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Protein secondary structure prediction
- Different levels of structural organization of the proteins
- A problem of central importance in structural biology

- Different measures of prediction accuracy
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- Choice of the predictors

- Building blocks and architecture of the main prediction methods
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Protein secondary structure prediction Different levels of structural organization of the proteins

Basic notions about proteins

Definition
- Proteins: macromolecules made up of amino acids

- 20 amino acids, each of them represented by a letter (A, R, N, D, C, E, ...)

Hierarchical description of the conformation

Primary structure (sequence of amino acids) <= sequencing

Secondary structure (sequence of structural elements) <= circular dichroism

Tertiary structure (three-dimensional structure) <= X-ray, NMR
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Protein secondary structure prediction Different levels of structural organization of the proteins

Sequence or primary structure (1.6 -10° known sequences)
MEEKLKKAKIIFVVGGPGSGKGTQCEKIVQKYGYTHLSTC. ..

Secondary structure

Figure 1: Periodic structural elements: « helix (left) and § strands (right)

Tertiary structure (2.7 - 10* known 3D structures)

Summer School NN2008




Protein secondary structure prediction A problem of central importance in structural biology

A problem of central importance in structural biology

Biological context Functional exploitation of the data generated by the large-scale sequencing
projects: rests on the availability of the 3D structure of the proteins.

1. Massive arrival of protein sequences (exponential growth of the databases)
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Figure 2: Growth of the international bank TREMBL from 1996 until 2005

2. Experimental determination of the 3D structure: highly labour-intensive task...when it can be
done = Necessity to switch from a biochemical approach to a predictive approach
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Protein secondary structure prediction Different measures of prediction accuracy

Different measures of prediction accuracy

(Y3: recognition rate at the residue level
Pearson’s/Matthews’ correlation coefficients (Matthews, 1975)
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Sov coefficients (Rost et al., 1994; Zemla et al., 1999)
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State of the art Choice of the predictors

Choice of the predictors

Local approach of the prediction
- Basic principle: use of a window sliding on the sequence
- Incorporation of physico-chemical information (hydrophobicity, charge and bulk of the
residues. . . )
Exploiting evolutionary information: processing multiple sequence alignments
- Computation of sequence profiles (Rost & Sander, 1993; Jones, 1999;. . .)

- Combination of the predictions performed independently for each of the sequences of an
alignment (Riis & Krogh, 1996)
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State of the art Building blocks and architecture of the main prediction methods

Building blocks and architecture of the main prediction methods

Main models used
- Neural networks: MLPs (Qian & Sejnowski, 1988), BRNNs (Baldi et al., 1999)
- Hidden Markov models (Asai et al., 1993; Martin et al., 2005)

- Bi-class support vector machines (Hua & Sun, 2001) and M-SVMs (Guermeur, 2000)

Basic architecture of a prediction method

- Two-level prediction: a structure-to-structure module post-processes the output of a

sequence-to-structure module (Qian & Sejnowski, 1988 —)

- Use of ensemble methods involving up to hundreds of basic classifiers (Rost & Sander, 1993;
Petersen et al., 2000)

- Hierarchical architecture involving discriminant and generative models (Guermeur, 1997)
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Implementation of multi-class SVMs Models implemented

Three M-SVMs with different statistical properties

General formulation of the training algorithm

Problem 1
}Lréi% {(bM_SVM ((BM-SVM (Yi, h(xi)))1§i§m> + )\HhH%}
S.1. Z/@Qﬂ hi, =20

2
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1. M-SVM of Weston and Watkins: <

2. M-SVM of Lee, Lin and Wahba: <
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3. M-SVM?: . s 1
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Implementation of multi-class SVMs

Training algorithm

Frank-Wolfe algorithm (1956)

Problem 2 (General formulation of the problem considered)

min f(t)

t

At =10
t>0

s.t.

Two-step iterative method generating a sequence of feasible points (t(”))

(1) Solve the linear programming problem LP (t(”)> given by:

n}uin {Vf (t(”))T u}

s.t. constraints of Problem 2

Problem 3

(2) u(™: optimal solution of LP(t(™). t("*1): chosen so as to minimize f on [¢t(™),u(™].
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Implementation of multi-class SVMs Training algorithm

Frank-Wolfe algorithm applied to the M-SVM of Weston and Watkins
Expression of the LP problem

B = (Bik)1<icm.1<k<0: (5iyi)1gi§m =0
Problem 4 (Computation of 5(™))
mﬁin {oz(”)Twaﬁ — 1Tmﬁ}
0<fix=C, (1<i<m), 1<k#y <Q)

S.t.
S S Sk — k) B =0, (1<k<Q-1)

Coefficient of the optimal convex combination

~(") = argmin Jy ((1 —y)a™ + ’}/ﬁ(n)>
v€[0,1]

/y(n) mind VJd(a(n))T {ﬁ(n) — a(n)} |
(80 — ! Hypw {80 — o)

Remark 1 Our implementation incorporates a decomposition method.
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Implementation of multi-class SVMs Dedicated RBF' kernel

