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Guaranteed risk for large margin multi-
ategory 
lassi�ers Theoreti
al frameworkHypotheses and goalsChara
terization of the problem- Study of the 
onne
tion between obje
ts x ∈ X and their 
ategories y ∈ Y = [[ 1, Q ]]- Hypothesis: existen
e of a X × Y-valued random pair (X,Y ) distributed a

ording to aprobability measure P- Problem: the joint probability measure P is unknownWhat is available- Dm = ((Xi, Yi))1≤i≤m : i.i.d. m-sample from (X,Y )- G: 
lass of fun
tions g, from X into R
Q (F : 
lass of de
ision rules f , from X into Y ⋃ {∗})

f(x) = argmax1≤k≤Q gk(x) or f(x) = ∗, in 
ase of ex æquoThe goal- ℓ, loss fun
tion: ℓ (y, g(x)) = 1l{gy(x)≤maxk 6=y gk(x)} (ℓ (y, f(x)) = 1l{f(x) 6=y})- Sele
tion of a fun
tion g∗ minimizing over G the risk
R(g) = E [ℓ (Y, g (X))] = P (f(X) 6= Y )
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Basi
 uniform 
onvergen
e resultMulti-
lass margin and margin riskDe�nition 1 (Fun
tion M) Let M be the fun
tion from R
Q × [[ 1, Q ]] into R given by:

∀(v, k) ∈ R
Q × [[ 1, Q ]] , M(v, k) =

1

2

(

vk − max
l 6=k

vl

)

M(v, ·) = max1≤k≤QM(v, k)De�nition 2 (Multi-
lass margin of g on the example (x, y))

∀(g, x, y) ∈ G × X × Y , M(g, x, y) = M (g(x), y)De�nition 3 (Operators ∆ and ∆∗) g = (gk)1≤k≤Q ∈ G- The fun
tion ∆g = (∆gk)1≤k≤Q, from X into R
Q, is given by:

∀x ∈ X , ∆g(x) = (M (g(x), k))1≤k≤Q- The fun
tion ∆∗g = (∆∗gk)1≤k≤Q, from X into R
Q, is given by:

∀x ∈ X , ∆∗g(x) = (sign (∆gk(x)) ·M (g(x), ·))1≤k≤QSummer S
hool NN2008 5/55



Guaranteed risk for large margin multi-
ategory 
lassi�ers Basi
 uniform 
onvergen
e resultMulti-
lass margin and margin risk

∆# repla
es ∆ and ∆∗ in the formulas that hold true for both operators (e.g.,

R(g) = E
[

1l{∆#gY (X)≤0}

])De�nition 4 (Margin risk) Let γ ∈ R
∗
+. The risk with margin γ of g is de�ned as:

Rγ(g) = E
[

1l{∆#gY (X)<γ}

]

=

∫

X×Y

1l{∆#gy(x)<γ}dP (x, y)Empiri
al risk with margin γ:
Rγ,m(g) =

1

m

m
∑

i=1

1l{∆#gYi
(Xi)<γ}Class of fun
tions of interest: ∆#

γ GFor ǫ ∈ R
∗
+, let πǫ : R → [−ǫ, ǫ] be the linear squashing fun
tion de�ned as:

πǫ(t) = sign(t) · min {|t| , ǫ}

∆#
γ g =

(

∆#
γ gk

)

1≤k≤Q
, ∆#

γ gk = πγ ◦ ∆#gk, ∆#
γ G =

{

∆#
γ g : g ∈ G

}
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Basi
 uniform 
onvergen
e resultCapa
ity measure of ∆#
γ G: 
overing numbers

Figure 1: ǫ-net and ǫ-
over of a set E′ in a pseudo-metri
 spa
e (E, ρ)De�nition 5 (Covering numbers)

N (ǫ, E′, ρ): minimal number of open balls of radius ǫ needed to 
over E′ (or +∞)
N (p)(ǫ, E′, ρ): the ǫ-nets 
onsidered are in
luded in E′ (proper to E′)
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Basi
 uniform 
onvergen
e result

Basi
 uniform 
onvergen
e resultClasses of indi
ator fun
tions

Theorem 1 (Guaranteed risk, Vapnik, 1998) Let F be a 
lass of indi
ator fun
tions on a set

X . Let N (F , (Xi)1≤i≤n

) be the number of di�erent fun
tions (di
hotomies) that this 
lass 
animplement on (Xi)1≤i≤n and δ ∈ (0, 1). With probability at least 1− δ, the risk of any fun
tion f in

F is bounded from above as follows:
R(f) ≤ Rm(f) +

√

1

m

(

ln
(

EN
(

F , (Xi)1≤i≤2m

))

+ ln

(

4

δ

))

+
1

m
.

ln
(

EN
(

F , (Xi)1≤i≤2m

)) is the annealed entropy of F on the sample (Xi)1≤i≤2m.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Basi
 uniform 
onvergen
e result

Basi
 uniform 
onvergen
e resultClasses of fun
tions G (taking values in R
Q)

De�nition 6 (Pseudo-metri
 dxn) Let n ∈ N
∗. For a sequen
e xn = (xi)1≤i≤n ∈ Xn, de�ne thepseudo-metri
 dxn on G as:

∀(g, g′) ∈ G2, dxn(g, g′) = max
1≤i≤n

‖g(xi) − g′(xi)‖∞ .For ǫ ∈ R
∗
+, let N (ǫ,G, n) = supxn∈Xn N (ǫ,G, dxn).Theorem 2 (Guaranteed risk) Let G be the 
lass of fun
tions that a large margin Q-
ategory
lassi�er on a domain X 
an implement. Let Γ ∈ R

