Protein Secondary Structure Prediction with Multi-Class Support Vector Machines

Yann Guermeur

LORIA - CNRS

http://www.loria.fr/~guermeur

Summer School NN2008

July 4, 2008

Overview

Protein secondary structure prediction

- Different levels of structural organization of the proteins
- A problem of central importance in structural biology
- Different measures of prediction accuracy

State of the art

- Choice of the predictors
- Building blocks and architecture of the main prediction methods

Overview

Implementation of multi-class SVMs

- Models implemented
- Training algorithm
- Dedicated RBF kernel
- Computation of the weighting vector θ
- Experimental results

Conclusions and future work

Basic notions about proteins

Definition

- Proteins: macromolecules made up of amino acids
- 20 amino acids, each of them represented by a letter (A, R, N, D, C, E, ...)

Hierarchical description of the conformation

- Primary structure (sequence of amino acids) \iff sequencing
- Secondary structure (sequence of structural elements) \iff circular dichroism
- Tertiary structure (three-dimensional structure) \iff X-ray, NMR
- . . .

Sequence or primary structure $(1.6 \cdot 10^6 \text{ known sequences})$

MEEKLKKAKIIFVVGGPGSGKGTQCEKIVQKYGYTHLSTC...

Secondary structure

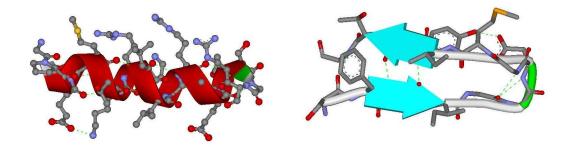
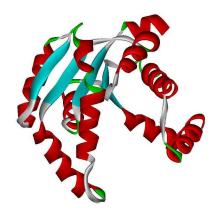


Figure 1: Periodic structural elements: α helix (left) and β strands (right)

Tertiary structure $(2.7 \cdot 10^4 \text{ known 3D structures})$



A problem of central importance in structural biology

Biological context Functional exploitation of the data generated by the large-scale sequencing projects: rests on the availability of the 3D structure of the proteins.

1. Massive arrival of protein sequences (exponential growth of the databases)

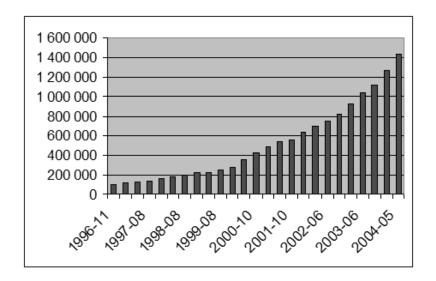


Figure 2: Growth of the international bank TREMBL from 1996 until 2005

2. Experimental determination of the 3D structure: highly labour-intensive task... when it can be done \Longrightarrow Necessity to switch from a biochemical approach to a predictive approach

Different measures of prediction accuracy

 Q_3 : recognition rate at the residue level

Pearson's/Matthews' correlation coefficients (Matthews, 1975)

$$C_i = \frac{p_i n_i - u_i o_i}{\sqrt{(p_i + u_i)(p_i + o_i)(n_i + u_i)(n_i + o_i)}}$$

Root mean square deviation (r.m.s.d.)

$$\sigma_i = \sqrt{\frac{1}{n_s} \sum_{j=1}^{j=n_s} (obs_{ij} - pred_{ij})^2}$$

Sov coefficients (Rost et al., 1994; Zemla et al., 1999)

$$Sov(\delta) = \frac{1}{n} \sum_{S_1} \left\{ \frac{1}{n_{S_2}} \sum_{S_2/S_1 \cap S_2 \neq \emptyset} \frac{\min(end(S_1), end(S_2)) - \max(beg(S_1), beg(S_2)) + 1 + \delta}{\max(end(S_1), end(S_2)) - \min(beg(S_1), beg(S_2)) + 1} len(S_1) \right\}$$

Choice of the predictors

Local approach of the prediction

- Basic principle: use of a window sliding on the sequence
- Incorporation of physico-chemical information (hydrophobicity, charge and bulk of the residues...)

