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Abstract: This paper deals with multi-class classification of skin
pre-cancerous stages based on bimodal spectroscopic features combining
spatially resolved AutoFluorescence (AF) and Diffuse Reflectance (DR)
measurements. A new hybrid method to extract and select features is
presented. It is based on Discrete Cosine Transform (DCT) applied to
AF spectra and on Mutual Information (MI) applied to DR spectra. The
classification is performed by means of a multi-class SVM: the M-SVM2.
Its performance is compared with the one of the One-Versus-All (OVA)
decomposition method involving bi-class SVMs as base classifiers. The
results of this study show that bimodality and the choice of an adequate
spatial resolution allow for a significant increase in diagnostic accuracy.
This accuracy can get as high as 81.7% when combining different distances
in the case of bimodality.
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1. Introduction

Optical spectroscopies such as autofluorescence and diffuse reflectance spectroscopies have
been applied to cancer detection in vivo in many areas of the body, including breast [1], cervix
[2, 3], brain [4, 5] and skin [6, 7]. The principle consists in exposing the tissue to an inci-
dent light flux which is then absorbed, elastically scattered or gives rise to intrinsic fluores-
cence. The spectral characteristics of the reflected out-coming light intensity measured can
be related to the tissue state [8]. Fundamental mechanisms between optical radiation and bi-
ological specimens are absorption, reflection, elastic or inelastic scattering and luminescence.
The latter is subdivided into fluorescence and phosphorescence. The current study focuses on
fluorescence that corresponds to an allowed optical transition with rather high quantum yield
and short (nanosecond) lifetime. Fluorescence arises upon light absorption and is related to
an electronic transition from the excited state to the ground state of a molecule. Fluorescence
of endogenous fluorophores is usually called autofluorescence. Biological tissues’ autofluo-
rescence depends on several parameters that are different whether the tissue under study is
benign or malignant: concentration and spatial distribution of endogenous fluorophores, cell
metabolism, vascularization (tumor’s angiogenesis), etc. Elastic-scattering spectroscopy (ESS)
is sensitive to sub-cellular architectural changes, such as nuclear grade or nuclear to cytoplasm
ratio, that correlate with features used in histological assessment of cancer. Scattering intensity
and spectral distribution of the signals detected could give information about the scatterers’ size
and distribution (cells, nuclei, etc.). Most of the tissue pathologies, including tumors, exhibit
significant architecture changes on a cellular and sub-cellular level. Diffuse reflectance is the
name given to the signal defined as the ratio of elastic scattering signal intensity and a standard
spectrum acquired on a Lambertian surface. Diffuse reflectance signal is a superposition of dif-
fuse scattering and absorption from tissue pigments, the resultant spectrum on the tissue surface
reveals also information about the main absorbers in the biological tissues, such as hemoglobin
and melanin (skin). To benefit fully from reflectance spectroscopy’s advantages, one needs
to relate the spectral features with the morphology and biochemical composition of the tissue
investigated.
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These noninvasive techniques show great promise for diagnosing early stages of cancer de-
velopment in vivo and are particularly well adapted to everyday clinical practice. Pre-cancerous
and cancerous evolutions of biological tissues are characterized by morphological and func-
tional modifications of the tissue constituents (cells and extracellular matrix). AutoFluores-
cence Spectroscopy (AFS) and Diffuse Reflectance Spectroscopy (DRS) are complementary
techniques that can be combined in a multimodal spectroscopy system. They are sensitive to
such modifications but provide intensity spectra from which diagnostic information cannot be
extracted in a straightforward way. Furthermore, some spectroscopic signals (AF) are inher-
ently weak, and spectral curve shape differences related to the various tissue states are usually
subtle with noticeable spectral overlapping and intensity variations [9].

Another difficulty to deal with is the high dimensionality of the raw spectral data. Typically
for nanometric spectral resolution, one intensity spectrum corresponds to a vector of several
hundreds of components. This problem is further amplified in the case of multiple excitation
AFS, multimodal spectroscopy and spatially resolved spectroscopy for which one tissue point
can be characterized by several vectors of hundreds of components.

Therefore, powerful and robust spectral data processing algorithms are much needed to iden-
tify the most relevant features to characterize the tissue histopathology. Multivariate statistical
techniques such as Principal Component Analysis (PCA) [10, 11], Linear Discriminant Anal-
ysis (LDA) [12] and Artificial Neural Networks (ANNs) [13] have been previously used in ef-
ficient algorithms for cancerous tissue classification based on optical spectroscopy data. Other
powerful classifiers are Support Vector Machines (SVMs) [14], which have now emerged as an
efficient approach to the classification of spectroscopic data for tissue diagnosis. For instance,
Lin et al. [15] used an SVM to differentiate in vivo autofluorescence spectra of NasoPharyngeal
Carcinoma (NPC) from normal tissue with a sensitivity of 95% and a specificity of 99%, higher
than that of PCA-LDA. Palmer et al. [16] used a linear SVM for classifying autofluorescence
and diffuse reflectance spectra of breast normal and cancerous tissues in vitro. Majumder et al.
[17] also applied linear and non-linear SVMs to fluorescence spectra for distinguishing between
malignant and normal tissues in the oral cavity. The best sensitivity and specificity values ob-
tained by the SVM-RFE (Recursive Feature Elimination) method on the data sets investigated
in the framework of a leave-one-out cross-validation procedure are respectively 93% and 97%.
When tested on the spectral data of the uninvolved oral cavity sites from the patients it yielded
a specificity of 85%. Nayak et al. [18] developed algorithms based on PCA and ANN for dis-
criminating normal, premalignant and malignant human oral tissues. They achieved sensibility
Se = 100% and specificity Sp = 92.9% using PCA and Se = 100% and Sp = 96.5% with ANN.

