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Abstract. To tackle segmentation problems on biological sequences, we advocate
the use of a hybrid architecture combining discriminant and generative models in
the framework of a hierarchical approach. Multi-class support vector machines and
neural networks provide a set of initial predictions. These predictions are post-
processed by classifiers estimating the class posterior probabilities. The outputs of
this cascade of classifiers, named MSVMpred, are then used to derive the emission
probabilities of a hidden Markov model performing the final prediction. This ar-
ticle deals with the evaluation of MSVMpred both as a stand alone classifier, i.e.,
according to the recognition rate, and as part of a hybrid architecture, i.e., with
respect to the quality of the probability estimates.
Keywords: Multi-class support vector machines, Class posterior probability esti-
mates, Bioinformatics.

1 Introduction

We are interested in problems of bioinformatics which can be specified as fol-
lows: a biological sequence must be split into consecutive segments belonging
to different categories given a priori. This class contains problems of central
importance in biology such as protein secondary structure prediction, alter-
native splicing prediction, or the search for the genes of non-coding RNAs.
To tackle it, we advocate the use of a hybrid architecture combining discrim-
inant and generative models in the framework of a hierarchical approach. It
was first outlined in [7], and was later developed by the community (see for
instance [15]). Discriminant models compute estimates of the class posterior
probabilities based on local information extracted from the sequence (or a
multiple alignment). These estimates are then post-processed by generative
models, to produce the final prediction. The class of problems of interest
further suggests a specific organization of the discriminant models: a first set
of classifiers performs predictions based on the content of a window sliding
on the sequence, and a second set combines and filters these predictions. The
most successful instance of this “cascade” architecture, MSVMpred [11], is
built as follows: the first level predictions are made by multi-class support
vector machines (M-SVMs) [10] and neural networks (NNs) [17], the second
level ones by “combiners” selected according to their capacity.
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The present work aims at assessing the potential of MSVMpred through
comparative studies. The assessment regards both the recognition rate and
the quality of the probability estimates. Experiments are performed on syn-
thetic data and in protein secondary structure prediction. The performance
of reference is provided by the standard pairwise coupling procedure [12]
applied to the (post-processed) outputs of bi-class support vector machines
(SVMs) [5]. The results highlight the potential of MSVMpred and by way
of consequence our hybrid architecture. The organization of the paper is as
follows. Section 2 is a general introduction to MSVMpred. The basic exper-
imental protocol is detailed in Section 3. Section 4 provides results obtained
on synthetic data. Experimental results in protein secondary structure pre-
diction are exposed in Section 5, and we draw conclusions in Section 6.

2 MSVMpred

Let X be a non empty set and Q ∈ N \ [[ 0, 2 ]]. X and [[ 1, Q ]] are respectively
the description space and the set of categories of a discrimination problem
characterized by a X×[[ 1, Q ]]-valued random pair (X,Y ) whose distribution is
unknown. All the knowledge regarding this distribution is provided by a set of
labelled data. This set is used to select in a given class of functions a function
assigning a category to the descriptions with minimal probability of error
(risk). When the learning problem is formulated in that way, MSVMpred is
simply defined as a two-layer cascade of classifiers with domain X and range
the unit (Q−1)-simplex. M-SVMs and NNs produce initial predictions which,
after a possible post-processing, are exploited by classifiers of appropriate
capacity estimating the class posterior probabilities.

2.1 Multi-class support vector machines

M-SVMs are multi-class extensions of the (bi-class) SVM which do not rely
on a decomposition method. As models of pattern recognition, they are char-
acterized by the specification of a class of functions and a learning problem.

Definition 1 (Class of functions Hκ,Q). Let κ be a real-valued positive
type function [3] on X 2 and let

(
Hκ, 〈·, ·〉Hκ

)
be the corresponding repro-

ducing kernel Hilbert space. The class of vector-valued functions on which a
Q-category M-SVM with kernel κ is based is the class

Hκ,Q = (Hκ ⊕ {1})Q

where {1} is the space of real-valued constant functions on X .