∗
+ and δ ∈ (0, 1). With probability at least 1 − δ,for every value of γ in (0,Γ], the risk of any fun
tion g in G is bounded from above by:

R(g) ≤ Rγ,m(g) +

√

2

m

(

ln
(

2N (p)
(

γ/4,∆#
γ G, 2m

))

+ ln

(

2Γ

γδ

))

+
1

m
.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

Growth fun
tion

De�nition 7 (Growth fun
tion, Vapnik & Chervonenkis, 1971) Let F be a 
lass ofindi
ator fun
tions on a domain X . For n ∈ N
∗, let sXn = {xi : 1 ≤ i ≤ n} be a subset of X of
ardinality n. Then, the growth fun
tion of F , ΠF , is de�ned by:

∀n ∈ N
∗, ΠF (n) = sup

sXn⊂X
N (F , sXn) .

Remark 1 Some authors use the alternative de�nition:
∀n ∈ N

∗, ΠF (n) = ln

(

sup
sXn⊂X

N (F , sXn)

)

.

Remark 2 In 
ontrast with the annealed entropy, the growth fun
tion is distribution-free.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

VC dimension

De�nition 8 (VC dimension, Vapnik & Chervonenkis, 1971) Let F be a 
lass of indi
atorfun
tions on a domain X . A subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be shattered by F if forea
h ve
tor vy in {1, 1}n, there is a fun
tion fy in F satisfying

(fy (xi))1≤i≤n = vy.The VC dimension of F , denoted by VC-dim(F), is the maximal 
ardinality of a subset of Xshattered by F , if this 
ardinality is �nite. If no su
h maximum exists, F is said to have in�niteVC dimension.
Remark 3 VC-dim(F) = d if and only if ΠF (d) = 2d and ΠF (d+ 1) < 2d+1.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

Ψ-dimensions

De�nition 9 (Ψ-dimensions, Ben-David et al., 1995) Let F be a 
lass of fun
tions on a set

X taking their values in the �nite set [[ 1, Q ]]. Let Ψ be a family of mappings ψ from [[ 1, Q ]] into

{−1, 1, ∗}, where ∗ is thought of as a null element. A subset sXn = {xi : 1 ≤ i ≤ n} of X is said tobe Ψ-shattered by F if there is a mapping ψn =
(

ψ(i)
)

1≤i≤n

in Ψn su
h that for ea
h ve
tor vy in

{−1, 1}n, there is a fun
tion fy in F satisfying
(

ψ(i) ◦ fy(xi)
)

1≤i≤n
= vy.The Ψ-dimension of F , denoted by Ψ-dim(F), is the maximal 
ardinality of a subset of X

Ψ-shattered by F , if this 
ardinality is �nite. If no su
h maximum exists, F is said to have in�nite

Ψ-dimension.Remark 4 Let F and Ψ be de�ned as above. Extending the de�nition of the VC dimension so thatit applies to 
lasses of fun
tions taking values in {−1, 1, ∗}, whi
h has no in
iden
e in pra
ti
e, thefollowing proposition holds true:

Ψ-dim(F) = VC-dim ({(x, ψ) 7→ ψ ◦ f(x) : f ∈ F , ψ ∈ Ψ}) .
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

Main examples of Ψ-dimensions

De�nition 10 (Graph dimension, Dudley, 1987; Natarajan, 1989) Let F be a 
lass offun
tions on a set X taking their values in [[ 1, Q ]]. The graph dimension of F , G-dim(F), is the

Ψ-dimension of F in the spe
i�
 
ase where Ψ = {ψk : 1 ≤ k ≤ Q}, su
h that ψk takes the value 1 ifits argument is equal to k and the value −1 otherwise. Reformulated in the 
ontext ofmulti-
ategory 
lassi�
ation, the fun
tions ψk are the indi
ator fun
tions of the 
ategories.De�nition 11 (Natarajan dimension, Natarajan, 1989) Let F be a 
lass of fun
tions on aset X taking their values in [[ 1, Q ]]. The Natarajan dimension of F , N-dim(F), is the Ψ-dimensionof F in the spe
i�
 
ase where Ψ = {ψk,l : 1 ≤ k 6= l ≤ Q}, su
h that ψk,l takes the value 1 if itsargument is equal to k, the value −1 if its argument is equal to l, and ∗ otherwise.

Remark 5 The de�nition of the graph dimension is inspired from the one-against-allde
omposition method whereas the de�nition of the Natarajan dimension is inspired from theone-against-one de
omposition method.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

Fat-shattering or γ dimension

De�nition 12 (Fat-shattering dimension, Kearns & S
hapire, 1994) Let G be a 
lass ofreal-valued fun
tions on a set X . For γ ∈ R
∗
+, a subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be

γ-shattered by G if there is a ve
tor vb = (bi) in R
n su
h that, for ea
h ve
tor vy = (yi) in {−1, 1}n,there is a fun
tion gy in G satisfying

∀i ∈ [[ 1, n ]] , yi (gy(xi) − bi) ≥ γ.The fat-shattering dimension with margin γ, or Pγ dimension, of the 
lass G, Pγ-dim (G), is themaximal 
ardinality of a subset of X γ-shattered by G, if this 
ardinality is �nite. If no su
hmaximum exists, G is said to have in�nite Pγ dimension.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

γ-Ψ-dimensionsLet ∧ denote the 
onjun
tion of two events.De�nition 13 (γ-Ψ-dimensions) Let G be a 
lass of fun
tions on a set X taking their values in