Most of the studies to date on the application of optical spectroscopy to skin cancer diagno-
sis focused firstly, on a local analysis i.e., the analysis involves only some specific wavelength
bands of the spectrum using a priori knowledge of curve-shape features that allow the dis-
tinction between the histological classes of interest, and secondly, on bi-class classification.
Multi-class SVM implementations for spectroscopic diagnosis of cancerous tissue are still very
limited.

In a first published study [19], our team showed that combining autofluorescence and dif-
fuse reflectance in a bimodal approach increases diagnosis accuracy of pairwise discrimina-
tion between four histological classes of mouse skin carcinogenesis when compared to each
modality (autofluorescence or diffuse reflectance) used alone. Such a result highlights how
informative the different types of light interaction with skin are, i.e., autofluorescence and dif-
fuse reflectance provide the physician with complementary types of information when it comes
to cancer diagnosis. Indeed, cancer progression implies functional as well as morphologi-
cal modifications of skin that autofluorescence and diffuse reflectance can respectively detect.
Therefore, fusing the two types of optical information gets a wider insight into the skin modi-
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fications. In a second published study [20], our team showed how spatial resolution (the use of
several distances between excitation and collection optical fibers) increases diagnosis accuracy
as well as the fact that SVM is the most appropriate classification algorithm to our problem
at hand (still in a pairwise approach with a priori knowledge on the data) acquired through a
bimodal approach. In order to get closer to medical interest, we propose in the current study
to process data obtained through a spatially-resolved bimodal approach first, with no a priori
knowledge of the data set (no extraction of spectral features based on spectra visualization) and
second, to base our SVM-classification on a multi-class approach (instead of a decomposition
scheme). Discrete Cosine Transform (DCT) and Mutual Information (MI) are proposed for
spectral feature extraction and selection to produce a data description of lower dimensionality.
Such process is more general than the one used previously [19, 20], while allowing an effi-
cient representation of the raw data. The performance of a multi-class SVM, the M-SVM2, is
evaluated for the discrimination between the 4 histological classes of interest.

2. Optical spectroscopy set up

A general description of the instrumentation set up can be found elsewhere [20]. Here some
other optical characteristics are provided in order to complete such previous description of the
set up and get more insights into optics. Light source is a short-arc Xenon lamp with parabolic
mirror providing a 25.4 mm - beam diameter (Eurosep, France). Its illumination bandwidth is
extended in the UV spectral range and an anti-caloric filter is used in order to have main emis-
sion in the 300-800 nm spectral range. Two linearly variable band-pass filters are used to tune
the excitation wavelength (autofluorescence) or the desired bandwidth (diffuse reflectance).
Finally light is focused into the excitation optical fiber core (200 μm-diameter). Spatial res-
olution is achieved through a multiple optical fibers bundle. The bundle’s distal tip was put
in gentle contact with mouse skin. The probe contains 37 optical fibers (numerical aperture
is 0.22, SEDI, France) arranged in concentric circles within the 2 mm-diameter bundle. Three
collecting optical fibers were chosen at D1 = 271 μm, D2 = 536 μm and D3 = 834 μm. At the
entrance of the multichannel spectrograph (iHR 320, Horiba Jobin Yvon, France) an adaptation
bundle is set in order to match each collecting optical fiber of the bundle onto defined rows of
photosites on the CCD (Symphony 2048x512 Cryogenic back illuminated UV-sensitive CCD
detector; back illumination allows higher sensitivity in the UV spectral range). This allowed us
to simultaneously measure up to 6 intensity spectra from 6 collecting optical fibers. Light inten-
sity collected by each optical fiber is diffracted on CCD photosites through diffraction gratings
(150 lines/mm blazed at 600 nm): sufficient spacing between photosites corresponding to two
adjacent collecting optical fibers prevents intensity crosslinks. Fiber tracks are electronically
binned on the CCD to detect lower light levels. The overall optical resolution of the acquisition
system is 5 nm.

3. Data processing

In order to use AFS and DRS as non invasive tools to diagnose skin pre-cancerous and can-
cerous tissues, dedicated data analysis algorithms need to be developed including raw spectra
pre-processing, identification and selection of discriminant spectral features, and classification.

