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Overview

Guaranteed risks for multi-class SVMs
- Bounds on the covering numbers

- Use of the Rademacher complexity

Model selection for multi-class SVMs
- Algorithms fitting the entire regularization path

- Bounds on the leave-one-out cross-validation error

Conclusions and open problems
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Guaranteed risk for large margin multi-category classifiers Theoretical framework

Hypotheses and goals
Characterization of the problem
- Study of the connection between objects x € X and their categories y € Y =[1,Q]

- Hypothesis: existence of a X x Y-valued random pair (X,Y’) distributed according to a

probability measure P
- Problem: the joint probability measure P is unknown
What is available
- Dy = (X4, Y3))1<i<pp ¢ 11.d. m-sample from (X,Y)

- G: class of functions g, from X into R? (F: class of decision rules f, from X into Y] {*})

f(x) = argmax; ;<o gr(x) or f(x) = *, in case of ex aquo
The goal
- £, loss function: £(y, 9(2)) = Ly, (r)<maxisy gu (@)} (€(W: F(2)) = Lggayz)

- Selection of a function ¢* minimizing over G the risk

R(g) =E[l(Y,g(X))] = P(f(X)#Y)
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Guaranteed risk for large margin multi-category classifiers Basic uniform convergence result

Multi-class margin and margin risk

Definition 1 (Function M) Let M be the function from R x [1,Q] into R given by:

1
V(v,k) € R? x[1,Q], M(v,k) = 5 (vk — rln#a]swl)

M(v,-) = maxij<p<g M (v, k)

Definition 2 (Multi-class margin of g on the example (z,y))

V(g,z,y) €GXx X xY, M(g,z,y) = M (g(z),y)

Definition 3 (Operators A and A*) g = (gk);<p<q €9
- The function Ag = (Agg),<p<qs from X into R¥, is given by:
Ve e X, Ag(x) = (M (9(2),k))1<1<q
- The function A*g = (A"gr) <p<qs from X into R®, is given by:

Vo e X, A'g(z) = (sign(Agr(z)) - M (9(2),")1<k<0
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Guaranteed risk for large margin multi-category classifiers Basic uniform convergence result

Multi-class margin and margin risk

A7 replaces A and A* in the formulas that hold true for both operators (e.g.,
R(g9) = E [I{a#gy (x)<03))

Definition 4 (Margin risk) Let v € R%.. The risk with margin v of g is defined as:

Ry(9) = E [Ija%gy (x)<1}] = /X ; Uintg, (x) <y} dP(7,Y)

X
Empirical risk with margin ~:

1 ™m
R%m(g) = E Z H{A#gyi (X'i,)<'7}
=1

Class of functions of interest: Aﬁég

For e € R%, let . : R — [—¢, €] be the linear squashing function defined as:

Te(t) = sign(t) - min {|t|, €}

Aﬁg:(Aﬁgk>1§k§Q7 Aﬁgk:ﬂ'yoA#gka AfQZ{Afg gEg}
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Guaranteed risk for large margin multi-category classifiers Basic uniform convergence result

Capacity measure of Afg: covering numbers

Figure 1: e-net and e-cover of a set F’ in a pseudo-metric space (F, p)
Definition 5 (Covering numbers)

N (e, E', p): minimal number of open balls of radius € needed to cover E' (or +00)

N (e, E', p): the e-nets considered are included in E' (proper to E')
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Guaranteed risk for large margin multi-category classifiers Basic uniform convergence result

Basic uniform convergence result
Classes of indicator functions

Theorem 1 (Guaranteed risk, Vapnik, 1998) Let F be a class of indicator functions on a set
X. Let N (J’:, (Xi)1§z'§n) be the number of different functions (dichotomies) that this class can
implement on (Xi)1§z'§n and 6 € (0,1). With probability at least 1 — ¢, the risk of any function f in

F 1s bounded from above as follows:

R(f) < Rn(f) + \/% (ln (]EN (f, (Xi)lgigm)) +1n (%)) - %

In (IEN (.7—", (Xi)lgiSQm)) is the annealed entropy of F on the sample (X;); ;<o
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Guaranteed risk for large margin multi-category classifiers Basic uniform convergence result

Basic uniform convergence result
Classes of functions G (taking values in R?)

Definition 6 (Pseudo-metric d,») Let n € N*. For a sequence ™ = (2;);<,-,, € X", define the

pseudo-metric dyn on G as:

V(g,9') € G%, dun(g,9") = max [lg(z;) — g’ () -

For e € R%, let N'(€,G,n) = sup neyn N(€,G, dyn).