R
Q. Let Ψ be a family of mappings ψ from [[ 1, Q ]] into {−1, 1, ∗}. For γ ∈ R

∗
+, a subset

sXn = {xi : 1 ≤ i ≤ n} of X is said to be γ-Ψ-shattered (Ψ-shattered with margin γ) by ∆#G ifthere is a mapping ψn =
(

ψ(i)
)

1≤i≤n
in Ψn and a ve
tor vb = (bi) in R

n su
h that, for ea
h ve
tor

vy = (yi) in {−1, 1}n, there is a fun
tion gy in G satisfying
∀i ∈ [[ 1, n ]] ,







if yi = 1, ∃k : ψ(i)(k) = 1 ∧ ∆#gy,k(xi) − bi ≥ γif yi = −1, ∃l : ψ(i)(l) = −1 ∧ ∆#gy,l(xi) + bi ≥ γ
.The γ-Ψ-dimension, or Ψ-dimension with margin γ, of ∆#G, denoted by Ψ-dim(∆#G, γ), is themaximal 
ardinality of a subset of X γ-Ψ-shattered by ∆#G, if this 
ardinality is �nite. If no su
hmaximum exists, ∆#G is said to have in�nite γ-Ψ-dimension.This de�nition simpli�es into the one of the fat-shattering dimension when Q = 2.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers γ-Ψ-dimensions

Natarajan dimension with margin γDe�nition 14 (Natarajan dimension with margin γ) Let G be a 
lass of fun
tions on a set

X taking their values in R
Q. For γ ∈ R

∗
+, a subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be

γ-N-shattered (N-shattered with margin γ) by ∆#G if there is a set

I(sXn) = {(i1(xi), i2(xi)) : 1 ≤ i ≤ n}of n 
ouples of distin
t indexes in [[ 1, Q ]] and a ve
tor vb = (bi) in R
n su
h that, for ea
h ve
tor

vy = (yi) in {−1, 1}n, there is a fun
tion gy in G satisfying
∀i ∈ [[ 1, n ]] ,







if yi = 1, ∆#gy,i1(xi)(xi) − bi ≥ γif yi = −1, ∆#gy,i2(xi)(xi) + bi ≥ γ
.The Natarajan dimension with margin γ of the 
lass ∆#G, N-dim(∆#G, γ), is the maximal
ardinality of a subset of X γ-N-shattered by ∆#G, if this 
ardinality is �nite. If no su
h maximumexists, ∆#G is said to have in�nite Natarajan dimension with margin γ.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Generalized Sauer-Shelah lemma

Sauer-Shelah lemma(Classes of indi
ator fun
tions)

Lemma 1 (Vapnik & Chervonenkis, 1971; Sauer, 1972; Shelah, 1972) Let F be a 
lass ofindi
ator fun
tions on a set X and let ΠF be its growth fun
tion. If its VC dimension d is �nite,then for n ≥ d,

ΠF (n) ≤
d
∑

i=0

Ci
n <

(en

d

)dwhere e is the base of the natural logarithm.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemmaClasses of fun
tions from X into [[ 1, Q ]]

Lemma 2 (Haussler & Long, 1995) Let F be a 
lass of fun
tions from X into [[ 1, Q ]] and let

ΠF be its growth fun
tion. If its Natarajan dimension d is �nite, then for n ≥ d,

ΠF (n) ≤
d
∑

i=0

Ci
n

(

C2
Q+1

)i
<

(

(Q+ 1)2en

2d

)d

.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemmaClasses of real-valued fun
tions

Lemma 3 (Alon et al., 1997) Let G be a 
lass of fun
tions from X into [0, 1]. For every valueof ǫ in (0, 1] and every integer value of n satisfying n ≥ Pǫ/4-dim (G), the following bound is true:

N (ǫ,G, n) < 2

(

4n

ǫ2

)d log2(2en/(dǫ))

where d = Pǫ/4-dim (G).
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemmaClasses of fun
tions from X into R
Q

Lemma 4 Let G be a 
lass of fun
tions from X into [−MG ,MG ]
Q. For every value of ǫ in (0,MG]and every integer value of n satisfying n ≥ N-dim (∆G, ǫ/6), the following bound is true:

N (p)(ǫ,∆∗G, n) < 2

(

n Q2(Q− 1)

⌊

3MG

ǫ

⌋2
)

l

d log2

“

enC2
Q

“

2
j

3MG
ǫ

k

−1
”

/d
”m

where d = N-dim (∆G, ǫ/6).The proof does not hold true anymore if the operator ∆∗ is repla
ed with the operator ∆.
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Guaranteed risk for large margin multi-
ategory 
lassi�ers Nature and rate of 
onvergen
eNature and rate of 
onvergen
eTheorem 3 Let G be the 
lass of fun
tions from X into [−MG ,MG ]
Q that a large margin

Q-
ategory 
lassi�er 
an implement. Let δ ∈ (0, 1). With probability at least 1 − δ, uniformly forevery value of γ in (0,MG], the risk of any fun
tion g in G is bounded from above by:

R(g) ≤ Rγ,m(g)+

√

√

√

√

√

√

2

m






ln






4

(

2m Q2(Q− 1)

⌊

12MG

γ

⌋2
)

l

d log2

“

emQ(Q−1)
“

2
j

12MG
γ

k

−1
”

/d
”m




+ ln

(

2MG

γδ

)






+

1

mwhere d = N-dim (∆G, γ/24).