The raw data set consists of 6048 optical spectra measured in vivo on Ns = 252 spots of
mouse skin either sham-irradiated (control group) or UV-irradiated weekly for up to 20 weeks.
Briefly (see [19] for details), it consists of 7 AF spectra (7 excitation wavelengths that were
chosen because they are long enough to be harmless i.e., they do not carry enough energy
to induce mutation in skin cells’ DNA: 360, 368, 390, 400, 410,420 and 430 nm) and 1 DR
spectrum (UV-visible spectral range) at 3 different distances between collecting and exciting
optical fibers (Collection to Excitation Fiber Separation CEFS). Four reference classes were
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Fig. 1. Examples of emission autofluorescence spectrum for an excitation wavelength of 360 nm (a)
and diffuse reflectance spectrum (c), both acquired at interfiber distance D1. (b) and (d) show the 20
first DCT coefficients calculated for (a) and (c) respectively.

defined based on the histopathological analysis of the skin samples: Healthy (H), Compensatory
Hyperplasia (CH), Atypical Hyperplasia (AH), and Dysplasia (D). After in vivo spectral data
acquisition, the 252 skin spots were biopsied and classified by an anatomopathologist physician
into the 4 histological classes: 84 were considered as H, 47 were classified into CH class, 64
into AH class, and 57 into D class [19].

After acquisition of AF and DR spectra, a method of normalization was applied to remove
the absolute intensity information from the spectra that might be affected by many unavoidable
experimental factors. In the case of autofluorescence, the sample associated with each site was
normalized to its maximum intensity peak from that site. Diffuse Reflectance spectra were
obtained by dividing elastic scattering raw spectra by standard spectra acquired at the shortest
CEFS (271 μm) on a Lambertian surface (WS-1 Diffuse Reflection Standard, Ocean Optics),
uniformly reflective by wavelength across the entire range 250-1500 nm (>98%).

3.1. Spectral feature extraction using DCT

The strong capability of DCT to compress energy as well as the availability of a fast imple-
mentation of the transform make it a good candidate for pattern recognition applications [21],
image compression [22] as well as in feature extraction [23]. The DCT has been used in many
practical applications involving 1D data such as speech processing [24]. For k in {1, . . . ,N},
the kth DCT coefficient xc(k) of a spectrum (x(n))1�n�N is defined as [25]:

xc(k) = w(k)
N

∑
n=1

x(n)cos

[
π(2n−1)(k−1)

2N

]
(1)
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where w(k) =

⎧⎪⎨
⎪⎩

1√
N

i f k = 1

√
2
N 2 � k � N otherwise

.

Looking at examples of AF spectrum (Fig. 1(a)) and DR spectrum (Fig. 1(c)) for which
the 20 first DCT coefficients are given respectively in Figs. 1(b) and 1(d), it can be noticed
that most of the visually significant information is concentrated in just a few first DCT coeffi-
cients. Therefore, the low-frequency DCT coefficients are selected as features. The choice of
an appropriate number of DCT coefficients is further studied in Section 3 (Results).

3.2. Feature selection using MI

Let X and Y be two discrete random variables taking their values in X and Y respectively.
Their mutual information can be defined in terms of their probability density functions (pdfs)
p1(x), p2(y), and joint pdf p(x,y) as [28]:

MI(X ,Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p1(x)p2(y)
. (2)

Based on entropy, the mutual information between X and Y can also be expressed using the
conditional probability p(x |y). The entropy H of X is a measure of its randomness and is
defined as H(X) =−∑x∈X p1(x) log p1(x).

The conditional entropy of Y given X is given by :

H(X |Y ) =− ∑
y∈Y

p2(y) ∑
x∈X

p(x |y) log p(x |y). (3)

The mutual information between X and Y can be computed from the entropy terms defined
above by

MI(X ,Y ) = H(X)−H(X |Y ). (4)

MI is considered to be a good quantitative indicator of the dependence of two random vari-
ables [26], well adapted in the case of non linear models. Formally, the mutual information
between the nth feature x(n), nε{1, ...,Nd}, and the class label Y ∈ {1, . . . ,Q} (Q is the num-
ber of classes), MI(x(n),Y ) represents the amount of information gained about the class if the
feature x(n) is used. A high value of MI indicates that the feature is potentially relevant for the
classification (next step) [27] and thus should be selected.

To select a subset of features from an initial data set we have:

1. Maximized the pertinence by calculating the MI between the different pairs feature/Y :
argmax V, V = 1

|Nd |2 ∑Nd
i=1 MI(Y,x(i))

2. Minimized the redundancy by calculating the MI between pairs of features:
argmin W, W = 1

|Nd |2 ∑Nd
j=1 ∑Nd

i=1 MI(x(i),x( j))

3. Combined between the minimization of the redundancy and the maximization of the
pertinence by maximizing: argmax (V −W )

In practice, the empirical values for the features are provided by the Ns measurement spots
which have been assigned to the four histological classes (y∈{1, . . . ,4}) by the anatomopathol-
ogist physician. The detail of the algorithm can be found in [28].
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Fig. 2. Examples of 7 AF spectra concatenated end-to-end (a), and an DR spectrum (b). Occurrence
histograms of the discriminant features selected with MI for the AF spectra (c) and the DR spectrum
(d).