Theorem 2 (Guaranteed risk) Let G be the class of functions that a large margin Q-category
classifier on a domain X can implement. Let I € R% and 6 € (0,1). With probability at least 1 — 9,
for every value of v in (0,T], the risk of any function g in G is bounded from above by:

R(g) < Roym(g) + \/% (m (2/\/<p> (7/4, A%, 2m>) +In (i—?)) + %

Summer School NN2008




Guaranteed risk for large margin multi-category classifiers

~v-W-dimensions

Growth function

Definition 7 (Growth function, Vapnik & Chervonenkis, 1971) Let F be a class of

indicator functions on a domain X. Forn € N*, let syn = {x; : 1 <1i<n} be a subset of X of

cardinality n. Then, the growth function of F, Il £, is defined by:

Vn e N IIx(n) = sup N (F,sxn).
S;c"nCX

Remark 1 Some authors use the alternative definition:

Vn € N¥, H}‘(TL)ZID( sup N(f,SXn)).

Sxyn CX

Remark 2 In contrast with the annealed entropy, the growth function is distribution-free.

Summer School NN2008




Guaranteed risk for large margin multi-category classifiers ~v-W-dimensions

VC dimension

Definition 8 (VC dimension, Vapnik & Chervonenkis, 1971) Let F be a class of indicator
functions on a domain X. A subset syn = {z; : 1 <i<n} of X is said to be shattered by F if for
each vector vy in {1,1}", there is a function f, in F satisfying

(fy (xi))lgign = Uy-

The VC dimension of F, denoted by VC-dim(F), is the maximal cardinality of a subset of X
shattered by F, if this cardinality is finite. If no such mazxzimum exists, F is said to have infinite

VC dimension.

Remark 3 VC-dim(F) = d if and only if Uz (d) = 2¢ and I (d + 1) < 29+,

Summer School NN2008




Guaranteed risk for large margin multi-category classifiers ~v-W-dimensions

VU-dimensions

Definition 9 (V-dimensions, Ben-David et al., 1995) Let F be a class of functions on a set
X taking their values in the finite set [1,Q]. Let W be a family of mappings ¥ from [1,Q] into
{—1,1,%}, where % is thought of as a null element. A subset sxy» ={x; :1<1i<n} of X is said to
be W-shattered by F if there is a mapping Y™ = (¢(i)>1<i<n in U™ such that for each vector vy in
{—1,1}", there is a function f, in F satisfying o

(VDo fy@)) _ =wu,

1<i<n

The V-dimension of F, denoted by V-dim(F), is the mazimal cardinality of a subset of X
W-shattered by F, if this cardinality is finite. If no such maximum exists, F s said to have infinite

U -dimension.

Remark 4 Let F and VU be defined as above. Extending the definition of the VC' dimension so that
it applies to classes of functions taking values in {—1,1,}, which has no incidence in practice, the

following proposition holds true:

U-dim(F) = VC-dim ({(z,0) — o f(x): f € F,bp € T}).
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Guaranteed risk for large margin multi-category classifiers ~v-W-dimensions

Main examples of V-dimensions

Definition 10 (Graph dimension, Dudley, 1987; Natarajan, 1989) Let F be a class of
functions on a set X taking their values in [1,Q]. The graph dimension of F, G-dim(F), is the
U-dimension of F in the specific case where ¥ = {1y : 1 < k < Q}, such that ¥y takes the value 1 if
its argument is equal to k and the value —1 otherwise. Reformulated in the context of

multi-category classification, the functions vy are the indicator functions of the categories.

Definition 11 (Natarajan dimension, Natarajan, 1989) Let F be a class of functions on a
set X taking their values in [1,Q]. The Natarajan dimension of F, N-dim(F), is the ¥-dimension
of F in the specific case where ¥ = {¢y.;: 1 <k #1 < Q}, such that 1y takes the value 1 if its
arqgument 1s equal to k, the value —1 if its arqument is equal to |, and * otherwise.

Remark 5 The definition of the graph dimension is inspired from the one-against-all
decomposition method whereas the definition of the Natarajan dimension is inspired from the

one-against-one decomposition method.
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Guaranteed risk for large margin multi-category classifiers ~v-W-dimensions

Fat-shattering or v dimension

Definition 12 (Fat-shattering dimension, Kearns & Schapire, 1994) Let G be a class of
real-valued functions on a set X. For v € R%, a subset sxy» = {x; : 1 <i < n} of X is said to be
v-shattered by G if there is a vector vy, = (b;) in R™ such that, for each vector v, = (y;) in {—1,1}",
there is a function g, in G satisfying

Vie[l,n], vi(gy(z:) —bi) = 7.