R(g) ≤ Rγ,m(g) + c ln (m)

√

d

mProposition 1 (Almost sure uniform 
onvergen
es)
lim

m→+∞
sup
P

P

(

sup
n≥m

sup
g∈G

(R(g) −Rγ,n(g)) > ǫ

)

= 0 lim
m→+∞

sup
P

P

(

sup
n≥m

sup
g∈G

|Rγ(g) −Rγ,n(g)| > ǫ

)

= 0
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Multi-
lass SVMs Multi-
ategory 
lassi�
ation with binary SVMs

Multi-
ategory 
lassi�
ation with binary SVMsOne-against-all method (Rifkin & Klautau, 2004)- Q SVMs: the k-th one distinguishes 
ategory k from the Q− 1 other ones- De
ision rule: �winner-takes-all�One-against-one method/pairwise 
lassi�
ation (Fürnkranz, 2002)- (Q2) SVMs: one for ea
h pair of 
lasses- De
ision rule: �max-wins voting�Use of error 
orre
ting output 
odes (ECOC) (Allwein et al., 2000)- M = (mkl) ∈ MQ,N ({−1, 0, 1}): �
oding matrix�- N SVMs: one for ea
h of the di
hotomies de�ned by the 
olumns of M- De
ision rule: 
omputation of a loss fun
tion
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Multi-
lass SVMs Class of fun
tions implemented by the M-SVMs

Reprodu
ing kernel Hilbert spa
eLet X be a spa
e and (H, 〈·, ·〉H) a Hilbert spa
e of fun
tions on X (H ⊂ R
X ).De�nition 15 (Reprodu
ing kernel, Aronszajn, 1950) Let κ be a fun
tion from X 2 into R.

∀x ∈ X , let κx be the fun
tion from X into R given by κx : t 7→ κ(x, t). κ is a reprodu
ing kernel of

H if and only if:1. ∀x ∈ X , κx ∈ H;2. ∀x ∈ X , ∀h ∈ H, 〈h, κx〉H = h(x) (reprodu
ing property).

De�nition 16 (Reprodu
ing kernel Hilbert spa
e) If H possesses a reprodu
ing kernel, it is
alled a reprodu
ing kernel Hilbert spa
e (RKHS) or a proper Hilbert spa
e.
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Multi-
lass SVMs Class of fun
tions implemented by the M-SVMs

Positive semide�nite kernel and RKHS

De�nition 17 (Positive semide�nite (positive type) kernel) A fun
tion κ from X 2 into R is
alled a positive semide�nite kernel (or a positive type kernel) if

∀n ∈ N
∗, ∀(ai)1≤i≤n ∈ R

n, ∀(xi)1≤i≤n ∈ Xn,
n
∑

i=1

n
∑

j=1

aiajκ (xi, xj) ≥ 0.

Theorem 4 (Moore-Aronszajn) Let κ be a positive semide�nite kernel on X 2. There existsonly one Hilbert spa
e (H, 〈·, ·〉H) of fun
tions on X with κ as reprodu
ing kernel.
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Multi-
lass SVMs Class of fun
tions implemented by the M-SVMs

Building a M-SVM starting from a kernelBasi
 
lass of fun
tionsLet κ be a positive semide�nite kernel on X and let (Hκ, 〈·, ·〉Hκ
) be the 
orresponding RKHS.Let H̄ = (Hκ, 〈·, ·〉Hκ

)
Q and H = ((Hκ, 〈·, ·〉Hκ

) + {1})Q.
H: 
lass of fun
tions h = (hk)1≤k≤Q from X into R

Q su
h that:
h(·) =

(

mk
∑

i=1

βikκ(xik, ·) + bk

)

1≤k≤Qwith {xik : 1 ≤ i ≤ mk} ⊂ X , (βik)1≤i≤mk
∈ R

mk and bk ∈ R, as well as the limits of thesefun
tions when the sets {xik : 1 ≤ i ≤ mk} be
ome dense in X in the norm indu
ed by the kernelClass of fun
tions implemented
onvex subset of H (de�ned by 
onstraints on an a�ne subspa
e)
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Multi-
lass SVMs Class of fun
tions implemented by the M-SVMs

Basi
 
lass of fun
tionsAn a�ne model in the feature spa
eTheorem 5 (Mer
er's theorem) For all Mer
er kernel κ, there exists a map Φ su
h that:

∀(x, x′) ∈ X 2, κ(x, x′) = 〈Φ(x),Φ(x′)〉where 〈·, ·〉 is the dot produ
t of the ℓ2 spa
e.
Φ is 
alled a feature map. Let Φ (X ) = {Φ (x) : x ∈ X}.A feature spa
e is any of the Hilbert spa
es (EΦ(X ), 〈·, ·〉

) spanned by the Φ (X ).

=⇒ H 
an be seen as a 
lass of multivariate a�ne fun
tions on Φ (X )

h(·) = (〈wk, ·〉 + bk)1≤k≤Q

w = (wk)1≤k≤Q ∈ EQ
Φ(X ), b = (bk)1≤k≤Q ∈ R

Q
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Multi-
lass SVMs Class of fun
tions implemented by the M-SVMs

Basi
 
lass of fun
tionsPutting things the other way round: the �kernel tri
k�Norms on H̄ and EQ
Φ(X )

∥

∥h̄
∥

∥

H̄
=

√

√

√

√

Q
∑

k=1

∥

∥h̄k

∥

∥

2

Hκ
=

√

√

√

√

Q
∑

k=1

〈wk, wk〉 =

√

√

√

√

Q
∑

k=1

‖wk‖2 = ‖w‖

‖w‖∞ = max
1≤k≤Q

‖wk‖
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Multi-
lass SVMs General formulation of the training algorithm