The selection of the discriminant features from AF spectra using MI is applied to a single
vector consisting of 7 AF spectra concatenated end-to-end (see Fig. 2(a)). Figures 2(c) and
2(d) show histograms of the selected wavelengths for the seven AF excitations wavelengths
and for DR respectively. The discriminant features for AFs spectra were found for AF430 and
AF390. AF430 gives the most discriminant intensities around the wavelength ≈ 500 nm and
AF390 gives discriminant features around the wavelength=600 nm. Concerning DR spectra,
the discriminant features were found around 500 nm and 650 nm (see Fig. 2(b)).

Various studies mentioned that in AF mono-excitation at 410 nm on human oral cancer,
haemoglobin absorption peaks (≈420, 545 and 575 nm) related to progressive hyperplastic
vascular activity and autofluorescence emissions related to flavins, collagen, NADH and por-
phyrins (≈633 and 672 nm), can be used as biomarkers to differentiate between various pre-
cancerous and cancerous tissue states. More specifically, the presence of increased porphyrin
intensity peaks is also associated with hyperplastic modifications implying haemoglobin trans-
formations, or changes in the cellular environment [29]. In our study, pertinent features selected
with MI are found using AF mono-excitations at 390 nm and at 430 nm. The difference between
our data and those used by Inaguma et al. [29] is the kind of lesions: we are interested in pre-
cancer stages, whereas they work on benign and malignant lesions.

3.3. Support Vector Machine based classification

In order to classify automatically the 252 tissue samples in the 4 predefined classes (H, CH,
AH, D) based on the spectral features previously extracted, a multi-category supervised classi-
fication was performed. The labels were provided by the “gold standard” results of histological
analysis. The accuracy of the classification is characterized by means of the recognition rate τ
as a function of the number of features.

A great many methods have been used for multi-class classification such as ANNs [30], k-
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Nearest Neighbors [31], and SVMs [14]. The latter have rapidly gained in popularity due to
their theoretical merits, computational simplicity, and excellent performance in real-world ap-
plications [32]. The first studies dealing with the use of SVMs for multi-category classification
report results obtained with decomposition methods [33, 34] involving Vapnik’s bi-class ma-
chine [35]. Multi-class support vector machines (M-SVMs) were only introduced three years
later [36]. We have chosen to use one of them, the M-SVM2 [37, 38]. Its main advantage rests
in the fact that an algorithm is available to set automatically the value of its soft margin coef-
ficient. Typically, the clouds of points associated with the different categories are not linearly
separable in the description space, so that the use of a nonlinear SVM appears appropriate. We
selected a Gaussian kernel:

κ
(
x,x′

)
= exp

(
−μ

∥∥x− x′
∥∥2
)

(5)

where, x and x′ are two data points, and μ is the bandwidth coefficient. The experimental
protocol is systematically a 3-fold cross-validation.

4. Results and discussion

4.1. Effect of the number of features on classification performance

Extracting the small set of discriminant features from the raw spectral data is the first key step
in our work. If the features are carefully chosen it is expected that they will retrieve the relevant
information from the input data in order to perform the desired task. This allows to prevent
the curse of dimensionality, and to avoid classification errors resulting from the domination of
irrelevant features [40].

4.1.1. DCT-based extraction method

The number of DCT coefficients was chosen so as to maximize the recognition rate. Experi-
mental results are summarized in Fig. 3. For AF spectra alone, a slight increase in recognition
rate can be observed when the number of coefficients increases (from 75% for the 20 first co-
efficients up to 78% for the first 50 coefficients). Regarding DR spectra alone, the recognition
rate increases from 40% up to 64% with NDR=147 coefficients; for a number of coefficients
higher than NDR, no significant change in recognition accuracy was observed.

For bimodality configuration, a slight decrease in recognition accuracy is observed as we go
to higher numbers of coefficients: from 75% for 1 coefficient down to 74% for 10 and over. In
other words, more DCT coefficients does not necessarily mean better recognition rate because
high frequency components are related to unstable activity features such as noise. According
to Figs. 3(a) and 3(b), the best performance of our system is obtained when N=56 for AF
alone and when N=147 for DR alone. Therefore, the recognition rate was calculated with
NAF = 56 coefficients for each AF spectrum leading to 56x7=392 features for the 7 AF spectra
corresponding to the 7 excitation wavelengths. Finally, with a total of NAF = 392x3 features
for the combination of 3 CEFS D1, D2, and D3, we obtained a maximum rate of �78%, which
is close to that found with D1 alone. This result can be explained by the fact that the number
of features is far higher than the number of examples (252). This implies that the curse of
dimensionality is a problem that impacts our classifier. To overcome this problem, we worked
with NAF = 2 per AF excitation (i.e., 2x7=14 features in total). For DR data spectra, we kept
working with the number of features that gave the best rate NDR = 147 (see Fig. 3(b)).

