Multi-Class Support Vector Machines

Yann Guermeur

LORIA - CNRS

http://www.loria.fr/~guermeur

Summer School NN2008

July 4, 2008

Overview

Guaranteed risk for large margin multi-category classifiers

- Theoretical framework
- Basic uniform convergence result
- γ - Ψ -dimensions
- Generalized Sauer-Shelah lemma
- Nature and rate of convergence

Multi-class SVMs

- Multi-category classification with binary SVMs
- Class of functions implemented by the M-SVMs
- General formulation of the training algorithm
- Three main models of M-SVMs
- Some variants of the main models
- Margins and support vectors

Overview

Guaranteed risks for multi-class SVMs

- Bounds on the covering numbers
- Use of the Rademacher complexity

Model selection for multi-class SVMs

- Algorithms fitting the entire regularization path
- Bounds on the leave-one-out cross-validation error

Conclusions and open problems

Hypotheses and goals

Characterization of the problem

- Study of the connection between objects $x \in \mathcal{X}$ and their categories $y \in \mathcal{Y} = [1, Q]$
- Hypothesis: existence of a $\mathcal{X} \times \mathcal{Y}$ -valued random pair (X,Y) distributed according to a probability measure P
- Problem: the joint probability measure P is unknown

What is available

- $D_m = ((X_i, Y_i))_{1 \le i \le m}$: i.i.d. m-sample from (X, Y)
- \mathcal{G} : class of functions g, from \mathcal{X} into \mathbb{R}^Q (\mathcal{F} : class of decision rules f, from \mathcal{X} into $\mathcal{Y} \bigcup \{*\}$) $f(x) = \operatorname{argmax}_{1 \le k \le Q} g_k(x)$ or f(x) = *, in case of ex æquo

The goal

- ℓ , loss function: $\ell(y, g(x)) = \mathbb{1}_{\{g_y(x) \leq \max_{k \neq y} g_k(x)\}} \ (\ell(y, f(x)) = \mathbb{1}_{\{f(x) \neq y\}})$
- Selection of a function g^* minimizing over \mathcal{G} the risk

$$R(g) = \mathbb{E}\left[\ell\left(Y, g\left(X\right)\right)\right] = P(f(X) \neq Y)$$

Multi-class margin and margin risk

Definition 1 (Function M) Let M be the function from $\mathbb{R}^Q \times [1, Q]$ into \mathbb{R} given by:

$$\forall (v,k) \in \mathbb{R}^Q \times [1,Q], \ M(v,k) = \frac{1}{2} \left(v_k - \max_{l \neq k} v_l \right)$$

 $M(v,\cdot) = \max_{1 \le k \le Q} M(v,k)$

Definition 2 (Multi-class margin of g on the example (x,y))

$$\forall (g, x, y) \in \mathcal{G} \times \mathcal{X} \times \mathcal{Y}, \ \mathcal{M}(g, x, y) = M(g(x), y)$$

Definition 3 (Operators Δ and Δ^*) $g = (g_k)_{1 \le k \le Q} \in \mathcal{G}$

- The function $\Delta g = (\Delta g_k)_{1 \le k \le Q}$, from \mathcal{X} into \mathbb{R}^Q , is given by:

$$\forall x \in \mathcal{X}, \ \Delta g(x) = (M(g(x), k))_{1 \le k \le Q}$$

- The function $\Delta^*g = (\Delta^*g_k)_{1 \leq k \leq Q}$, from \mathcal{X} into \mathbb{R}^Q , is given by:

$$\forall x \in \mathcal{X}, \ \Delta^* g(x) = (\operatorname{sign}(\Delta g_k(x)) \cdot M(g(x), \cdot))_{1 \le k \le Q}$$

Multi-class margin and margin risk

 $\Delta^{\#}$ replaces Δ and Δ^{*} in the formulas that hold true for both operators (e.g., $R(g) = \mathbb{E}\left[\mathbb{1}_{\{\Delta^{\#}g_{Y}(X)\leq 0\}}\right]$)

