1, 1}n} of F satisfying

∀sn ∈ {−1, 1}n , ∀i ∈ J1;nK, si (fsn (ti)− bi) > γ. (73)

Let tn = (ti)16i6n. To prove the proposition, it suffices to establish that

n 6 Kp log2

(
M
(
γ, F̄ , dp,tn

))
. (74)

For (sn, s
′
n) ∈ ({−1, 1}n)2, let S (sn, s

′
n) be the subset of J1;nK defined by:

S
(
sn, s

′
n

)
=
{
i ∈ J1;nK : si 6= s′i

}
.

Then, making use of (73), we obtain that

dp,tn
(
fsn , fs′n

)
>

(
1

n

∣∣S (sn, s′n)∣∣ (2γ)p
) 1
p

= 2γ

(
dH (sn, s

′
n)

n

) 1
p

,

where dH stands for the Hamming distance. Thus, a sufficient condition for dp,tn
(
fsn , fs′n

)
>

γ is dH (sn, s
′
n) >

⌈(
1
2

)p
n
⌉
. As a consequence, to prove (74), it suffices to establish that

there is a subset of the set of vertices of the hypercube Qn of cardinality
⌈
2
n
Kp

⌉
which is⌈(

1
2

)p
n
⌉
-separated with respect to the Hamming distance (the separation is well-defined

since
⌈
2
n
Kp

⌉
> 2). To that end, a probabilistic approach similar to that of the proof of

Lemma 20 is implemented. For q ∈ J2; 2nK, let εq,n = (εj,i)16j6q,16i6n be a Bernoulli
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random matrix (its entries εj,i are independent Bernoulli random variables with common

expectation 1
2). Then, by application of the union bound,

P

(
∃
(
j, j′
)
∈ J1; qK2 : 1 6 j < j′ 6 q and

n∑
i=1

1{εj,i 6=εj′,i} <
(

1

2

)p
n

)

6

(
q

2

)
P

(
n∑
i=1

εi > n

(
1−

(
1

2

)p))
,

where (εi)16i6n is a Bernoulli random vector. To upper bound the tail probability on the

right-hand side, we resort to Hoeffding’s inequality, which gives

P

(
n∑
i=1

εi −
n

2
>
n

2

(
1−

(
1

2

)p−1
))

6 exp

−n
2

(
1−

(
1

2

)p−1
)2
 .

By transitivity, this implies that a sufficient condition for

P

(
∃
(
j, j′
)
∈ J1; qK2 : 1 6 j < j′ 6 q and

n∑
i=1

1{εj,i 6=εj′,i} <
(

1

2

)p
n

)
< 1

is (
q

2

)
exp

−n
2

(
1−

(
1

2

)p−1
)2
 < 1

and consequently

q 6
⌈
2
n
Kp

⌉
,

which is precisely the value announced and thus concludes the proof.

The transition between covering and packing numbers is provided by a well-known

equivalence.

Lemma 22. Let (E , ρ) be a pseudo-metric space. For every totally bounded set E ′ ⊂ E and

ε ∈ R∗+,M (2ε, E ′, ρ) 6 N int (ε, E ′, ρ) 6M (ε, E ′, ρ).

C.2 Margin Natarajan Dimension of ρG

The proof of Lemma 10 is the following one.

Proof. Suppose that for γ ∈ (0,MG ], the triplet (sZn ,bn, cn) is γ-N -shattered by ρG . Ac-

cording to Proposition 2, in order to upper bound n, i.e., γ-N-dim (ρG), one can assume that

for every i ∈ J1;nK, yi < ci, and the biases can be negative. Let Ḡ = {gsn : sn ∈ {−1, 1}n}
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be a subset of G (of minimal cardinality) such that ρḠ = {ρgsn : sn ∈ {−1, 1}n} γ-N -

shatters (sZn ,bn, cn). For every pair (k, l) ∈ J1;CK2 satisfying k < l, let Sk,l be the subset

of J1;nK defined as follows:

Sk,l = {i ∈ J1;nK : yi = k and ci = l}

and let nk,l ∈ J0;nK be its cardinality. By construction, P = {Sk,l : nk,l > 0} is a partition

of J1;nK. For every vector sn = (si)16i6n ∈ {−1, 1}n, the function gsn satisfies:

∀i ∈ J1;nK,

if si = 1, ρgsn (xi, yi)− bi > γ

if si = −1, ρgsn (xi, ci) + bi > γ
.

For a fixed Sk,l ∈ P, this implies that

∀i ∈ Sk,l, si

(
1

2

(
gsnk (xi)− gsnl (xi)

)
− bi

)
> γ.