The fat-shattering dimension with margin v, or P, dimension, of the class G, P,-dim (G), is the
maximal cardinality of a subset of X ~-shattered by G, if this cardinality is finite. If no such
mazimum exists, G is said to have infinite P, dimension.

Summer School NN2008




Guaranteed risk for large margin multi-category classifiers ~v-W-dimensions

v-VU-dimensions

Let A denote the conjunction of two events.

Definition 13 (y-VY-dimensions) Let G be a class of functions on a set X taking their values in
RY. Let ¥ be a family of mappings ¥ from [1,Q] into {—1,1,*}. For v € R%, a subset

syn ={x; : 1 <i <n} of X is said to be y-U-shattered (V-shattered with margin v) by A7 G if
there is a mapping Y" = (¢(i))1<i<n in U™ and a vector vy = (b;) in R™ such that, for each vector

vy = (yi) in {—1,1}", there is a function g, in G satisfying

ify,= 1, Jk:pW(k)= 1 A AF ) —b; >

vi e [Ln], fy @b' (k) Gy k(2i) — b =7y
ifyi= —1, D)= -1 A A¥gyi(z;)+b; >~

The v-U-dimension, or ¥-dimension with margin v, of A#G, denoted by ¥-dim(A7 G, ), is the
mazimal cardinality of a subset of X vy-W-shattered by A7 G, if this cardinality is finite. If no such
mazimum exists, A7 G is said to have infinite v-¥-dimension.

This definition simplifies into the one of the fat-shattering dimension when ) = 2.
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Guaranteed risk for large margin multi-category classifiers ~v-W-dimensions

Natarajan dimension with margin v

Definition 14 (Natarajan dimension with margin ) Let G be a class of functions on a set
X taking their values in RQ. For v € R* , a subset syn = {x; : 1 < i <n} of X is said to be
v-N-shattered (N-shattered with margin v) by A7 G if there is a set

I(SXn) = {(7,1(581),22(371)) 1 S 1 S n}
of n couples of distinct indexes in [1,Q] and a vector vy, = (b;) in R™ such that, for each vector
vy = (yi) in {—1,1}", there is a function g, in G satisfying

Zf Yi = 17 A#gy,zl(:cz)(xz) - bz > Y

Vie[l,n],

The Natarajan dimension with margin v of the class A*G, N-dim(A%G,~), is the mazimal
cardinality of a subset of X ~y-N-shattered by A7 G, if this cardinality is finite. If no such mazimum
exists, A7 G is said to have infinite Natarajan dimension with margin 7.
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Guaranteed risk for large margin multi-category classifiers Generalized Sauer-Shelah lemma

Sauer-Shelah lemma
(Classes of indicator functions)

Lemma 1 (Vapnik & Chervonenkis, 1971; Sauer, 1972; Shelah, 1972) Let F be a class of

indicator functions on a set X and let I1x be its growth function. If its VC dimension d is finite,
then for n > d,

Ty (n) < zdjc,i < (%)d
1=0

where e 1s the base of the natural logarithm.
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Guaranteed risk for large margin multi-category classifiers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemma
Classes of functions from X into |1,Q)]

Lemma 2 (Haussler & Long, 1995) Let F be a class of functions from X into [1,Q] and let
II£r be its growth function. If its Natarajan dimension d is finite, then for n > d,

Zd: C (Coy)’ (<Q+261l) )d-
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Guaranteed risk for large margin multi-category classifiers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemma
Classes of real-valued functions

Lemma 3 (Alon et al., 1997) Let G be a class of functions from X into [0,1]. For every value
of € in (0,1] and every integer value of n satisfying n > P, 4-dim (G), the following bound is true:
dlog,(2en/(de))
4 2
N(e,G,n) < 2 (—7;)

€

where d = P, 4-dim (G).
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Guaranteed risk for large margin multi-category classifiers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemma
Classes of functions from X into R%

Lemma 4 Let G be a class of functions from X into [—Mg, Mg]Q. For every value of € in (0, Mg]
and every integer value of n satisfying n > N-dim (AG,€/6), the following bound is true:

€

5 {d log, (enC’é (2 {31\59 J —1) /d>—‘
NP (e, A*G,n) < 2 (n Q*(Q —1) f)MgJ )

where d = N-dim (AG,€/6).