Q ≥ 3: multi-
lass support ve
tor ma
hines

((xi, yi))1≤i≤m ∈ (X × [[ 1, Q ]])
m: training set

ℓM-SVM: 
onvex loss fun
tion (built around the hinge loss)M-SVM: solution of a 
onvex (quadrati
) programming problemProblem 1

min
h∈H

{

m
∑

i=1

ℓM-SVM (yi, h(xi)) + λ‖h̄‖2
H̄

}

s.t. ∑Q
k=1 hk = 0Representer theoremThis theorem states that training (solving Problem 1) amounts to �nding the values of the
oe�
ients βik in

h(·) =

(

m
∑

i=1

βikκ(xi, ·) + bk

)

1≤k≤Q(the values of the �biases� bk are dedu
ed by appli
ation of the Kuhn-Tu
ker 
onditions).Summer S
hool NN2008 28/55



Multi-
lass SVMs General formulation of the training algorithmA general framework that en
ompasses the bi-
lass 
ase

((xi, yi))1≤i≤m ∈ (X × {−1, 1})m: training set

h = (h1, h2) = (h1,−h1), h̃(x) = h1(x) = ∆#h1(x) = 1
2 (〈w1 − w2,Φ (x)〉 + b1 − b2)

ℓSVM(y, h̃(x)) =
(

1 − yh̃(x)
)

+

(hinge loss)SVM: solution of a 
onvex (quadrati
) programming problemProblem 2

min
h̃∈H̃

{

m
∑

i=1

ℓSVM (yi, h̃(xi)
)

+ λ
∥

∥

∥

¯̃
h
∥

∥

∥

2

Hκ

}

Representer theoremThis theorem states that training (solving Problem 2) amounts to �nding the values of the
oe�
ients βi in

h̃(·) =
m
∑

i=1

βiκ(xi, ·) + b(the value of the �bias� b is dedu
ed by appli
ation of the Kuhn-Tu
ker 
onditions).Summer S
hool NN2008 29/55



Multi-
lass SVMs General formulation of the training algorithmHard margin M-SVMs and geometri
al marginsGeometri
al margins
dM-SVM = min

1≤k<l≤Q

{

min

[

min
i:yi=k

(hk(xi) − hl(xi)) , min
j:yj=l

(hl(xj) − hk(xj))

]}

∀(k, l), 1 ≤ k < l ≤ Q,

dM-SVM,kl =
1

dM-SVM min

[

min
i:yi=k

(hk(xi) − hl(xi) − dM-SVM) , min
j:yj=l

(hl(xj) − hk(xj) − dM-SVM)

]

∀(k, l), 1 ≤ k < l ≤ Q, γkl = dM-SVM 1 + dM-SVM,kl

‖wk − wl‖Conne
tion between the penalizer and the geometri
al margins





∑

k<l

‖wk − wl‖2 = Q

Q
∑

k=1

‖wk‖2 −
∥

∥

∥

∥

∥

Q
∑

k=1

wk

∥

∥

∥

∥

∥

2


 ∧
Q
∑

k=1

wk = 0 =⇒

Q
∑

k=1

‖wk‖2 =
d2M-SVM

Q

∑

k<l

(

1 + dM-SVM,kl

γkl

)2

Summer S
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Multi-
lass SVMs Three main models of M-SVMs

M-SVM of Weston and WatkinsTraining algorithm - primal formulationProblem 3 (M-SVM1, Vapnik & Blanz, 1998; Weston & Watkins, 1998; . . . )

min
h∈H







1

2

Q
∑

k=1

‖wk‖2 + C

m
∑

i=1

∑

k 6=yi

ξik





s.t.


〈wyi
− wk,Φ(xi)〉 + byi

− bk ≥ 1 − ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

Remark 6 The 
onstraint ∑Q
k=1 hk = 0 is impli
it.
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Multi-
lass SVMs Three main models of M-SVMsM-SVM of Weston and WatkinsTraining algorithm - dual formulation

αik: Lagrange multiplier 
orresponding to the 
onstraint 〈wyi
− wk,Φ(xi)〉 + byi

− bk ≥ 1 − ξik

α = (αik)1≤i≤m,1≤k≤Q, (αiyi
)1≤i≤m = 0Problem 4 (M-SVM1)

min
α

{

1

2
αTHWWα− 1T

Qmα

}

s.t.


0 ≤ αik ≤ C, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑

i:yi=k

∑Q
l=1 αil −

∑m
i=1 αik = 0, (1 ≤ k ≤ Q− 1)

HWW =
((

δyi,yj
− δyi,l − δyj ,k + δk,l

)

κ(xi, xj)
)

1≤i,j≤m,1≤k,l≤Q

w∗
k =

∑

i:yi=k

Q
∑

l=1

α∗
ilΦ(xi) −

m
∑

i=1

α∗
ikΦ(xi) =

m
∑

i=1

Q
∑

l=1

(δyi,k − δk,l)α
∗
ilΦ(xi)
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Multi-
lass SVMs Three main models of M-SVMs

M-SVM of Crammer and SingerTraining algorithm - primal formulationProblem 5 (M-SVM2, Crammer & Singer, 2001)
min
h̄∈H̄

{

1

2

Q
∑

k=1

‖wk‖2 + C
m
∑

i=1

ξi

}

s.t. 〈wyi
− wk,Φ(xi)〉 + δyi,k ≥ 1 − ξi, (1 ≤ i ≤ m), (1 ≤ k ≤ Q)

Remark 7 The 
onstraint ∑Q
k=1 h̄k = 0 is impli
it.
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Multi-
lass SVMs Three main models of M-SVMs

M-SVM of Crammer and SingerTraining algorithm - dual formulation
αik: Lagrange multiplier 
orresponding to the 
onstraint 〈wyi

− wk,Φ(xi)〉 + δyi,k ≥ 1 − ξi

α = (αik)1≤i≤m,1≤k≤Q, δ = (δyi,k)1≤i≤m,1≤k≤QProblem 6 (M-SVM2)

min
α

{

1

2
αTHWWα+ δTα

}

s.t.


αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k ≤ Q)
∑Q

k=1 αik = C, (1 ≤ i ≤ m)
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Multi-
lass SVMs Three main models of M-SVMs

M-SVM of Lee, Lin and WahbaTraining algorithm - primal formulationProblem 7 (M-SVM3, Lee et al., 2004)
min
h∈H







1

2

Q
∑

k=1

‖wk‖2 + C

m
∑

i=1

∑

k 6=yi

ξik







s.t.






〈wk,Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑Q

k=1 wk = 0,
∑Q

k=1 bk = 0Result of 
onsisten
y (Zhang, 2004; Tewari & Bartlett, 2007)This M-SVM is the only one for whi
h training is Bayes/Fisher 
onsistent.
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Multi-
lass SVMs Three main models of M-SVMsM-SVM of Lee, Lin and WahbaTraining algorithm - dual formulation

αik: Lagrange multiplier 
orresponding to the 
onstraint 〈wk,Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik

α = (αik)1≤i≤m,1≤k≤Q, (αiyi
)1≤i≤m = 0Problem 8 (M-SVM3)

min
α

{

1

2
αTHLLWα− 1

Q− 1
1T

Qmα

}

s.t.


0 ≤ αik ≤ C, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q
l=1

(

1
Q − δk,l

)

αil = 0, (1 ≤ k ≤ Q− 1)

HLLW =

((

δk,l −
1

Q

)

κ(xi, xj)

)

1≤i,j≤m,1≤k,l≤Q

w∗
k =

m
∑

i=1

Q
∑

l=1

(

1

Q
− δk,l

)

α∗
ilΦ(xi)
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Multi-
lass SVMs Some variants of the main modelsUse of di�erent norms on wProblem 9 (ℓ∞-norm M-SVM)
min
h∈H







1

2
t2 + C

m
∑

i=1

∑

k 6=yi

ξik







s.t.






〈wyi
− wk,Φ(xi)〉 + byi

− bk ≥ 1 − ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

‖wk‖ ≤ t, (1 ≤ k ≤ Q)

ℓ1-norm M-SVM (Wang et al., 2006)
κ (x, x′) = xTx′ (Φ = Id)Problem 10 (ℓ1-norm M-SVM)

min
h∈H

{

m
∑

i=1

ℓM-SVM (yi, h(xi))

}

s.t.


∑Q
k=1 ‖wk‖1 ≤ K

∑Q
k=1 hk = 0Summer S
hool NN2008 37/55



Multi-
lass SVMs Some variants of the main models

Use of a di�erent norm on ξ: quadrati
 loss M-SVMsDe�nition 18 (Quadrati
 loss M-SVM) A quadrati
 loss M-SVM is a M-SVM for whi
h theempiri
al term of the obje
tive fun
tion, ‖ξ‖1, is repla
ed by a quadrati
 form, ξTMξξ, where Mξ isa symmetri
 positive semide�nite matrix.

De�nition 19 (M-SVM2) Variant of the M-SVM of Lee, Lin and Wahba 
orresponding to

Mξ =

((

δk,l −
1

Q

)

δi,j

)

1≤i,j≤m,1≤k,l≤Q

.
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Multi-
lass SVMs Some variants of the main modelsTraining algorithm of the M-SVM2Primal formulationProblem 11 (M-SVM2)
min
h∈H

{

1

2

Q
∑

k=1

‖wk‖2 + CξTMξξ

}

s.t.


〈wk,Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

∑Q
k=1 wk = 0,

∑Q
k=1 bk = 0Dual formulationProblem 12 (M-SVM2)

min
α

{

1

2
αT

(

HLLW +
1

2C
Mξ

)

α− 1

Q− 1
1T

Qmα

}

s.t.


αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q
l=1

(

1
Q − δk,l

)

αil = 0, (1 ≤ k ≤ Q− 1)
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Multi-
lass SVMs Margins and support ve
torsMargins and support ve
tors of a M-SVM
0
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0 0.2 0.4 0.6 0.8 1

x_
2

x_1Figure 2: 3 
ategories linearly separable in R
2
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Multi-
lass SVMs Margins and support ve
torsMargins and support ve
tors of a M-SVM

Figure 3: Separating hyperplanes and soft margins of a linear M-SVM1Summer S
hool NN2008 41/55



Multi-
lass SVMs Margins and support ve
tors

C_1 / C_2
C_2 / C_3

x_1
x_2

x_3

Figure 4: 3 
ategories non-linearly separable in R
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Multi-
lass SVMs Margins and support ve
tors

C_1 / C_2
C_1 / C_3
C_2 / C_3

x_1
x_2

x_3

Figure 5: Separating hyperplanes and support ve
tors of a linear M-SVM1
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Guaranteed risks for multi-
lass SVMs Bounds on the 
overing numbers

Margin Natarajan dimension of the multi-
lass SVMs

Theorem 6 Let H̄ be the 
lass of fun
tions that a Q-
ategory M-SVM 
an implement under thehypothesis that Φ (X ) is in
luded in the ball of radius ΛΦ(X ) about the origin in EΦ(X ), that theve
tor w satis�es ‖w‖∞ ≤ Λw and that b = 0. Then, for all ǫ ∈ R
∗
+,N-dim (∆H̄, ǫ

)

≤
(

Q

2

)(

ΛwΛΦ(X )

ǫ

)2

.