Exploiting evolutionary information: processing multiple sequence alignments

- Computation of sequence profiles (Rost & Sander, 1993; Jones, 1999;...)
- Combination of the predictions performed independently for each of the sequences of an alignment (Riis & Krogh, 1996)

Building blocks and architecture of the main prediction methods

Main models used

- Neural networks: MLPs (Qian & Sejnowski, 1988), BRNNs (Baldi et al., 1999)
- Hidden Markov models (Asai et al., 1993; Martin et al., 2005)
- Bi-class support vector machines (Hua & Sun, 2001) and M-SVMs (Guermeur, 2000)

Basic architecture of a prediction method

- Two-level prediction: a structure-to-structure module post-processes the output of a sequence-to-structure module (Qian & Sejnowski, 1988 \longrightarrow)
- Use of ensemble methods involving up to hundreds of basic classifiers (Rost & Sander, 1993; Petersen et al., 2000)
- Hierarchical architecture involving discriminant and generative models (Guermeur, 1997)

Three M-SVMs with different statistical properties

General formulation of the training algorithm

Problem 1

$$\min_{h \in \mathcal{H}} \left\{ \phi_{M-SVM} \left((\ell_{M-SVM} (y_i, h(x_i)))_{1 \le i \le m} \right) + \lambda \|\bar{h}\|_{\bar{\mathcal{H}}}^2 \right\}$$
s.t. $\sum_{k=1}^{Q} h_k = 0$

- 1. M-SVM of Weston and Watkins: $\begin{cases} \ell_{\text{WW}}(y,h(x)) = \sum_{k \neq y} (1 h_y(x) + h_k(x))_+ \\ \phi_{\text{WW}}(t) = ||t||_1 \end{cases}$
- 2. M-SVM of Lee, Lin and Wahba: $\begin{cases} \ell_{\text{LLW}}(y, h(x)) = \sum_{k \neq y} \left(h_k(x) + \frac{1}{Q-1} \right)_+ \\ \phi_{\text{LLW}} = \phi_{\text{WW}} \end{cases}$
- 3. M-SVM²: $\begin{cases} \ell_{\text{M-SVM}^2} = \ell_{\text{LLW}} \\ \phi_{\text{M-SVM}^2}(t) = t^T M_t t = \sum_{i=1}^m \sum_{j=1}^m \sum_{k=1}^Q \sum_{l=1}^Q \left(\delta_{k,l} \frac{1}{Q} \right) \delta_{i,j} t_{ik} t_{jl} \end{cases}$

Frank-Wolfe algorithm (1956)

Problem 2 (General formulation of the problem considered)

$$\min_{t} f(t)$$

$$s.t. \begin{cases} At = b \\ t \ge 0 \end{cases}$$

Two-step iterative method generating a sequence of feasible points $(t^{(n)})$

(1) Solve the linear programming problem $LP(t^{(n)})$ given by:

Problem 3

$$\min_{u} \left\{ \nabla f \left(t^{(n)} \right)^{T} u \right\}$$

s.t. constraints of Problem 2

(2) $u^{(n)}$: optimal solution of $LP(t^{(n)})$. $t^{(n+1)}$: chosen so as to minimize f on $[t^{(n)}, u^{(n)}]$.

Frank-Wolfe algorithm applied to the M-SVM of Weston and Watkins Expression of the LP problem

$$\beta = (\beta_{ik})_{1 \le i \le m, 1 \le k \le Q}, (\beta_{iy_i})_{1 \le i \le m} = 0$$

Problem 4 (Computation of $\beta^{(n)}$)

$$\min_{\beta} \left\{ \alpha^{(n)} H_{WW} \beta - 1_{Qm}^{T} \beta \right\}$$
s.t.
$$\begin{cases}
0 \le \beta_{ik} \le C, & (1 \le i \le m), \ (1 \le k \ne y_i \le Q) \\
\sum_{i=1}^{m} \sum_{l=1}^{Q} (\delta_{y_i,k} - \delta_{k,l}) \beta_{il} = 0, & (1 \le k \le Q - 1)
\end{cases}$$

Coefficient of the optimal convex combination

$$\gamma^{(n)} = \underset{\gamma \in [0,1]}{\operatorname{argmin}} J_d \left((1 - \gamma)\alpha^{(n)} + \gamma\beta^{(n)} \right)$$

$$\gamma^{(n)} = \min \left\{ -\frac{\nabla J_d(\alpha^{(n)})^T \left\{ \beta^{(n)} - \alpha^{(n)} \right\}}{\left\{ \beta^{(n)} - \alpha^{(n)} \right\}^T H_{WW} \left\{ \beta^{(n)} - \alpha^{(n)} \right\}}, 1 \right\}$$

Remark 1 Our implementation incorporates a decomposition method.