The proof does not hold true anymore if the operator A* is replaced with the operator A.
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Guaranteed risk for large margin multi-category classifiers Nature and rate of convergence

Nature and rate of convergence

Theorem 3 Let G be the class of functions from X into [—Mg,Mg]Q that a large margin
Q-category classifier can implement. Let § € (0,1). With probability at least 1 — 9§, uniformly for
every value of v in (0, Mg], the risk of any function g in G is bounded from above by:

R(g) < Ry m(9)+

2 In |4 <2m Q?(Q —1) {

E

where d = N-dim (AG,vy/24).

R(g) < Ry.m(g) +cln(m) %

Proposition 1 (Almost sure uniform convergences)

lim sup P (Sup sup (R(g9) — Ryn(g)) > e) =0 lim sup P (Sup sup |R+(g9) — Ry n(g)| > e) =0

m—+oo  p n>m geg m—+oo  p n>m geg
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Multi-class SVMs Multi-category classification with binary SVMs

Multi-category classification with binary SVMs

One-against-all method (Rifkin & Klautau, 2004)
- @ SVMs: the k-th one distinguishes category k& from the () — 1 other ones

- Decision rule: “winner-takes-all”

One-against-one method /pairwise classification (Fiirnkranz, 2002)
- (g) SVMs: one for each pair of classes

- Decision rule: “max-wins voting”

Use of error correcting output codes (ECOC) (Allwein et al., 2000)
- M = (mg) € Mgon ({—1,0,1}): “coding matrix”
- N SVMs: one for each of the dichotomies defined by the columns of M

- Decision rule: computation of a loss function
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Multi-class SVMs Class of functions implemented by the M-SVMs

Reproducing kernel Hilbert space

Let X be a space and (H, (-,-)5) a Hilbert space of functions on X (H C R?Y).

Definition 15 (Reproducing kernel, Aronszajn, 1950) Let x be a function from X? into R.

Ve € X, let k. be the function from X into R given by k. : t — k(x,t). Kk is a reproducing kernel of
H if and only if:

1. Vx e X, k, € H;

2. Vre X, YVhe H, (h,kz)g = h(x) (reproducing property ).

Definition 16 (Reproducing kernel Hilbert space) If H possesses a reproducing kernel, it is
called a reproducing kernel Hilbert space (RKHS) or a proper Hilbert space.
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Multi-class SVMs Class of functions implemented by the M-SVMs

Positive semidefinite kernel and RKHS

Definition 17 (Positive semidefinite (positive type) kernel) A function x from X? into R is
called a positive semidefinite kernel (or a positive type kernel) if

vn € N*,V(ai)1<i<n € R, ¥(zi)1<i<n € X", DY aa;k (zi,x;) > 0.

i=1 j=1

Theorem 4 (Moore-Aronszajn) Let x be a positive semidefinite kernel on X?. There exists

only one Hilbert space (H, (-, )i ) of functions on X with k as reproducing kernel.
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Multi-class SVMs Class of functions implemented by the M-SVMs

Building a M-SVM starting from a kernel

Basic class of functions

Let k be a positive semidefinite kernel on X and let (Hy, (-, -) g, ) be the corresponding RKHS.
Let H = (Hy, (-, 1. )® and H = ((Hy, (-, ) m.) + {11,

H: class of functions h = (hg); << from X into R¥ such that:

h(-) = (Z Bikk(Tik, ) + bk)
i=1 1<k<Q

with {z;x : 1 <i<my} C X, (5ik)1<i<mk c R™* and b, € R, as well as the limits of these
functions when the sets {x;; : 1 < i < my} become dense in X' in the norm induced by the kernel

Class of functions implemented

convex subset of H (defined by constraints on an affine subspace)
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Multi-class SVMs Class of functions implemented by the M-SVMs

Basic class of functions

An affine model in the feature space

Theorem 5 (Mercer’s theorem) For all Mercer kernel k, there exists a map ® such that:
V(z,z') € X2, k(z,2') = (®(x), D(2)))

where (-,-) is the dot product of the {5 space.

® is called a feature map. Let @ (X) = {® (x) : x € X'}.

A feature space is any of the Hilbert spaces (Eq)(;(), (-, >) spanned by the ® (X).