Let DG,k,l =
{

1
2 (gk − gl) : g ∈ G

}
. By definition, we have established that its subset{

1
2

(
gsnk − g

sn
l

)
: sn ∈ {−1, 1}n

}
γ-shatters a set of cardinality nk,l, with the consequence

that

nk,l 6 γ-dim (DG,k,l) .

Summing over all the elements of the partition P gives

γ-N-dim (ρG) 6
C−1∑
k=1

C∑
l=k+1

γ-dim (DG,k,l) . (75)

Inequality (75) implies (15) since by definition, DG =
⋃

16k<l6C DG,k,l. The second upper

bound on the γ-dimensions of the classes DG,k,l is obtained by application of the standard

strategy outlined in Section 3.1. Applying in sequence Proposition 3 and Lemma 22 (left-

hand side inequality) gives:

γ-dim (DG,k,l) 6 16 log2 (M2 (γ,DG,k,l, γ-dim (DG,k,l)))

6 16 log2

(
N int

2

(γ
2
,DG,k,l, γ-dim (DG,k,l)

))
.

An optimization of the proof of Lemma 2 in the degenerate case C = 2 produces

N int
2

(γ
2
,DG,k,l, γ-dim (DG,k,l)

)
6 N int

2

(γ
2
,Gk, γ-dim (DG,k,l)

)
×N int

2

(γ
2
,Gl, γ-dim (DG,k,l)

)
.

To upper bound the covering numbers in the right-hand side, it suffices to apply Lemma 22

(right-hand side inequality) and Theorem 1 in Mendelson and Vershynin (2003) (with the
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optimized constants of Lemma 7). This produces:

N int
2

(γ
2
,Gk, γ-dim (DG,k,l)

)
6 M2

(γ
2
,Gk, γ-dim (DG,k,l)

)
6

(
20MG
γ

)12dk( γ
48)

,

where dk (ε) = ε-dim (Gk). The second upper bound on the γ-dimensions of the classes

DG,k,l has been obtained. By substitution into (75), we get

γ-N-dim (ρG) 6 192 (C − 1) log2

(
20MG
γ

) C∑
k=1

( γ
48

)
-dim (Gk)

6 384

(
C

2

)
log2

(
20MG
γ

)( γ
48

)
-dim (G0) .

C.3 Margin Natarajan Dimension of ρHΛ

The proof of Lemma 11 reuses the notations of the proof of Lemma 10, with G set equal

to HΛ.

Proof. By application of Khintchine inequality, every set Sk,l can be split into two subsets

S+
k,l and S

−
k,l such that ∥∥∥∥∥∥∥

∑
i∈S+

k,l

κxi −
∑
i∈S−k,l

κxi

∥∥∥∥∥∥∥
Hκ

6
√
nk,lΛX . (76)

Let the vector sn ∈ {−1, 1}n be defined as follows:

∀i ∈ J1;nK ,

i ∈ S
+
k,l =⇒ si = 1

i ∈ S−k,l =⇒ si = −1
.

For every Sk,l ∈ P and i ∈ Sk,l, applying the reproducing property givesif si = 1, 1
2

〈
hsnk − h

sn
l , κxi

〉
Hκ
− bi > γ and 1

2

〈
h−snl − h−snk , κxi

〉
Hκ

+ bi > γ

if si = −1, 1
2

〈
hsnl − h

sn
k , κxi

〉
Hκ

+ bi > γ and 1
2

〈
h−snk − h−snl , κxi

〉
Hκ
− bi > γ

. (77)

For every k ∈ J1;CK, let hδk = 1
2

(
hsnk − h

−sn
k

)
. Then (77) produces by summation:

∀i ∈ Sk,l,

i ∈ S
+
k,l =⇒ 1

2

〈
hδk − hδl , κxi

〉
Hκ

> γ

i ∈ S−k,l =⇒ 1
2

〈
hδk − hδl ,−κxi

〉
Hκ

> γ
. (78)
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By summation over i ∈ Sk,l, it results from (78) that:

1

2

〈
hδk − hδl ,

∑
i∈S+

k,l

κxi −
∑
i∈S−k,l

κxi

〉
Hκ

> nk,lγ. (79)

Applying the Cauchy-Schwarz inequality to (79) yields

1

2

∥∥∥hδk − hδl ∥∥∥
Hκ

∥∥∥∥∥∥∥
∑
i∈S+

k,l

κxi −
∑
i∈S−k,l

κxi

∥∥∥∥∥∥∥
Hκ

> nk,lγ. (80)

By substitution of (76) into (80),

∀Sk,l ∈ P, nk,l 6

(
1
2

∥∥hδk − hδl ∥∥Hκ
ΛX

γ

)2

.