Definition 4 (Margin risk) Let $\gamma \in \mathbb{R}_+^*$. The risk with margin γ of g is defined as:

$$R_{\gamma}(g) = \mathbb{E}\left[\mathbb{1}_{\{\Delta^{\#}g_{Y}(X) < \gamma\}}\right] = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{\{\Delta^{\#}g_{y}(x) < \gamma\}} dP(x, y)$$

Empirical risk with margin γ :

$$R_{\gamma,m}(g) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\{\Delta^{\#}g_{Y_i}(X_i) < \gamma\}}$$

Class of functions of interest: $\Delta_{\gamma}^{\#}\mathcal{G}$

For $\epsilon \in \mathbb{R}_+^*$, let $\pi_{\epsilon} : \mathbb{R} \to [-\epsilon, \epsilon]$ be the linear squashing function defined as:

$$\pi_{\epsilon}(t) = \operatorname{sign}(t) \cdot \min\{|t|, \epsilon\}$$

$$\Delta_{\gamma}^{\#}g = \left(\Delta_{\gamma}^{\#}g_{k}\right)_{1 \leq k \leq O}, \quad \Delta_{\gamma}^{\#}g_{k} = \pi_{\gamma} \circ \Delta^{\#}g_{k}, \quad \Delta_{\gamma}^{\#}\mathcal{G} = \left\{\Delta_{\gamma}^{\#}g: g \in \mathcal{G}\right\}$$

Capacity measure of $\Delta_{\gamma}^{\#}\mathcal{G}$: covering numbers

Figure 1: ϵ -net and ϵ -cover of a set E' in a pseudo-metric space (E, ρ)

Definition 5 (Covering numbers)

 $\mathcal{N}(\epsilon, E', \rho)$: minimal number of open balls of radius ϵ needed to cover E' (or $+\infty$)

 $\mathcal{N}^{(p)}(\epsilon, E', \rho)$: the ϵ -nets considered are included in E' (proper to E')

Basic uniform convergence result Classes of indicator functions

Theorem 1 (Guaranteed risk, Vapnik, 1998) Let \mathcal{F} be a class of indicator functions on a set \mathcal{X} . Let $N\left(\mathcal{F}, (X_i)_{1 \leq i \leq n}\right)$ be the number of different functions (dichotomies) that this class can implement on $(X_i)_{1 \leq i \leq n}$ and $\delta \in (0,1)$. With probability at least $1-\delta$, the risk of any function f in \mathcal{F} is bounded from above as follows:

$$R(f) \le R_m(f) + \sqrt{\frac{1}{m} \left(\ln \left(\mathbb{E}N \left(\mathcal{F}, (X_i)_{1 \le i \le 2m} \right) \right) + \ln \left(\frac{4}{\delta} \right) \right)} + \frac{1}{m}.$$

 $\ln \left(\mathbb{E}N\left(\mathcal{F}, (X_i)_{1 \leq i \leq 2m}\right) \right)$ is the annealed entropy of \mathcal{F} on the sample $(X_i)_{1 \leq i \leq 2m}$.

Basic uniform convergence result Classes of functions \mathcal{G} (taking values in \mathbb{R}^Q)

Definition 6 (Pseudo-metric d_{x^n}) Let $n \in \mathbb{N}^*$. For a sequence $x^n = (x_i)_{1 \leq i \leq n} \in \mathcal{X}^n$, define the pseudo-metric d_{x^n} on \mathcal{G} as:

$$\forall (g, g') \in \mathcal{G}^2, \ d_{x^n}(g, g') = \max_{1 \le i \le n} \|g(x_i) - g'(x_i)\|_{\infty}.$$

For $\epsilon \in \mathbb{R}_+^*$, let $\mathcal{N}(\epsilon, \mathcal{G}, n) = \sup_{x^n \in \mathcal{X}^n} \mathcal{N}(\epsilon, \mathcal{G}, d_{x^n})$.