RBF kernel for protein sequence processing

Analytical expression (primary structure only)

x = (z;)_, <;<, vector coding a polypeptide (content of a window of size 2n + 1)

n
ko.p (x,X") = exp (— Z 0?||z; — x;H2>

1=—"n

Extension for multiple alignment processing

. e . 22
Straightforward: x replaced with x = (Z;) _,, ., <, such that z; = > 57, 0;;a;
22 22

LE/L? E 0/&30/37 E e,l/k,ak; E E 0/]/] ,Lk, CLJ7 a/k;

71=1 k=1
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Dedicated RBF kernel

Implementation of multi-class SVMs

Taking into account the substitutions (matrix A)

VoA

Several standard similarity matrices S
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Figure 3: Secondary structure similarity matrix (Levin et al., 1986)
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Implementation of multi-class SVMs Dedicated RBF' kernel

Approximating S with a Gram matrix

- A = (a;j) € Maz2(R): (implicit) representations of the amino acids
- G = AAT: matrix of dot products = symmetric positive semidefinite approximation of S

Let the diagonalization of S be given by:
S =PDP ' =PDP’

(P is orthogonal since S is symmetric).

Then
AAT = pPD, Pt

where D is derived from D by setting to 0 the negative eigenvalues.

This leads to

A=Py\/D,.
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Implementation of multi-class SVMs Computation of the weighting vector 6

Kernel alignment

Definition 1 (Kernel alignment, Cristianini et al., 2002) Let k and ' be two measurable
kernel functions defined on T x T, where the space T is endowed with a probability measure Pr.
The alignment between k and ', A(k, k'), is deﬁned as follows:

(K, K) Jz2 (¢, 1)K (E,1)dPr (t)dPr (t')

Ak, k') = /
) = Tl \ Je 5t 2)2dPr (¢ )dPT ()] s W (&, 4)2dPr (¢ )dPr(t)

Definition 2 (Empirical kernel alignment, Cristianini et al., 2002) 7, k and k" being
defined as above, let T" = (1;)1<i<n be a n-sample of independent random variables distributed
according to Pr. The empirical alignment of k and ’ with respect to T™ is the quantity:
(G,G)r

A G, G’
(G &) = G 1 s

where G and G’ respectively denote the Gram matrices associated with k and k', computed on T",
and (-, )p denotes the Frobenius inner product between matrices, so that
(G,G"p =2 >y k(T T) &' (Ti, Ty). || - || 7 represents the corresponding norm.
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Implementation of multi-class SVMs Computation of the weighting vector 6

Kernel-target alignment

Tuning parameter 6 using kernel-target alignment

The strategy to tune kernel parameters based on the principle of kernel alignment can be

summarized as follows:

1. Select a theoretically ideal kernel k;, hereafter called the target kernel, ideal in the sense that it
leads to perfect classification. Practically, the Gram matrix of k; should be computable.

2. Given a training set of labelled examples 2" = {(x;,y;) : 1 <i < m}, choose 6* satisfying:

0* = argmax Azm (Ge, Gt)?
IS)

where Gy is the Gram matrix associated with the pair (kg, 2™), G; being the Gram matrix

associated with the pair (k¢, 2™).
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Implementation of multi-class SVMs Computation of the weighting vector 6

Choice of the target kernel

Bi-class case (Cristianini et al., 2002)
¥ ((z,y), (' y)) € (X x V)*, ku(a,a’) = gy

Multi-class case (Vert, 2002)
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Implementation of multi-class SVMs Computation of the weighting vector 6

Vector 6 obtained
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Training algorithm: stochastic gradient descent. Let GIQk,D = ((%kkg,p (xz-,xj)>.

o . (Gy, 0, Gt)F  (Go,p,Gt)r(Go,p, Gy, p)F
—Azm(GQ,D7Gt) — ’ _ 5 )
00y, |Go.pllFlGll |Go,plI%||Gtl

Vk € [—n,n],
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Implementation of multi-class SVMs

Experimental results

Experimental results

Data set: P1096 (sequence identity < 30%). Size of the sliding window: 13. 5-fold cross-validation.

MLP M-SVM WW M-SVM LLW M-SVM?
Qs 66.0 66.9 66.7 66.7
Ca 0.50 0.52 0.51 0.51
Cg 0.41 0.42 0.40 0.41
Ce 0.45 0.46 0.46 0.46
Sov 55.7 56.0 56.2 56.1
Sova 57.7 59.5 62.2 60.1
Sovg 49.4 51.7 46.7 51.2
Sov. 57.8 58.4 b8.7 58.0

Table 1: Prediction accuracy of a MLP and three M-SVMs measured on the base P1096 (268575

residues)
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Conclusions and future work

Conclusions and future work

Conclusions

- Incorporating SVMs and M-SVMs in the secondary structure prediction methods should
improve the prediction accuracy.

- This task raises interesting problems for “kernel designers”.

- Future should belong to hybrid methods integrating discriminant and generative models.

Future work
- Applying ensemble methods to combine several M-SV Ms
- Applying M-SVMs to multiple alignments
- Post-processing the output of the M-SVMs with Hidden Markov Models (IHMM. . .)
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Conclusions and future work

Modular and hierarchical approach of the prediction

...VKPVDNFDWSNYHGKWWEVAKYPNSVEKYGKCGWAE...
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