Hκ,Q is a class of mulivariate affine functions on Hκ. Indeed,

∀h ∈ Hκ,Q, ∀x ∈ X , h (x) = h̄ (x) + b =
(〈
h̄k, κ (x, ·)

〉
Hκ

+ bk

)
16k6Q

,

where h̄ =
(
h̄k
)
16k6Q

∈ HQ
κ and b = (bk)16k6Q ∈ RQ.
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Definition 2 (Generic model of M-SVM, Definition 4 in [10]). Let
X be a non empty set and Q ∈ N\ [[ 0, 2 ]]. Let κ be a real-valued positive type
function on X 2 and let Hκ,Q be the class of functions induced by κ according
to Definition 1. For m ∈ N∗, let dm = ((xi, yi))16i6m ∈ (X × [[ 1, Q ]])

m
and

ξ ∈ RQm with
(
ξ(i−1)Q+yi

)
16i6m

= 0m. A Q-category M-SVM with kernel

κ and training set dm is a discriminant model trained by solving a convex
quadratic programming problem of the form

Problem 1 (Learning problem of an M-SVM, primal formulation).

min
h,ξ

{
‖Mξ‖pp + λ

Q∑
k=1

∥∥h̄k∥∥2Hκ

}

s.t.


∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , K1hyi(xi)− hk(xi) > K2 − ξ(i−1)Q+k

∀i ∈ [[ 1,m ]] , ∀(k, l) ∈ ([[ 1, Q ]] \ {yi})2 , K3

(
ξ(i−1)Q+k − ξ(i−1)Q+l

)
= 0

∀i ∈ [[ 1,m ]] , ∀k ∈ [[ 1, Q ]] \ {yi} , (2− p)ξ(i−1)Q+k > 0

(1−K1)
∑Q
k=1 hk = 0

where λ ∈ R∗+, (K1,K3) ∈ {0, 1}2, and K2 ∈ R∗+. M is a Qm×Qm matrix of
rank (Q− 1)m such that for all i in [[ 1,m ]], its column of index (i− 1)Q+ yi
is equal to 0Qm. p ∈ {1, 2} and if p = 1, then M is a diagonal matrix.

If the problem of deriving class posterior probability estimates from the
outputs of an SVM, in the bi-class case, or a set of SVMs, in the multi-class
case, has been frequently addressed, this is not the case for the M-SVMs.

2.2 Second level discriminant models

Several options are available to perform the second level predictions. Both
the polytomous logistic regression (PLR) model [13] and the linear ensemble
methods (LEMs) [8] estimate the class posterior probabilities. Under mild
hypotheses, this property is shared by many NNs, among which the most
common one, the multi-layer perceptron (MLP) (see for instance [17]). All
three models are assessed separately in our experiments. We have introduced
them in order of increasing capacity [9]. Indeed, the PLR is a linear separator.
An LEM combines Q-category classifiers taking their values in the unit (Q−
1)-simplex. To combine classifiers that do not exhibit this property, such as
the M-SVMs, the introduction of an intermediate step of post-processing is
required, which can give birth to a nonlinear separator (in the space where
the outputs of the base classifiers live). At last, an MLP using a softmax
activation function for the output units and the cross-entropy (CE) loss (a
sufficient condition for its outputs to be class posterior probability estimates)
is an extension of the PLR obtained by adding a hidden layer. The boundaries
it computes are nonlinear in its input space. The availability of classifiers of
different capacities for the second level of the cascade is an important feature
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of MSVMpred. It makes it possible to cope with one of the main limiting
factors to the performance of modular architectures: overfitting.

3 Experimental protocol

When computing polytomies with SVMs, the standard way to derive class
posterior probability estimates consists in combining the one-against-one de-
composition scheme with pairwise coupling [12]. For each x ∈ X , the

(
Q
2

)
out-

puts of the SVMs are post-processed by a parameterized sigmoid [16] to pro-
vide estimates of the probabilities P (Y = k | Y ∈ {k, l} , X = x). These esti-
mates are then used to derive estimates of the probabilities P (Y = k | X = x)
by means of a maximum likelihood procedure.

The implementation of MSVMpred involves the four main models of M-
SVMs as base classifiers, i.e., the models of Weston and Watkins (WW),
Crammer and Singer (CS), Lee and co-authors (LLW), and the M-SVM2

(see [10] for a survey). Let IQm (dm) and M (2) designate two instances of M
whose general term m(i−1)Q+k,(j−1)Q+l is respectively δi,jδk,l (1− δyi,k) and

(1− δyi,k)
(
1− δyj ,l

) (
δk,l +

√
Q−1
Q−1

)
δi,j , where δ is the Kronecker symbol.