Theorem 2 (Guaranteed risk) Let \mathcal{G} be the class of functions that a large margin Q-category classifier on a domain \mathcal{X} can implement. Let $\Gamma \in \mathbb{R}_+^*$ and $\delta \in (0,1)$. With probability at least $1-\delta$, for every value of γ in $(0,\Gamma]$, the risk of any function g in \mathcal{G} is bounded from above by:

$$R(g) \leq R_{\gamma,m}(g) + \sqrt{\frac{2}{m} \left(\ln \left(2\mathcal{N}^{(p)} \left(\gamma/4, \Delta_{\gamma}^{\#} \mathcal{G}, 2m \right) \right) + \ln \left(\frac{2\Gamma}{\gamma \delta} \right) \right)} + \frac{1}{m}.$$

Growth function

Definition 7 (Growth function, Vapnik & Chervonenkis, 1971) Let \mathcal{F} be a class of indicator functions on a domain \mathcal{X} . For $n \in \mathbb{N}^*$, let $s_{\mathcal{X}^n} = \{x_i : 1 \leq i \leq n\}$ be a subset of \mathcal{X} of cardinality n. Then, the growth function of \mathcal{F} , $\Pi_{\mathcal{F}}$, is defined by:

$$\forall n \in \mathbb{N}^*, \ \Pi_{\mathcal{F}}(n) = \sup_{s_{\mathcal{X}^n} \subset \mathcal{X}} N(\mathcal{F}, s_{\mathcal{X}^n}).$$

Remark 1 Some authors use the alternative definition:

$$\forall n \in \mathbb{N}^*, \ \Pi_{\mathcal{F}}(n) = \ln \left(\sup_{s_{\mathcal{X}^n} \subset \mathcal{X}} N(\mathcal{F}, s_{\mathcal{X}^n}) \right).$$

Remark 2 In contrast with the annealed entropy, the growth function is distribution-free.

VC dimension

Definition 8 (VC dimension, Vapnik & Chervonenkis, 1971) Let \mathcal{F} be a class of indicator functions on a domain \mathcal{X} . A subset $s_{\mathcal{X}^n} = \{x_i : 1 \leq i \leq n\}$ of \mathcal{X} is said to be shattered by \mathcal{F} if for each vector v_y in $\{1,1\}^n$, there is a function f_y in \mathcal{F} satisfying

$$(f_y(x_i))_{1 \le i \le n} = v_y.$$

The VC dimension of \mathcal{F} , denoted by VC-dim(\mathcal{F}), is the maximal cardinality of a subset of \mathcal{X} shattered by \mathcal{F} , if this cardinality is finite. If no such maximum exists, \mathcal{F} is said to have infinite VC dimension.

Remark 3 $VC\text{-}dim(\mathcal{F})=d$ if and only if $\Pi_{\mathcal{F}}(d)=2^d$ and $\Pi_{\mathcal{F}}(d+1)<2^{d+1}$.

Ψ -dimensions

Definition 9 (Ψ -dimensions, Ben-David et al., 1995) Let \mathcal{F} be a class of functions on a set \mathcal{X} taking their values in the finite set [1,Q]. Let Ψ be a family of mappings ψ from [1,Q] into $\{-1,1,*\}$, where * is thought of as a null element. A subset $s_{\mathcal{X}^n} = \{x_i : 1 \leq i \leq n\}$ of \mathcal{X} is said to be Ψ -shattered by \mathcal{F} if there is a mapping $\psi^n = (\psi^{(i)})_{1 \leq i \leq n}$ in Ψ^n such that for each vector v_y in $\{-1,1\}^n$, there is a function f_y in \mathcal{F} satisfying

$$\left(\psi^{(i)} \circ f_y(x_i)\right)_{1 \le i \le n} = v_y.$$

The Ψ -dimension of \mathcal{F} , denoted by Ψ -dim (\mathcal{F}) , is the maximal cardinality of a subset of \mathcal{X} Ψ -shattered by \mathcal{F} , if this cardinality is finite. If no such maximum exists, \mathcal{F} is said to have infinite Ψ -dimension.