—> 'H can be seen as a class of multivariate affine functions on ® (&)

h(-) = ((wk, ) + bk)1<p<q

W = (wk)1gng = Eé?(x), b = (bk)lgng c RY
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Multi-class SVMs Class of functions implemented by the M-SVMs

Basic class of functions

Putting things the other way round: the “kernel trick”

Norms on H and Eg(x)
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Multi-class SVMs General formulation of the training algorithm

() > 3: multi-class support vector machines

(i, Yi))1<icm € (X X[1,Q])™: training set
Ivesvm: convex loss function (built around the hinge loss)

M-SVM: solution of a convex (quadratic) programming problem

Problem 1
min {ZKM—SVM (yi, h(x;)) + )\Hh”?_(}

heH -
=1

S.t. 21?:1 hi =20

Representer theorem

This theorem states that training (solving Problem 1) amounts to finding the values of the

coefficients ;1 in

1=1

h(-) = <Z Bixk(wi, ) + bk)
1<k<Q

(the values of the “biases” by are deduced by application of the Kuhn-Tucker conditions).

R
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Multi-class SVMs General formulation of the training algorithm

A general framework that encompasses the bi-class case

(i, Yi))1<i<m € (X x {=1,1})™: training set

h = (hl,hg) = (hl, —hl), B(x) = hl(x) = A#hl(a:) = % (<w1 — W2, d (37)> + bl — bg)

Csvm(y, A(z)) = (1 _ yiz(sv))+ (hinge loss)

SVM: solution of a convex (quadratic) programming problem

~2}
h
H,

This theorem states that training (solving Problem 2) amounts to finding the values of the

Problem 2

min {Z Csvim (yz, h(x;) )
i=1

heH

Representer theorem
coefficients 3; in

= Bir(wi,-) +b
i=1

(the value of the “bias” b is deduced by application of the Kuhn-Tucker conditions).
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Multi-class SVMs General formulation of the training algorithm

Hard margin M-SVMs and geometrical margins

Geometrical margins

ey = i fouin | s, (o) — hae0), i, (i) — )| |
V(k,1), 1<k<1<Q,
1

dyv-svM

AM-SVM, kI = min [ min (hy(z;) — hi(x;) — dvesvm) , min (hy(x;) — hi(z;) — dM-SVM)]

1y =k Jyj=l

1 4 dv-svM, ki
|wy — w|

V(k, 1), 1<k<I<Q, Yk =dumsvm

Connection between the penalizer and the geometrical margins

Q Q
ZHwk—leQ:QZHwkHQ— Zwk:O:
k=1 k=1

k<l

14d ?

k<l
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Multi-class SVMs Three main models of M-SV Ms

M-SVM of Weston and Watkins

Training algorithm - primal formulation

Problem 3 (M-SVM1, Vapnik & Blanz, 1998; Weston & Watkins, 1998; ...)

Q m
mind =S Junl+ O3 €
k=1

i=1 ky;
o) oy m e (@) F by — b 21 =&, (1<i<m),(1<k#y <Q)
ik > 0, (1<i<m),(1<k#y; <Q)

Remark 6 The constraint 25:1 hi = 0 is implicit.
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Multi-class SVMs Three main models of M-SV Ms

M-SVM of Weston and Watkins

Training algorithm - dual formulation

a;i: Lagrange multiplier corresponding to the constraint (w,, — wg, ®(x;)) + by, — b > 1 — &
Q= (aik)1gigm,1gkg@ (Oéiyz-hgigm =0

Problem 4 (M-SVM1)

s.t.
S o il — o i =0, (1<k<Q-—1)

Hww = ((5yi,yj — Oy;,1 — Oy, k + 5’?,1) K (i, xj))1§¢,j§m,1§k;,ng

Q m Q
wy, = Z Za;;qu)(xi) - Zafkq’(%) = ZZ (Oys,k — O,1) oy P(4)

1y;=k (=1 i=1 =1
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Multi-class SVMs Three main models of M-SV Ms

M-SVM of Crammer and Singer

Training algorithm - primal formulation

Problem 5 (M-SVM2, Crammer & Singer, 2001)

Q m
1 2
min —E w —|—C’§ ;
heH{kalH d 2,:15}

S.t. (Wy, — Wi, ®(x;)) + 0y, >1—-&, (1<i<m),(1<k<Q)

Remark 7 The constraint 22:1 hi, = 0 is implicit.
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Multi-class SVMs Three main models of M-SV Ms

M-SVM of Crammer and Singer

Training algorithm - dual formulation

a;r: Lagrange multiplier corresponding to the constraint (w,, — wg, ®(x;)) + 0y, 0 > 1 —&;
@ = (Qik)1cicm << O = Opik)icicmi<r<o