The formulations of the aforementioned M-SVMs as instances of the generic
model correspond to the values of the hyperparameters reported in Table 1.

M-SVM M p K1 K2 K3

WW-M-SVM IQm (dm) 1 1 1 0

CS-M-SVM 1
Q−1

IQm (dm) 1 1 1 1

LLW-M-SVM IQm (dm) 1 0 1
Q−1

0

M-SVM2 M (2) 2 0 1
Q−1

0

Table 1. Specifications of the four M-SVMs used as base classifiers in MSVMpred

Unless otherwise specified, the SVMs and M-SVMs implemented use a
spherical Gaussian kernel. To post-process the outputs of the M-SVMs
prior to presenting them in input of an LEM, we resorted to the PLR. Be-
sides the pairwise coupling, the set of models providing the performance
of reference is made up of the PLR, the MLP, and an M-SVM (precisely
the CS-M-SVM) post-processed by the PLR. The MLP, as a universal ap-
proximator, has the potential to approximate the probabilities, and thus
the Bayes classifier, arbitrarily well. Its performance is limited by the ef-
ficiency of the back-propagation algorithm. For a classifier g from X into
the unit (Q − 1)-simplex, the empirical CE measured on ((xi, yi))16i6m
is − 1

m

∑m
i=1

∑Q
k=1 P (Y = k | X = xi) ln (gk (xi)) when the probabilities are

known, − 1
m

∑m
i=1 ln (gyi (xi)) otherwise. This quantity is used to assess the

accuracy of the probability estimates. The significance of the differences in
recognition rate is measured by means of the two sample proportion test.
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4 Experiments on synthetic data

We used an instance of the 10-category problem studied in [6]. In this prob-
lem, the categories are equiprobable and their probability density distribu-
tions are 20-dimensional Gaussians. The means of the Gaussians are ran-
domly generated from a uniform distribution on [0, 1]

20
. The covariance

matrices are also random. For each of them, the eigenvectors are gen-
erated from a uniform distribution on the unit sphere of R20 subject to
orthogonality constraints. The square-roots of the eigenvalues are drawn
from a uniform distribution on [0.01, 1.01]. Our Monte Carlo estimates
of the risk and entropy of the Bayes classifier: E(X,Y ) [− ln (P (Y | X))] =

EX
[
−
∑Q
k=1 P (Y = k | X) ln (P (Y = k | X))

]
are respectively 0.50% and 0.0142.

For these experiments, the NN used as base classifier, in parallel with the M-
SVMs, is an MLP. To train MSVMpred, the training set is split into two
subsets. Three quarters of the data are used for the base classifiers and their
possible post-processing, the rest for the combiner. This decomposition is
also the one used for the pairwise coupling. On the contrary, in the case
when the CS-M-SVM alone is post-processed by the PLR, since no combiner
is to be trained, the M-SVM and its post-processing are respectively trained
on the first and the second subset. The test set is made up of 60000 exam-
ples. Figure 1 displays the prediction accuracy as a function of the training
set size m, for all the classifiers but the PLR (alone), discarded for lack of
performance. For m large enough (over 5000), the three variants of MSVM-

Fig. 1. Prediction accuracy as a function of the training set size

pred are uniformly superior to the pairwise coupling in terms of CE. The
most efficient variant is the one of lowest capacity (PLR). For m > 10000,
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its recognition rate is superior to that of the second best classifier with con-
fidence exceeding 0.95. MSVMpred seems capable of making the best of the
complementarity of the base classifiers, since this gain is not obtained at the
expense of the quality of the probability estimates. Indeed, the CE of the
best variant is inferior to that of the MLP (alone), until both values become
indistinguishable (for m > 15000).

5 Protein secondary structure prediction

Predicting the secondary structure of a protein is a three-category discrimi-
nation task consisting in assigning a conformational state α-helix, β-strand or
aperiodic (coil), to each residue (amino acid) of its sequence. In that context,
the two levels of classification performed in cascade correspond respectively
to a sequence to structure prediction and a structure to structure prediction.
State-of-the-art prediction methods exhibit a recognition rate around 80%,
whereas the best cascades published so far remain slightly below 78%.