The proof- does not hold true anymore if the operator ∆ is repla
ed by the operator ∆∗;- 
alls for the use of the ℓ∞-norm instead of the ℓ2-norm (used by the penalizer);- rests dire
tly on the one-against-one de
omposition s
heme.
Q = 2 : Pǫ-dim (Hκ) ≤

(

ΛwΛΦ(X )

ǫ

)2
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Guaranteed risks for multi-
lass SVMs Bounds on the 
overing numbers

From 
overing numbers to entropy numbers

De�nition 20 (Entropy numbers of a set) Let (E, ρ) be a pseudo-metri
 spa
e (or (E, ‖ · ‖E)a Bana
h spa
e) and E′ a bounded subset of E. Then, for n ∈ N
∗, the n-th entropy number of E′,

ǫn (E′), is:

ǫn (E′) = inf {ǫ > 0 : N (ǫ, E′, ρ) ≤ n} .

De�nition 21 (Entropy numbers of a bounded linear operator) Let (E, ‖ · ‖E) and

(F, ‖ · ‖F ) be two Bana
h spa
es. Let L(E,F ) denote the Bana
h spa
e of all (bounded linear)operators from (E, ‖ · ‖E) into (F, ‖ · ‖F ) endowed with the norm:
∀S ∈ L(E,F ), ‖S‖ = supe∈E:‖e‖E=1 ‖S(e)‖F . The n-th entropy number of S is de�ned as

ǫn(S) = ǫn(S(UE)).
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Guaranteed risks for multi-
lass SVMs Bounds on the 
overing numbers

From 
overing numbers to entropy numbers

De�nition 22 (Evaluation operator) For n ∈ N
∗, let xn ∈ Xn. The evaluation operator Sxn on

H̄ is de�ned as:
Sxn : H̄ −→ ℓQn

∞

h̄ = (wk)1≤k≤Q 7→ Sxn

(

h̄
)

= (〈wk,Φ(xi)〉)1≤i≤n, 1≤k≤QLet U be the unit ball of H̄ in the ℓ∞-norm (U =
{

h̄ ∈ H̄ : ‖w‖∞ ≤ 1
}). The 
onne
tion between

N (ǫ,U , n) and the entropy numbers of Sxn is provided by the following proposition:Proposition 2 Let ǫ ∈ R
∗
+ and n ∈ N

∗.

sup
xn∈Xn

ǫp(Sxn) ≤ ǫ =⇒ N (ǫ,U , n) ≤ p.
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Guaranteed risks for multi-
lass SVMs Bounds on the 
overing numbersUpper bound on the entropy numbersFinite-dimensional feature spa
e

Proposition 3 (Carl & Stephani, 1990) Let E and F be Bana
h spa
es and S ∈ L (E,F ). If Sis of rank r, then for n ∈ N
∗,

ǫn(S) ≤ 4‖S‖n−1/r.

Theorem 7 Let H be the 
lass of fun
tions that a Q-
ategory M-SVM 
an implement under thehypothesis that Φ (X ) is in
luded in the ball of radius ΛΦ(X ) about the origin in EΦ(X ), that theve
tor w satis�es ‖w‖∞ ≤ Λw and b ∈ [−β, β]
Q. If the dimensionality of the spa
e EΦ(X ) is �niteand equal to d, then for all γ ∈ R

∗
+,

N (p) (γ/4,∆γH, 2m) ≤
(

2

⌈

8β

γ

⌉

+ 1

)Q

·
(

64ΛwΛΦ(X )

γ

)Qd

.

R(h) ≤ Rγ,m(h) +O

(

√

1

m

)
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Guaranteed risks for multi-
lass SVMs Bounds on the 
overing numbersUpper bound on the entropy numbersIn�nite-dimensional feature spa
eTheorem 8 (Maurey-Carl theorem, Carl & Stephani, 1990) Let H be a Hilbert spa
e and

S an operator belonging to L (ℓn1 , H) or L (H, ℓn∞). Then, for ea
h 
ouple of integers (k, n)satisfying 1 ≤ k ≤ n,
ek(S) ≤ c

(

1

k
log2

(

1 +
n

k

)

)1/2

‖S‖,where the dyadi
 entropy number ek(S) is equal to ǫ2k−1(S) and c is a universal 
onstant.Theorem 9 Let H be the 
lass of fun
tions that a Q-
ategory M-SVM 
an implement under thehypothesis that Φ (X ) is in
luded in the ball of radius ΛΦ(X ) about the origin in EΦ(X ), that theve
tor w satis�es ‖w‖∞ ≤ Λw and b ∈ [−β, β]
Q. Then, for all γ ∈ R

∗
+,

N (p)(γ/4,∆γH, 2m) ≤
(

2

⌈

8β

γ

⌉

+ 1

)Q

· 2
16cΛwΛΦ(X)

γ

q

2Qm

ln(2)
−1
.