Problem 6 (M-SVM2)

o

1
min {§aTHWWa + 5Toz}

aip > 0, (1<i<m), (1<k<Q)

S.1. 0
zk:l o = C, (1 <1< m)
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Multi-class SVMs Three main models of M-SV Ms

M-SVM of Lee, Lin and Wahba

Training algorithm - primal formulation

Problem 7 (M-SVM3, Lee et al., 2004)

Q m
i 5> lnl + €303
k=1

i=1 kZy;

(

(Wi, @(2)) +bp < —gog + &y 1<i<m),(1<k#y <Q)
sty &k =0, (I<i<m),(1<k#y <Q)

S we =0, S b =0

Result of consistency (Zhang, 2004; Tewari & Bartlett, 2007)

This M-SVM is the only one for which training is Bayes/Fisher consistent.
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Multi-class SVMs Three main models of M-SV Ms

M-SVM of Lee, Lin and Wahba

Training algorithm - dual formulation

a;r: Lagrange multiplier corresponding to the constraint (wyg, ®(x;)) + br < —ﬁ + &k
@ = (Qik)1<icm1<k<@: (Qiyi)1<i<m = 0

Problem 8 (M-SVM3)

1 1
moin {§C)ATHLLV[/C¥ — ﬁlea}

. 0 <o, <C, (1<i<m), (1<k#y <Q)
s.t.
D i1 2162:1 (%_5k,l) a; =0, (I1<k<Q@Q-1)

1
Hiiw = (<5k,l — —) /ﬂ)(xi,fﬂj))
@ 1<i,§<m1<k,1<Q

wy, = i Z (% — 5k,z) a;;P(x;)

1=1 =1
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Multi-class SVMs Some variants of the main models

Use of different norms on w

Problem 9 (/s-norm M-SVM)

hmelﬁ t +C;k§;§zk
[ (wy, —wi, ®(x)) + by — by 21— &k, (1<i<m),(1<k#y <Q)
S84 Sk 20, (1<i<m),(1<k#y <Q)
| well <2, (1<k<Q)

¢1-norm M-SVM (Wang et al., 2006)
k(z,2) =272 (® = Id)

Problem 10 (¢;-norm M-SVM)

2%17111 {Z Carsvr (Yir () }

1=1
S Jwkll, < K

s.t.
Zszl hiy =0
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Multi-class SVMs Some variants of the main models

Use of a different norm on &: quadratic loss M-SV Ms

Definition 18 (Quadratic loss M-SVM) A quadratic loss M-SVM is a M-SVM for which the

empirical term of the objective function, ||€||1, is replaced by a quadratic form, &X' McE, where My is
a symmetric positive semidefinite matriz.

Definition 19 (M-SVMz) Variant of the M-SVM of Lee, Lin and Wahba corresponding to

1
M = ((% - _) %) |
Q 1<i,j<m,1<k,l<Q

Summer School NN2008




Multi-class SVMs Some variants of the main models

Training algorithm of the M-SVM?

Primal formulation

Problem 11 (M-SVM?)

Q
: 1 2 T
min {5 kz_:l lwi||? + C¢ Mgf}
(w, ®(:)) + b, < —gmg + &k, (1<i<m),(1<k#y <Q)
25:1 wg = 0, Zszl b, =0
Dual formulation

Problem 12 (M-SVM?)

1 1 1
II}liIl {§QT (HLLw—I— %Mg) o — ﬁlea}

o > 0, 1<i<m), (1<k#y <Q)

S.1.
D e ZZQ:1 (% - 5kz,l) a; =0, (1<k<Q@Q-1)
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Multi-class SVMs Margins and support vectors

Margins and support vectors of a M-SVM
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Figure 2: 3 categories linearly separable in R?
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Multi-class SVMs Margins and support vectors

Margins and support vectors of a M-SVM

Figure 3: Separating hyperplanes and soft margins of a linear M-SVM1
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Multi-class SVMs Margins and support vectors

Figure 4: 3 categories non-linearly separable in R?
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Multi-class SVMs Margins and support vectors

Figure 5: Separating hyperplanes and support vectors of a linear M-SVM1
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Guaranteed risks for multi-class SVMs Bounds on the covering numbers

Margin Natarajan dimension of the multi-class SVMs

Theorem 6 Let H be the class of functions that a Q-category M-SVM can implement under the
hypothesis that ® (X) is included in the ball of radius Ag(xy about the origin in Fg(x), that the
vector w satisfies ||W|oo < Ay and that b =0. Then, for all € € RY,

2
N-dim (AT, €) < (g) (@) .

The proof

- does not hold true anymore if the operator A is replaced by the operator A*;
- calls for the use of the /.,-norm instead of the ¢3-norm (used by the penalizer);

- rests directly on the one-against-one decomposition scheme.