#151657 - $15.00 USD Received 17 Aug 2011; revised 21 Nov 2011; accepted 24 Nov 2011; published 20 Dec 2011
(C) 2012 OSA 2 January 2012 / Vol. 20,  No. 1 / OPTICS EXPRESS  236



aa
aA

F
sp

ec
tr

a-
ba

se
d

τ(
%
)

aa
aD

R
sp

ec
tr

a-
ba

se
d

τ(
%
)

aa
aB

im
od

al
ity

-b
as

ed
τ(

%
)

Number of DCT coefficients Number of DCT coefficients Number of DCT coefficients

Fig. 3. Recognition rate τ (%) calculated as a function of the number of DCT coefficients retained for
(left) AF spectra alone acquired at D1, (center) DR spectra acquired at D1, (right) AF and DR spectra
all acquired at D1 (bimodality).
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Fig. 4. Recognition rate τ (%) as a function of the number of features selected with MI for (a) AF
spectra and (b) for DR spectra acquired at D1.
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Fig. 5. Recognition rate as a function of the number of DCT coefficients for the bimodal configuration
(AF+DR) for the 3 CEFS (a) D1 (b) D2 (c) D3.
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4.1.2. MI-based selection method

As in the previous case, the number of features was selected so as to maximize the recognition
rate. Experimental results are summarized in Fig. 4.

The results obtained with MI for each monomodal method are similar. Both curves show
increasing values in recognition accuracy as we go to higher numbers of features (� 100 fea-
tures).

4.1.3. Hybrid method of extraction/selection

Overall, the results obtained (Figs. 3 and 4) highlight the fact that on one hand, DCT-based
extraction/selection gives better results for AF spectra than for DR spectra for a smaller number
of features, and on the other hand, MI-based extraction/selection outperforms DCT-based one
for DR spectra.

The MI-based feature selection method performs best when applied to DR spectra. The per-
formance of DCT-based algorithm is even more valuable when considering the very low number
of discriminant features used for classification. By choosing the best performing method for
each modality, we propose a hybrid approach combining DCT applied to AF spectra and MI to
DR ones.

4.2. Influence of the different CEFS (spatial resolution) and their combinations on the classi-
fication performance

Varying the separation distance between source and detection fibers (CEFS) allows for tissue
depth selectivity in the spectroscopic measurements. Larger separations are more likely to de-
tect photons that traveled deeper inside the tissue and were multiply scattered to a greater radial
distance compared with photons that only underwent minimal scattering events and stayed in
the superficial layers [41].

Considering several CEFS does not improve the classification results based on AF spectra
(see Fig. 5). On the contrary, it generates an erratic behavior.

The results obtained from the different sets of characteristics for each mono- and bimodal ex-
citations with DCT method, MI method, and hybrid method respectively are given in bargraph
Figs. 6(a), 6(b) and 6(c). Each bar represents the recognition rate obtained with the multi-class
SVM (M-SVM2) for each of the 7 possible combinations of CEFS tested: D1 alone, D2 alone,
D3 alone, and D1D2, D1D3, D2D3, D1D2D3 with the aforementioned sets of features of re-
spective cardinalities NAF and NRD. τ values for D1 alone are globally better than those for D2
alone or D3 alone. The diagnostic accuracy obtained with D1 is the best for each monomodal
excitation AF (71.4% with DCT method) or DR (68.3% with DCT method), and for bimodality
(74.6% with DCT method).

Spatial resolution always implies an increase in classification performance. For each modal-
ity, an increase in discrimination efficiency between the 4 histological classes for both modali-
ties was obtained using an extended set of characteristics from multiple distances combinations
D1D3, D1D2, and D1D2D3. The combination D2D3 gives the lowest rate for each modal-
ity compared to D1D3, D1D2, and D1D2D3. An increase in discrimination performance was
obtained using an extended set of characteristics under D1D2D3 combination and bimodal con-
figuration compared to each unimodal excitation (AF or DR).

Overall, the DCT-based extraction/selection applied to AF spectra for the autofluorescence
gives better results than when applied to DR ones, while MI-based selection gives close results
for each modality. The best result of τ=81.7% was obtained for bimodal configuration, with
D1D3 and D1D2 combinations using DCT applied to AF spectra and MI to DR spectra.

These findings highlight the fact that the diagnosis performance of our system depends on
two factors: first, the choice of the best CEFS combination for each modality, i.e., the effect
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Fig. 6. Recognition rate of the M-SVM2 as a function of the 7 combinations of (Di)1�i�3 distances
and the 3 modalities: AF alone (black bar), DR alone (grey bar) and AF+DR together (light grey bar),
using (left) DCT method, (center) MI method and (right) hybrid method.
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Fig. 7. Recognition rate as a function of the number of DCT coefficients calculated for each of the 7
AF excitation wavelengths (AF360-AF430) and for the 3 CEFS D1 (a), D2 (b), D3 (c).
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Fig. 8. Recognition rate of the OVA as a function of the 7 combinations of (Di)1�i�3 distances and the
3 modalities: AF alone (black bar), DR alone (grey bar) and AF+DR together (light grey bar), using
(left) DCT method, (center) MI method and (right) hybrid method

of CEFS on the discrimination between the different classes, and second, the selection of an
optimal number of coefficients for DCT-based extraction.