R(h) ≤ Rγ,m(h) +O

(√

1√
m

)

Summer S
hool NN2008 48/55



Guaranteed risks for multi-
lass SVMs Use of the Radema
her 
omplexityBasi
 probabilisti
 toolsDe�nition 23 (Radema
her average) For n ∈ N
∗, let A be a bounded set of ve
tors

a = (ai)1≤i≤n belonging to R
n and let (σi)1≤i≤n be a Radema
her sequen
e. The Radema
heraverage asso
iated with A, Rn(A), is de�ned by:

Rn(A) = E sup
a∈A

1

n

∣

∣

∣

∣

∣

n
∑

i=1

σiai

∣

∣

∣

∣

∣

.Theorem 10 (Bounded di�eren
es inequality, M
Diarmid, 1989) Let (Ti)1≤i≤n be asequen
e of n independent random variables taking values in a set T . Let g be a fun
tion from T ninto R su
h that there exists a sequen
e of nonnegative 
onstants (ci)1≤i≤n satisfying:

∀i ∈ [[ 1, n ]] , sup
(ti)1≤i≤n∈T n,t′i∈T

|g(t1, . . . , tn) − g(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn)| ≤ ci.Then, for all τ ∈ R

∗
+, the random variable g (T1, . . . , Tn) satis�es:

P {g (T1, . . . , Tn) − Eg (T1, . . . , Tn) > τ} ≤ e−
2τ2

c

P {Eg (T1, . . . , Tn) − g (T1, . . . , Tn) > τ} ≤ e−
2τ2

cwhere c =
∑n

i=1 c
2
i .Summer S
hool NN2008 49/55



Guaranteed risks for multi-
lass SVMs Use of the Radema
her 
omplexity

Uniform 
onvergen
e resultConvexi�ed margin risk 
orresponding to the M-SVM of Crammer and Singer

R̃(h) = E
[

(1 − ∆hY (X))+
]

Theorem 11 Let H̄ be the 
lass of fun
tions that a Q-
ategory M-SVM 
an implement under thehypothesis that Φ(X ) is in
luded in the 
losed ball of radius ΛΦ(X ) about the origin in EΦ(X ), thatthe ve
tor w satis�es ‖w‖∞ ≤ Λw and b = 0. Let KH̄ = ΛwΛΦ(X ) + 1 and δ ∈ (0, 1). Withprobability at least 1 − δ, the risk of any fun
tion h̄ in H̄ is bounded from above by:

R
(

h̄
)

≤ R̃m

(

h̄
)

+
4√
m

+
4Q(Q− 1)Λw

m

√

√

√

√

m
∑

i=1

κ (Xi, Xi) +KH̄

√

ln
(

1
δ

)

2m
.

R
(

h̄
)

≤ R̃m

(

h̄
)

+O

(

√

1

m

)
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Model sele
tion for multi-
lass SVMs Bounds on the leave-one-out error

Radius-margin bound

Theorem 12 (Vapnik, 1998) Let us 
onsider a hard margin bi-
lass SVM. Let Lm be thenumber of errors that it makes in a leave-one-out 
ross-validation pro
edure and let γ = 1
‖w‖ denoteits geometri
al margin. Then the following upper bound holds true:

Lm ≤ D2
m

γ2where Dm is the diameter of the smallest ball of the feature spa
e 
ontaining the support ve
tors.
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Model sele
tion for multi-
lass SVMs Bounds on the leave-one-out error

Radius-margin bound for the M-SVM of Weston and Watkins

dWW = dCS = 1Theorem 13 Let us 
onsider a hard margin Q-
ategory M-SVM of Weston and Watkins (orCrammer and Singer) on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set, Lm thenumber of errors resulting from applying a leave-one-out 
ross-validation pro
edure to this ma
hine,and Dm the diameter of the smallest sphere of the feature spa
e 
ontaining the set

{Φ(xi) : 1 ≤ i ≤ m}. Then the following upper bound holds true:
Lm ≤ KCV

Q
D2

m

∑

k<l

(

1 + dWW,kl

γkl

)2

.

Constant KCV- The value of KCV is obtained by solving as many QP problems as there are support ve
tors.- For Q = 2, KCV = 2, and the bound redu
es itself to the bi-
lass one.
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Model sele
tion for multi-
lass SVMs Bounds on the leave-one-out error

Radius-margin bound for the M-SVM of Lee, Lin and Wahba

dLLW = Q
Q−1Theorem 14 Let us 
onsider a hard margin Q-
ategory M-SVM of Lee, Lin and Wahba on adomain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set, Lm the number of errors resultingfrom applying a leave-one-out 
ross-validation pro
edure to this ma
hine, and Dm the diameter ofthe smallest sphere of the feature spa
e 
ontaining the set {Φ(xi) : 1 ≤ i ≤ m}. Then the followingupper bound holds true:

Lm ≤ Q2D2
m

∑

k<l

(

1 + dLLW,kl

γkl

)2

.This bound does not redu
e itself to the bi-
lass one for Q = 2.

Summer S
hool NN2008 53/55



Con
lusions and open problems
Con
lusionsCapa
ity measures of the 
lasses of fun
tions- The γ-Ψ-dimensions play for the M-SVMs (and the MLPs!) the same role as the fat-shatteringdimension for the bi-
lass SVMs.- The 
urrent upper bounds on the 
overing numbers are suboptimal but in spe
i�
 
ases.- If the use of the Radema
her 
omplexity 
urrently provides the sharpest bound, better bounds,adapted to the problem of interest, should result from implementing hybrid approa
hes.Guaranteed risks- These studies highlight the spe
i�
 
hara
ter of the multi-
lass 
ase.- Model sele
tion should provide a tou
hstone to assess the di�erent guaranteed risks derived.

Summer S
hool NN2008 54/55



Con
lusions and open problems
Open problems and future workBounds on the risk of large margin multi-
ategory 
lassi�ers- Computation of a bound on the universal 
onstant of the Maurey-Carl theorem- Use of Dudley's method of 
haining to improve the VC bound- Derivation of dedi
ated PAC-Bayes bounds- . . .Model sele
tion for M-SVMs- Assessment of the guaranteed risks and radius-margin bounds to sele
t the value of the softmargin parameter C- Integration in the appli
ations implementing the M-SVMs of pro
edures 
hoosing automati
allythe values of the hyperparameters
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