RBF kernel for protein sequence processing

Analytical expression (primary structure only)

 $\mathbf{x} = (x_i)_{-n \le i \le n}$: vector coding a polypeptide (content of a window of size 2n + 1)

$$\kappa_{\theta,D}(\mathbf{x},\mathbf{x}') = \exp\left(-\sum_{i=-n}^{n} \theta_i^2 ||x_i - x_i'||^2\right)$$

Extension for multiple alignment processing

Straightforward: \mathbf{x} replaced with $\tilde{\mathbf{x}} = (\tilde{x}_i)_{-n \leq i \leq n}$ such that $\tilde{x}_i = \sum_{j=1}^{22} \theta_{ij} a_j$

$$\langle \tilde{x}_i, \tilde{x}_i' \rangle = \langle \sum_{j=1}^{22} \theta_{ij} a_j, \sum_{k=1}^{22} \theta_{ik}' a_k \rangle = \sum_{j=1}^{22} \sum_{k=1}^{22} \theta_{ij} \theta_{ik}' \langle a_j, a_k \rangle$$

Taking into account the substitutions (matrix A)

Several standard similarity matrices S

```
G
      3
D
    \mathbf{0}
      0
            2
      0
                  3
                         TKRHV
                                        I M
     P D E A N Q S
```

Figure 3: Secondary structure similarity matrix (Levin et al., 1986)

Approximating S with a Gram matrix

- $A = (a_{ij}) \in \mathcal{M}_{22,22}(\mathbb{R})$: (implicit) representations of the amino acids
- $G = AA^T$: matrix of dot products = symmetric positive semidefinite approximation of S

Let the diagonalization of S be given by:

$$S = PDP^{-1} = PDP^{T}$$

(P is orthogonal since S is symmetric).

Then

$$AA^T = PD_+P^T$$

where D_{+} is derived from D by setting to 0 the negative eigenvalues.

This leads to

$$A = P\sqrt{D_+}.$$

Kernel alignment

Definition 1 (Kernel alignment, Cristianini et al., 2002) Let κ and κ' be two measurable kernel functions defined on $\mathcal{T} \times \mathcal{T}$, where the space \mathcal{T} is endowed with a probability measure $P_{\mathcal{T}}$. The alignment between κ and κ' , $A(\kappa, \kappa')$, is defined as follows:

$$A(\kappa,\kappa') = \frac{\langle \kappa,\kappa' \rangle}{\|\kappa\| \|\kappa'\|} = \frac{\int_{\mathcal{T}^2} \kappa(t,t')\kappa'(t,t')dP_{\mathcal{T}}(t)dP_{\mathcal{T}}(t')}{\sqrt{\int_{\mathcal{T}^2} \kappa(t,t')^2 dP_{\mathcal{T}}(t)dP_{\mathcal{T}}(t')} \sqrt{\int_{\mathcal{T}^2} \kappa'(t,t')^2 dP_{\mathcal{T}}(t)dP_{\mathcal{T}}(t')}}.$$

Definition 2 (Empirical kernel alignment, Cristianini et al., 2002) \mathcal{T} , κ and κ' being defined as above, let $T^n = (T_i)_{1 \leq i \leq n}$ be a n-sample of independent random variables distributed according to $P_{\mathcal{T}}$. The empirical alignment of κ and κ' with respect to T^n is the quantity:

$$\hat{A}_{T^n}(G, G') = \frac{\langle G, G' \rangle_F}{\|G\|_F \|G'\|_F}$$

where G and G' respectively denote the Gram matrices associated with κ and κ' , computed on T^n , and $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product between matrices, so that $\langle G, G' \rangle_F = \sum_{i=1}^n \sum_{j=1}^n \kappa(T_i, T_j) \kappa'(T_i, T_j)$. $\| \cdot \|_F$ represents the corresponding norm.