By summation over all the elements of the partition P,

n 6

(
ΛX
2γ

)2 ∑
16k<l6C

∥∥∥hδk − hδl ∥∥∥2

Hκ

. (81)

To upper bound the sum in the right-hand side of (81), we first note that∥∥∥hδk − hδl ∥∥∥2

Hκ

6
1

2

(∥∥hsnk − hsnl ∥∥2

Hκ
+
∥∥h−snk − h−snl

∥∥2

Hκ

)
,

with the consequence that

n 6

(
ΛX
2γ

)2 1

2

∑
16k<l6C

(∥∥hsnk − hsnl ∥∥2

Hκ
+
∥∥h−snk − h−snl

∥∥2

Hκ

)
. (82)

Now, since by hypothesis,
∑C

k=1 hk = 0Hκ ,∑
16k<l6C

∥∥hsnk − hsnl ∥∥2

Hκ
= (C − 1)

C∑
k=1

∥∥hsnk ∥∥2

Hκ
− 2

∑
16k<l6C

〈
hsnk , h

sn
l

〉
Hκ

= C
C∑
k=1

∥∥hsnk ∥∥2

Hκ
−

C∑
k=1

C∑
l=1

〈
hsnk , h

sn
l

〉
Hκ

= C
C∑
k=1

∥∥hsnk ∥∥2

Hκ
−

∥∥∥∥∥
C∑
k=1

hsnk

∥∥∥∥∥
2

Hκ

= C
C∑
k=1

∥∥hsnk ∥∥2

Hκ

= C ‖hsn‖2Hκ,C

6 CΛ2. (83)

Obviously, (83) also provides an upper bonud on
∑

16k<l6C

∥∥h−snk − h−snl

∥∥2

Hκ
. Thus, a

substitution into (82) concludes the proof.
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D Upper Bound on the Rademacher Complexity

The proof of Theorem 3 is the following one.

Proof. In all three cases, the starting point is Inequality (28).

First case: dG,γ ∈ (0, 2)

This case is the only one for which the entropy integral exists. Setting for every j ∈ N,

h (j) = γ2
− 2

2−dG,γ
j
, we obtain

Rm (ρG,γ) 6 24

(
1 + 2

2
2−dG,γ

)√
F1 (C)

m
γ1−

dG,γ
2

∫ 1
2

0
ln

(
(C − 1)

(
4ε
− 2

2−dG,γ

)5
)
dε.

Let I (C) denote the integral. Then,

I (C) =

∫ 1
2

0
ln

(
(C − 1)

(
4ε
− 2

2−dG,γ

)5
)
dε

=
1

2

(
ln
(
(C − 1) 45

)
+ 10

1 + ln (2)

2− dG,γ

)
.

Second case: dG,γ = 2

Rm (ρG,γ) 6 h (N) +
8

3

√
F1 (C)

m

∑
j∈J

h (j) + h (j − 1)

h (j)
log2

(
(C − 1)

(
4γ

h (j)

)5
)
.

We set N =
⌈
log2

( √
m

log2(m)

)⌉
and h (j) = γ log2(m)√

m
2N−j . Note that m > 2 ensures that

N > 1. Then,

Rm (ρG,γ) 6 γ
log2 (m)√

m
+ 8

√
F1 (C)

m

N∑
j=1

log2

(
(C − 1)

(
4γ

h (j)

)5
)

6 γ
log2 (m)√

m
+ 8

√
F1 (C)

m

⌈
log2

( √
m

log2 (m)

)⌉
log2

(
(C − 1)

(
4

√
m

log2 (m)

)5
)
.

Third case: dG,γ > 2

For N =
⌈
dG,γ−2
2dG,γ

log2

(
m

log2(m)

)⌉
, let us set h (j) = γ

(
log2(m)
m

) 1
dG,γ 2

2
dG,γ−2

(−j+N)
. We then

get

Rm (ρG,γ) 6 γ

(
log2 (m)

m

) 1
dG,γ

1 +
8

3

(
1 + 2

2
dG,γ−2

)(
1

γ

) dG,γ
2

√
F1 (C)

log2 (m)
SN


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with

SN =

N∑
j=1

2j−N log2

(
(C − 1)

(
4γ

h (j)

)5
)

6 log2

(
(C − 1)

(
4γ

h (N)

)5
)

N∑
j=1

2j−N

6 2 log2

(C − 1)

(
4

(
m

log2 (m)

) 1
dG,γ

)5
 .
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