AyA 2
Q=2: P.-dim(H,)< (ﬂ)

€
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Guaranteed risks for multi-class SVMs Bounds on the covering numbers

From covering numbers to entropy numbers

Definition 20 (Entropy numbers of a set) Let (E,p) be a pseudo-metric space (or (E,| - ||E)

a Banach space) and E" a bounded subset of E. Then, for n € N*, the n-th entropy number of E’,
en (E), is:

en (B')=inf{e>0: N (¢, E',p) <n}.

Definition 21 (Entropy numbers of a bounded linear operator) Let (F,| - | g) and
(Fy || - |lF) be two Banach spaces. Let L(E, F') denote the Banach space of all (bounded linear)
operators from (E,|| - ||g) into (F,|| - ||r) endowed with the norm:

VS € L(E, F),[|S]| = supeep.|e|n=1 |S(€)|F. The n-th entropy number of S is defined as

en(S) = en(S(Ug)).

Summer School NN2008




Guaranteed risks for multi-class SVMs Bounds on the covering numbers

From covering numbers to entropy numbers

Definition 22 (Evaluation operator) Forn € N*, let ™ € X™. The evaluation operator Syn on
H is defined as:

S:En . 7'_( — Zgon

h — (wk)lgng —  Syn (}_L) = (<wk7 (I)(xi)>)1g7;§n, 1<k<Q

Let U be the unit ball of H in the {o-norm (U = {h € H : ||[w|| < 1}). The connection between
N (e,U,n) and the entropy numbers of S~ is provided by the following proposition:

Proposition 2 Let e € RY and n € N*,

sup €,(Szn) < e = N(e,U,n) < p.
rnexmn
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Guaranteed risks for multi-class SVMs Bounds on the covering numbers

Upper bound on the entropy numbers
Finite-dimensional feature space

Proposition 3 (Carl & Stephani, 1990) Let E and F be Banach spaces and S € £(E,F). If S
1s of rank r, then for n € N*,

€n(S) < 4||S[n "

Theorem 7 Let 'H be the class of functions that a QQ-category M-SVM can implement under the
hypothesis that ® (X) is included in the ball of radius Ag(xy about the origin in Fg(x), that the

vector w satisfies |W|so < Aw and b € [=8,8]°. If the dimensionality of the space Eg(xy is finite
and equal to d, then for all v € RZ,

Q Qd
N®) (y/4, ALH, 2m) < (2 [%w + 1) - (64A“’$‘W)) .
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Guaranteed risks for multi-class SVMs Bounds on the covering numbers

Upper bound on the entropy numbers
Infinite-dimensional feature space

Theorem 8 (Maurey-Carl theorem, Carl & Stephani, 1990) Let H be a Hilbert space and
S an operator belonging to £ (¢}, H) or £(H, (2 ). Then, for each couple of integers (k,n)

satisfying 1 < k <n,
1 n 1/2
er(S) gc(ElogQ (1+E>) 151,

where the dyadic entropy number ex(S) is equal to eax—1(S) and c is a universal constant.

Theorem 9 Let 'H be the class of functions that a QQ-category M-SVM can implement under the
hypothesis that ® (X) is included in the ball of radius Ag(xy about the origin in Eg(xy, that the

vector w satisfies |[W|lso < Ay and b € [—B,Q]Q. Then, for all v € R* |
86 160Aqu>(X) 2Qm_1

Q
N(p)(’y/4, A H,2m) < (2 [——‘ + 1) .9 ~ In(2)
Y
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Guaranteed risks for multi-class SVMs Use of the Rademacher complexity

Basic probabilistic tools

Definition 23 (Rademacher average) For n € N*, let A be a bounded set of vectors

a = (ai);<i<, belonging to R™ and let (0i),<;<,, be a Rademacher sequence. The Rademacher
average associated with A, R, (A), is defined by:

Rn(A) =E sup
aeA N

E oia;| .