Remark 4 Let \mathcal{F} and Ψ be defined as above. Extending the definition of the VC dimension so that it applies to classes of functions taking values in $\{-1,1,*\}$, which has no incidence in practice, the following proposition holds true:

$$\Psi - dim(\mathcal{F}) = VC - dim(\{(x, \psi) \mapsto \psi \circ f(x) : f \in \mathcal{F}, \psi \in \Psi\}).$$

Main examples of Ψ -dimensions

Definition 10 (Graph dimension, Dudley, 1987; Natarajan, 1989) Let \mathcal{F} be a class of functions on a set \mathcal{X} taking their values in $[\![1,Q]\!]$. The graph dimension of \mathcal{F} , G-dim (\mathcal{F}) , is the Ψ -dimension of \mathcal{F} in the specific case where $\Psi = \{\psi_k : 1 \leq k \leq Q\}$, such that ψ_k takes the value 1 if its argument is equal to k and the value -1 otherwise. Reformulated in the context of multi-category classification, the functions ψ_k are the indicator functions of the categories.

Definition 11 (Natarajan dimension, Natarajan, 1989) Let \mathcal{F} be a class of functions on a set \mathcal{X} taking their values in [1,Q]. The Natarajan dimension of \mathcal{F} , N-dim (\mathcal{F}) , is the Ψ -dimension of \mathcal{F} in the specific case where $\Psi = \{\psi_{k,l} : 1 \leq k \neq l \leq Q\}$, such that $\psi_{k,l}$ takes the value 1 if its argument is equal to k, the value -1 if its argument is equal to l, and * otherwise.

Remark 5 The definition of the graph dimension is inspired from the one-against-all decomposition method whereas the definition of the Natarajan dimension is inspired from the one-against-one decomposition method.

Fat-shattering or γ dimension

Definition 12 (Fat-shattering dimension, Kearns & Schapire, 1994) Let \mathcal{G} be a class of real-valued functions on a set \mathcal{X} . For $\gamma \in \mathbb{R}_+^*$, a subset $s_{\mathcal{X}^n} = \{x_i : 1 \leq i \leq n\}$ of \mathcal{X} is said to be γ -shattered by \mathcal{G} if there is a vector $v_b = (b_i)$ in \mathbb{R}^n such that, for each vector $v_y = (y_i)$ in $\{-1, 1\}^n$, there is a function g_y in \mathcal{G} satisfying

$$\forall i \in [1, n], \ y_i \left(g_y(x_i) - b_i\right) \ge \gamma.$$

The fat-shattering dimension with margin γ , or P_{γ} dimension, of the class \mathcal{G} , P_{γ} -dim (\mathcal{G}) , is the maximal cardinality of a subset of \mathcal{X} γ -shattered by \mathcal{G} , if this cardinality is finite. If no such maximum exists, \mathcal{G} is said to have infinite P_{γ} dimension.

γ - Ψ -dimensions

Let \wedge denote the conjunction of two events.

Definition 13 (γ - Ψ -dimensions) Let \mathcal{G} be a class of functions on a set \mathcal{X} taking their values in \mathbb{R}^Q . Let Ψ be a family of mappings ψ from [1,Q] into $\{-1,1,*\}$. For $\gamma \in \mathbb{R}_+^*$, a subset $s_{\mathcal{X}^n} = \{x_i : 1 \leq i \leq n\}$ of \mathcal{X} is said to be γ - Ψ -shattered (Ψ -shattered with margin γ) by $\Delta^{\#}\mathcal{G}$ if there is a mapping $\psi^n = (\psi^{(i)})_{1 \leq i \leq n}$ in Ψ^n and a vector $v_b = (b_i)$ in \mathbb{R}^n such that, for each vector $v_y = (y_i)$ in $\{-1,1\}^n$, there is a function g_y in \mathcal{G} satisfying

$$\forall i \in [1, n], \begin{cases} if \ y_i = 1, & \exists k : \psi^{(i)}(k) = 1 \land \Delta^{\#} g_{y,k}(x_i) - b_i \ge \gamma \\ if \ y_i = -1, & \exists l : \psi^{(i)}(l) = -1 \land \Delta^{\#} g_{y,l}(x_i) + b_i \ge \gamma \end{cases}.$$

The γ - Ψ -dimension, or Ψ -dimension with margin γ , of $\Delta^{\#}\mathcal{G}$, denoted by Ψ -dim $(\Delta^{\#}\mathcal{G}, \gamma)$, is the maximal cardinality of a subset of \mathcal{X} γ - Ψ -shattered by $\Delta^{\#}\mathcal{G}$, if this cardinality is finite. If no such maximum exists, $\Delta^{\#}\mathcal{G}$ is said to have infinite γ - Ψ -dimension.