4.3. Excitation wavelength effect on the classifier performance

Since DCT-based extraction/selection method gave good results with the 7 AF excitations used
together, i.e., preserving useful information and allowing a global analysis of the spectrum, the
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recognition rate for each excitation wavelength using DCT method was calculated. Figures
7(a), 7(b) and 7(c) represent the variation of recognition rates for the 7 AF excitation wave-
lengths and for the 3 CEFS D1, D2 and D3 respectively. All excitation wavelengths except that
of 420 nm gave similar results, i.e., the higher the number of coefficients, the higher the recog-
nition rate. Distinctively, the 420 nm excitation wavelength has stable performance regardless
of CEFS. These results confirm those obtained by Van Staveren [42] who selected this specific
excitation wavelength to distinguish between different grades of oral cancerous tissues. For this
study, the choice of 420 nm excitation wavelength was also guided by previous investigations
with excitation wavelengths in the range of 400-450 nm [43, 44]. At this wavelength, sev-
eral endogenous tissue fluorophores can be excited, viz. porphyrins, lipo-pigments and flavins,
which have a fluorescence emission in the range of 450-650 nm [45].

According to Fig. 7, the best rates with 420 nm excitation (AF420) are around 65%, hence
the importance of multi-excitation that allows to achieve a rate that exceeds 74%.

4.4. Performance assessment

Because of the specificity of our experimental data set (classes, measurement conditions), it
is highly difficult to compare the present work with works described in the literature. In this
subsection, we assess performance with respect to feature extraction/selection and model se-
lection:

1/ Analysis of variance (ANOVA) is applied to explore the effects of categorical factors
on one or more quantitative variable(s) by analyzing the mean and variance across different
levels of the factors. The important parameter for ANOVA result is the p-value, which is the
probability of accepting the hypothesis that the factor has great incidence. It can be used to
compute the least significant difference between any of the means in terms of probability of
error. The first factor for us is the modality used (AF, DR, Bimodal), the second factor is the
method used for data processing (DCT, MI, Hybrid). The respective p-values were 0.001 and
0.02, which is less than the standard threshold value 0.05, so the proposed approach allows a
significant improvement in the diagnosis accuracy.

For a deep study on the efficiency of the method used, Table 1 shows the p-value correspond-
ing to different combinations of methods. The bimodal method reaches better performance than
unimodality methods (bold figures in the table are less than the threshold of ANOVA), particu-
larly when the extraction of the discriminant features is based on the hybrid approach (last row
of the table). The hybrid approach outperforms the MI applied to AF (p-value=6.08 E-05) and
the DCT applied to DR (p-value=5.99E-05). The key step of our work is to extract/select the
appropriate features. ANOVA test has shown the efficient of the proposed hybrid approach.

The effect of the choice of the classifier on the performance will be characterized in the
following.

Table 1. P-value for different combinations
DCT (AF) DCT (DR) DCT (Bimodal) MI (AF) MI (DR) MI (Bimodal) Hybrid

DCT (AF) 1.00000 0.09980 0.02687 0.13316 0.39251 0.91850 0.013

DCT (DR) 0.09980 1.00000 0.14653 0.81089 0.67985 0.05475 0.00005

DCT (Bimodal) 0.02687 0.14653 1.00000 0.11651 0.12853 0.02016 0.00105

MI (AF) 0.13316 0.81089 0.11651 1.00000 0.79488 0.07504 0.00006

MI (DR) 0.39251 0.67985 0.12853 0.07504 1.00000 0.32763 0.00975

MI (Bimodal) 0.91850 0.05475 0.02016 0.07504 0.32763 1.00000 0.00635

Hybrid 0.013 0.00005 0.00105 0.00006 0.00975 0.00635 1.00000

2/ In a previous work [20], we have compared the performance of different standard classi-

#151657 - $15.00 USD Received 17 Aug 2011; revised 21 Nov 2011; accepted 24 Nov 2011; published 20 Dec 2011
(C) 2012 OSA 2 January 2012 / Vol. 20,  No. 1 / OPTICS EXPRESS  240



fiers (kNN, LDA, SVM), and the best results were obtained with an SVM. In order to compare
the performance of the chosen classifier (M-SVM2) with another “classical” method, we have
recalculated the recognition rate with the One-Versus-All decomposition method (OVA). Fig-
ure 8 shows the results obtained using OVA. According to the sample proportion test, the gain
appears too low to be statistically significant with high confidence. It is utterly true that the
classification accuracies of the M-SVM2 and the OVA decomposition scheme are similar. In
fact, it springs from our experimental results that once the features have been adequately se-
lected, a high accuracy can be obtained with different methods involving multi-class or bi-class
SVMs. In that context, we found it more appropriate to choose the M-SVM2 given its main
feature: it is the sole M-SVM developed so far for which an automatic model selection proce-
dure of low computational complexity is available. In comparison, to reach the same accuracy
with the OVA approach, we had to optimize globally the soft margin coefficients of the four
bi-class SVMs involved. To do so, we applied a four-dimensional grid search, which proved
very tedious. Such a grid search would have been intractable had the number of classes been
slightly higher. In short, computational complexity is indeed the main argument in favour of
the choice of the M-SVM2.