Theorem 10 (Bounded differences inequality, McDiarmid, 1989) Let (1;),...,, be a
sequence of n independent random variables taking values in a set 7. Let g be a function from T™
into R such that there exists a sequence of nonnegative constants (¢;)1<i<n Satisfying:

\V/iE[[lyn]]v sup |g(t1,...,tn)—g(tl,...,ti_l,tg,ti+1,...,tn)] < ¢;.
(ti)i<i<n€T™ L. €T

Then, for all T € R* , the random variable g (11, . ..,T,) satisfies:

P{Q(Tl,,Tn)—Eg(Tl,,Tn) >T}§€_ ¢

P{Eg(T1,....,T,) —g(Th,....Ty) > 7} <e &

where ¢ = Y1 cZ.

Summer School NN2008




Guaranteed risks for multi-class SVMs Use of the Rademacher complexity

Uniform convergence result

Convexified margin risk corresponding to the M-SVM of Crammer and Singer

~

R(h) =E [(1 — Ahy (X))+]

Theorem 11 Let H be the class of functions that a Q-category M-SVM can implement under the
hypothesis that ®(X) is included in the closed ball of radius Ag(x) about the origin in Eg xy, that
the vector w satisfies |[W| oo < Ay and b= 0. Let Ky = AyAgxy +1 and 6 € (0,1). With
probability at least 1 — 6, the risk of any function h in H is bounded from above by:

Rm)gém00+véf+“xQ%1Mw Sk (X0 X) + Ko “;?.

1=1

RGDgENM+O<¢%)
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Model selection for multi-class SVMs Bounds on the leave-one-out error

Radius-margin bound

Theorem 12 (Vapnik, 1998) Let us consider a hard margin bi-class SVM. Let L,, be the
number of errors that it makes in a leave-one-out cross-validation procedure and let v = m denote
its geometrical margin. Then the following upper bound holds true:

DZ
?

where D,, is the diameter of the smallest ball of the feature space containing the support vectors.

Ly <
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Model selection for multi-class SVMs Bounds on the leave-one-out error

Radius-margin bound for the M-SVM of Weston and Watkins

dww = dcs =1

Theorem 13 Let us consider a hard margin Q-category M-SVM of Weston and Watkins (or
Crammer and Singer) on a domain X. Let d,,, = {(z;,y;) : 1 <i <m} be its training set, L,, the
number of errors resulting from applying a leave-one-out cross-validation procedure to this machine,

and D,, the diameter of the smallest sphere of the feature space containing the set
{®(x;) : 1 < i <m}. Then the following upper bound holds true:

r <KCVD2 Z<1+dWW,kl)2
- Q mk<l Ykl

Constant Kcv

- The value of K¢v is obtained by solving as many QP problems as there are support vectors.

- For Q) = 2, Koy = 2, and the bound reduces itself to the bi-class one.
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Model selection for multi-class SVMs Bounds on the leave-one-out error

Radius-margin bound for the M-SVM of Lee, Lin and Wahba

drow = %

Theorem 14 Let us consider a hard margin QQ-category M-SVM of Lee, Lin and Wahba on a
domain X. Let dp, = {(x;,y:) : 1 < i < m} be its training set, L., the number of errors resulting
from applying a leave-one-out cross-validation procedure to this machine, and D,, the diameter of
the smallest sphere of the feature space containing the set {®(x;) : 1 <i <m}. Then the following
upper bound holds true:

14d 2
£m§Q2D72nZ( + LLW,k:l) |

ol Ykl

This bound does not reduce itself to the bi-class one for ) = 2.
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Conclusions and open problems

Conclusions

Capacity measures of the classes of functions

- The ~-W-dimensions play for the M-SVMs (and the MLPs!) the same role as the fat-shattering
dimension for the bi-class SVMs.

- The current upper bounds on the covering numbers are suboptimal but in specific cases.
- If the use of the Rademacher complexity currently provides the sharpest bound, better bounds,
adapted to the problem of interest, should result from implementing hybrid approaches.
Guaranteed risks
- These studies highlight the specific character of the multi-class case.

- Model selection should provide a touchstone to assess the different guaranteed risks derived.
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Conclusions and open problems

Open problems and future work

Bounds on the risk of large margin multi-category classifiers

Computation of a bound on the universal constant of the Maurey-Carl theorem

Use of Dudley’s method of chaining to improve the VC bound

Derivation of dedicated PAC-Bayes bounds

Model selection for M-SV Ms

- Assessment of the guaranteed risks and radius-margin bounds to select the value of the soft

margin parameter C'

- Integration in the applications implementing the M-SVMs of procedures choosing automatically
the values of the hyperparameters
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