5.1 Sequence-to-structure classification

For this classification, deriving the predictors from a multiple alignment
rather than from the sole sequence of interest makes it possible to incorporate
some evolutionary information. The descriptions of the residues of a protein
sequence are thus derived from the corresponding position-specific scoring
matrix (PSSM) produced by PSI-BLAST [1]. To generate the PSSMs, the
version 2.2.25 of the BLAST package is used. Choosing BLAST in place of
the more recent BLAST+ offers the facility to extract more precise PSSMs.
Three iterations are performed against the nr database with an E-value in-
clusion threshold of 0.005. The nr database is filtered by pfilt [14] to remove
low complexity regions, transmembrane spans and coiled coil regions. Since
a sliding window is used, the description of a residue is thus obtained by ap-
pending consecutive rows of the PSSM associated with the sequence to which
it belongs. To dedicate the M-SVMs to the task of interest, we chose an ellip-
tic Gaussian kernel weighting differently the positions of this window. To set
the values of the weights, we applied a straightforward multi-class extension
of the kernel target alignment. We had to center the data in the feature
space according to the formula given in [4], and to penalize the correspond-
ing objective function with the `2 norm of the weighting vector. This kernel
was also used by the SVMs involved in the pairwise coupling. To exploit the
sequential nature of the data, the NN we used as additional base classifier
was a recurrent one: the bidirectional recurrent neural network (BRNN) [2].

5.2 Structure-to-structure classification

As usual when applying structure-to-structure classification, the predictors
are provided by the content of a window sliding on the outputs of the sequence-
to-structure classifiers. For the PLR and the MLP specifically, they are
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weighted according to their position in their window. The weighting is de-
rived in the same way as the one of the elliptic Gaussian kernel.

5.3 Experimental results

The data set is CB513, a standard benchmark made up of 513 sequences for
a total of 84119 residues. The secondary structure assignment was performed
by the DSSP program, with the reduction from 8 to 3 conformational states
following the CASP method. The first and second sliding window, centered
on the residue of interest, have a size of 13 and 15 respectively. A seven-
fold cross-validation procedure was implemented. At each step, two thirds of
the training set were used to train the sequence-to-structure classifiers and
their possible post-processing, and one third to train the combiner. This
decomposition was also used for the pairwise coupling. Since a secondary
structure prediction method must fulfill specific requirements in order to be
useful for the biologist, two performance measures were added to the recogni-
tion rate (Q3) and the CE: the Pearson correlation coefficients Cα/β/coil and
the segment overlap measure (Sov’99). Results are gathered in Table 2.

PLR MLP BRNN CS-M-SVM Pairwise MSVMpred
+ PLR coupling PLR LEM MLP BRNN

Q3 (%) 72.5 76.1 77.0 77.0 76.6 78.2 77.9 78.1 78.1

CE 0.674 0.585 0.568 0.578 0.581 0.542 0.551 0.537 0.548

Cα 0.62 0.71 0.72 0.72 0.71 0.74 0.74 0.74 0.74

Cβ 0.55 0.61 0.62 0.62 0.61 0.64 0.64 0.64 0.64

Ccoil 0.54 0.57 0.58 0.59 0.58 0.60 0.60 0.60 0.60

Sov’99 (%) 67.7 68.7 71.3 71.2 71.4 74.6 74.3 73.8 73.7

Table 2. Performance of MSVMpred in protein secondary structure prediction

The Q3 of each variant of MSVMpred is statistically superior to that of
the pairwise coupling and all the single classifiers with confidence exceeding
0.95. The value of the CE confirms this superiority. In comparison with the
results obtained on the synthetic data, a nice feature is that all variants of
MSVMpred perform equally well. Model selection is not an issue here.

6 Conclusions and ongoing research

This article has illustrated the potential of MSVMpred as discriminant model
performing the low-level processing of the data in our hybrid architecture ded-
icated to biological sequence segmentation. In protein secondary structure
prediction, its performance is slightly superior to that of the best cascades
published so far, and significantly superior to that of pairwise coupling, or
single classifiers. An appropriate choice of the combiner, governed by the con-
cern of capacity control, could optimize jointly the recognition rate and the
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quality of the class posterior probability estimates. We are currently working
on increasing the scope of MSVMpred in biological sequence segmentation
without loss of control on its generalization performance.
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