4.5. Confusion matrices

Table 4.5 shows the classification results in the form of the confusion matrices that compare
the pathologist’s diagnosis (rows) with the prediction of the M-SVM2 (columns). The best
performance of the latter was in classifying H and CH tissues (100% accuracy), and errors
were spread among the remaining classes D and AH.

For both DCT-AF-based and MI-DR-based methods, the highest confusion is found between
AH and D. Using AF-DCT approach, 10% of AH are classified as D and 31% of D are classified
as AH. DR-MI leads to similar confusion between AH and D, with extra confusion found
between H and CH. Both AH and D are malignant classes; H and CH are benign; so, the
confusion between AH and D and between H and CH does not alter the diagnosis, whereas
the confusion between malignant and benign classes has an effect on the diagnosis accuracy.
6% of AH and 10% of D are classified as H, which corresponds to the incorrect predictions.
Finally, the hybrid method proposed here overcomes these confusion problems, with only a
small confusion between AH and D (1.5%).

It is also interesting to evaluate the performance of the method in a pairwise discrimination
approach considering merging the classes H and CH on one hand (as the benign class), and
merging the classes AH and D on the other hand (as the malignant class). These choices were
motivated by the results of initial experiments involving different kernels. Table 4.5 shows
confusion matrices corresponding to bi-class problem of spectra acquired at D1 and of spectra
acquired at D1D2D3 together using a linear kernel. Indeed on a histological point of view, such
two classes can be distinguished by the absence (respectively the presence) of atypical features
within skin cells (keratinocytes). The method performs better for this pairwise discrimination
(recognition rate > 94% both for D1 alone and for D1D2D3) than for the multi-class classifi-
cation (H, CH, AH, D) (recognition rate around 80%). When considering D1 alone, sensitivity
(Se) and specificity (Sp) of the pairwise discrimination respectively are 95% and 93%. When
considering spatial resolution (D1D2D3), Se = 93% and Sp = 98%. From a clinical point of
view, such a result highlights that optical spectroscopy detects atypical features in skin cells
which is of utmost medical value. Optical spectroscopy also detects other types of histological
features that allow discrimination of two sub-classes within each of the two classes (H and CH
for the benign class; AH and D for the malignant class) but with a lower recognition rate.

In order to fully test spatially resolved-bimodal spectroscopy ability to be used in a clinical
environment as a decision-making support tool, we also tested our method classification per-
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formance on three classes: benign class (H and CH together), atypical class (AH alone) and
dysplastic class (D alone). This approach is closer to clinical interests as clinical management
will be specific to each of those three histological classes. For the combination of the three
distances (D1D2D3), the confusion matrix (Table 4.5) shows that 60.9% and 77.8% of AH,
respectively D, samples are well classified. Such results can be compared with the ones previ-
ously published by our team [20] when discriminating between AH and D classes: Se = 56%.
Therefore, our new data processing method performs better than the previous one (a priori
knowledge of spectra) even when considering more classes. Again, the benign class is very
well recognized with 97.7% of correctly classified samples among the three classes confirming
the results previously mentioned with two classes.

These final results confirm that the bimodal approach is of particular interest in improving
the diagnosis performance of fibered optical spectroscopy tools applied to skin pre-cancerous
states discrimination.

Table 2. Confusion matrices of the M-SVM2 calculated from DCT-based extrac-
tion/selection applied to AF spectra (top), from MI-based selection applied to DR spectrum
(middle) and from hybrid method (both AF-DCT and DR-MI) (bottom) of spectra acquired
at D1, D2 and D3. The 3 matrices on the left correspond to test performance given for D1
alone and the 3 matrices on the right provide test performance given for D1D2D3 together.