Kernel-target alignment

Tuning parameter θ using kernel-target alignment

The strategy to tune kernel parameters based on the principle of kernel alignment can be summarized as follows:

- 1. Select a theoretically ideal kernel k_t , hereafter called the *target kernel*, ideal in the sense that it leads to perfect classification. Practically, the Gram matrix of k_t should be computable.
- 2. Given a training set of labelled examples $z^m = \{(x_i, y_i) : 1 \le i \le m\}$, choose θ^* satisfying:

$$\theta^* = \operatorname*{argmax}_{\theta \in \Theta} \hat{A}_{z^m}(G_{\theta}, G_t),$$

where G_{θ} is the Gram matrix associated with the pair (κ_{θ}, z^m) , G_t being the Gram matrix associated with the pair (κ_t, z^m) .

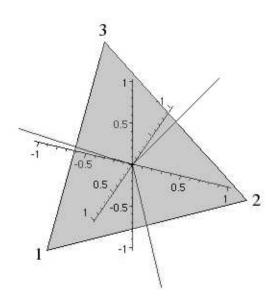
Choice of the target kernel

Bi-class case (Cristianini et al., 2002)

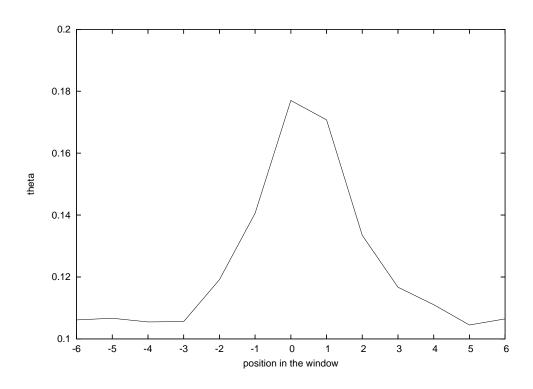
$$\forall ((x,y),(x',y')) \in (\mathcal{X} \times \mathcal{Y})^2, \ \kappa_t(x,x') = yy'$$

Multi-class case (Vert, 2002)

$$\forall ((x,y),(x',y')) \in (\mathcal{X} \times \mathcal{Y})^2, \ \kappa_t(x,x') = \left(-\frac{1}{Q-1}\right)^{1-\delta_{y,y'}}$$



Vector θ obtained



Training algorithm: stochastic gradient descent. Let $G'_{\theta_k,D} = \left(\frac{\partial}{\partial \theta_k} k_{\theta,D} \left(\mathbf{x}_i, \mathbf{x}_j\right)\right)$.

$$\forall k \in \llbracket -n, n \rrbracket, \quad \frac{\partial}{\partial \theta_k} \hat{A}_{z^m}(G_{\theta, D}, G_t) = \frac{\langle G'_{\theta_k, D}, G_t \rangle_F}{\|G_{\theta, D}\|_F \|G_t\|_F} - \frac{\langle G_{\theta, D}, G_t \rangle_F \langle G_{\theta, D}, G'_{\theta_k, D} \rangle_F}{\|G_{\theta, D}\|_F^3 \|G_t\|_F}$$

Experimental results

Data set: P1096 (sequence identity < 30%). Size of the sliding window: 13. 5-fold cross-validation.

	MLP	M-SVM WW	M-SVM LLW	M -SV M^2
$\overline{Q_3}$	66.0	66.9	66.7	66.7
$\overline{C_{lpha}}$	0.50	0.52	0.51	0.51
$\overline{C_{eta}}$	0.41	0.42	0.40	0.41
$\overline{C_c}$	0.45	0.46	0.46	0.46
\overline{Sov}	55.7	56.0	56.2	56.1
$\overline{Sov_{lpha}}$	57.7	59.5	62.2	60.1
$\overline{Sov_{eta}}$	49.4	51.7	46.7	51.2
Sov_c	57.8	58.4	58.7	58.0

Table 1: Prediction accuracy of a MLP and three M-SVMs measured on the base P1096 (268575 residues)

Conclusions and future work

Conclusions

- Incorporating SVMs and M-SVMs in the secondary structure prediction methods should improve the prediction accuracy.
- This task raises interesting problems for "kernel designers".
- Future should belong to hybrid methods integrating discriminant and generative models.

Future work

- Applying ensemble methods to combine several M-SVMs
- Applying M-SVMs to multiple alignments
- Post-processing the output of the M-SVMs with Hidden Markov Models (IHMM...)

Modular and hierarchical approach of the prediction