DCT-SVM

H CH AH D

S H 83.7% 0.0% 10.2% 6.1%

G CH 0.0% 100.0% 0.0% 0.0%

H AH 3.4% 0.0% 56.9% 39.7%

H D 0.0% 0.0% 42.9% 57.1%

DCT-SVM

H CH AH D

S H 88.4% 1.0% 5.3% 5.3%

G CH 0.0% 100.0% 0.0% 0.0%

H AH 0.0% 0.0% 68.1% 31.9%

H D 0.0% 2.3% 27.9% 69.8%

MI-SVM

H CH AH D

S H 71.5% 5.9% 16.7% 5.9%

G CH 9.5% 078.6% 4.8% 7.1%

H AH 10.2% 8.2% 53.1% 28.5%

H D 3.4% 6.8% 32.2% 57.6%

MI-SVM

H CH AH D

S H 83.2% 5.6% 6.7% 4.5%

G CH 8.9% 084.4% 0.0% 6.7%

H AH 8.8% 3.5% 70.2% 17.5%

H D 1.6% 3.3% 29.5% 65.6%

Hybrid

H CH AH D

S H 89.1% 2.2% 5.4% 3.3%

G CH 0.0% 097.8% 0.0% 2.2%

H AH 3.3% 0.0% 68.4% 28.3%

H D 0.0% 1.8% 32.7% 65.5%

Hybrid

H CH AH D

S H 93.1% 2.3% 2.3% 2.3%

G CH 0.0% 095.7% 0.0% 4.3%

H AH 3.1% 0.0% 64.6% 32.3%

H D 1.9% 0.0% 37.7% 60.4%
Test perfo
Test perfoTest performance with D1 Test performance with D1D2D3

HGS: Histology “Gold Standard”

5. Conclusion and future work

To our knowledge, the current study is the first one addressing the problem of bimodal spec-
troscopic multi-class classification of four pre-cancerous stages. Based on epidermis and der-
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Table 3. Confusion matrices of the M-SVM2 calculated from hybrid method (both AF-
DCT and DR-MI) of spectra acquired at D1 (on the left) and of spectra acquired at D1D2D3
together (on the right), using a linear kernel.

Hybrid

H and CH AH and D

HGS H and CH 93.0% 7.0%
AH and D 4.9% 95.1%

Hybrid

H and CH AH and D

HGS H and CH 97.7% 2.3%
AH and D 7.3% 92.7%

Test perfo
Test perfoTest performance with D1 Test performance with D1D2D3
HGS: Histology “Gold Standard”

Table 4. Confusion matrices of the M-SVM2 calculated from hybrid method (both AF-
DCT and DR-MI) of spectra acquired at D1 (on the left) and of spectra acquired at D1D2D3
together (on the right), using a linear kernel.

Hybrid

H and CH D AH

H and CH 97.7% 2.3% 0.0%
HGS D 11.1% 77.8% 11.1%

AH 21.7% 39.1% 39.1%

Hybrid

H and CH D AH

H and CH 97.7% 2.3% 0.0%
HGS D 11.1% 77.8% 11.1%

AH 8.7% 30.4% 60.9%

Test perfo
Test perfoTest performance with D1 Test performance with D1D2D3

HGS: Histology “Gold Standard”

mis morphological characteristics, a classification of UV-irradiated mouse skin pre-cancerous
stages was performed. In this paper, we have presented a new extraction and selection method
to automatically classify skin pre-cancerous tissues using multiple autofluorescence excitation
and diffuse reflectance spectroscopies acquired at 3 different distances between collecting and
exciting optical fibers.

For feature extraction, two approaches were evaluated separately for each modality: one
based on the discrete cosine transform and one based on mutual information. In order to classify
automatically the examples in the 4 predefined classes, an M-SVM2 was applied.

The diagnostic accuracy obtained with D1 is the best for each monomodal excitation AF
(74.5% with DCT method) or DR (63.6% with DCT method), and for bimodality (76.7% with
DCT method).

Spatial resolution always implies an increase in classification performance. The results ob-
tained demonstrate that the best method applied to AF spectra was DCT (80.2% with D1D2D3),
and the best one for DR spectra was MI (74.21% with D1D2D3). Consequently, a hybrid
method has been developed, where DCT was used to produce a vector of descriptors from
the autofluorescence spectroscopy and MI was used to perform feature selection from diffuse
reflectance spectra.

The best result of 81.7% was obtained for a bimodal configuration, with D1D2 and D1D3
combinations using DCT applied to AF spectra and MI to DR spectra (hybrid method).

This study shows that different pre-cancer stages can be distinguished in vivo using a multi-
class SVM (or a decomposition scheme involving bi-class SVMs) applied on features derived
from autofluorescence and diffuse reflectance. These are encouraging results for clinical appli-
cation since such visible wavelengths are harmless. Combining several excitation wavelengths
improves diagnostic sensitivity while combining modalities (DR and multi-excitation AF) im-
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proves diagnostic specificity especially when discriminating the three types of hyperplasia.
Indeed, combining information from a number of points located at variable distances from the
excitation optical fiber will probe the tissue at several depths resulting in a potentially better
discrimination between the different histological classes.

In the future, we intend to use another strategy for data fusion based on the principle of sensor
fusion (decision-level fusion). Obtaining best performance with a pre-clinical system such as
ours (application on the mouse skin) allows to promote performance of the dedicated clinical
system. Our previous and present works provide the foundation for the primary focus of future
work, which is the optimization of the experimental protocol by minimizing the exposure of
skin tissue to light radiation and by reducing the time of the measure step before moving to
clinics.
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