This definition simplifies into the one of the fat-shattering dimension when Q=2.

Natarajan dimension with margin γ

Definition 14 (Natarajan dimension with margin γ) Let \mathcal{G} be a class of functions on a set \mathcal{X} taking their values in \mathbb{R}^Q . For $\gamma \in \mathbb{R}_+^*$, a subset $s_{\mathcal{X}^n} = \{x_i : 1 \leq i \leq n\}$ of \mathcal{X} is said to be γ -N-shattered (N-shattered with margin γ) by $\Delta^{\#}\mathcal{G}$ if there is a set

$$I(s_{\mathcal{X}^n}) = \{(i_1(x_i), i_2(x_i)) : 1 \le i \le n\}$$

of n couples of distinct indexes in [1, Q] and a vector $v_b = (b_i)$ in \mathbb{R}^n such that, for each vector $v_y = (y_i)$ in $\{-1, 1\}^n$, there is a function g_y in \mathcal{G} satisfying

$$\forall i \in [1, n], \begin{cases} if \ y_i = 1, & \Delta^{\#} g_{y, i_1(x_i)}(x_i) - b_i \ge \gamma \\ if \ y_i = -1, & \Delta^{\#} g_{y, i_2(x_i)}(x_i) + b_i \ge \gamma \end{cases}.$$

The Natarajan dimension with margin γ of the class $\Delta^{\#}\mathcal{G}$, N-dim $(\Delta^{\#}\mathcal{G}, \gamma)$, is the maximal cardinality of a subset of \mathcal{X} γ -N-shattered by $\Delta^{\#}\mathcal{G}$, if this cardinality is finite. If no such maximum exists, $\Delta^{\#}\mathcal{G}$ is said to have infinite Natarajan dimension with margin γ .

Sauer-Shelah lemma (Classes of indicator functions)

Lemma 1 (Vapnik & Chervonenkis, 1971; Sauer, 1972; Shelah, 1972) Let \mathcal{F} be a class of indicator functions on a set \mathcal{X} and let $\Pi_{\mathcal{F}}$ be its growth function. If its VC dimension d is finite, then for $n \geq d$,

$$\Pi_{\mathcal{F}}(n) \le \sum_{i=0}^{d} C_n^i < \left(\frac{en}{d}\right)^d$$

where e is the base of the natural logarithm.

Generalized Sauer-Shelah lemma Classes of functions from $\mathcal X$ into $[\![1,Q]\!]$

Lemma 2 (Haussler & Long, 1995) Let \mathcal{F} be a class of functions from \mathcal{X} into $[\![1,Q]\!]$ and let $\Pi_{\mathcal{F}}$ be its growth function. If its Natarajan dimension d is finite, then for $n \geq d$,

$$\Pi_{\mathcal{F}}(n) \le \sum_{i=0}^{d} C_n^i \left(C_{Q+1}^2 \right)^i < \left(\frac{(Q+1)^2 en}{2d} \right)^d.$$

Generalized Sauer-Shelah lemma Classes of real-valued functions

Lemma 3 (Alon et al., 1997) Let \mathcal{G} be a class of functions from \mathcal{X} into [0,1]. For every value of ϵ in (0,1] and every integer value of n satisfying $n \geq P_{\epsilon/4}$ -dim (\mathcal{G}) , the following bound is true:

$$\mathcal{N}(\epsilon, \mathcal{G}, n) < 2\left(\frac{4n}{\epsilon^2}\right)^{d \log_2(2en/(d\epsilon))}$$

where $d = P_{\epsilon/4}$ -dim (\mathcal{G}) .

Generalized Sauer-Shelah lemma Classes of functions from \mathcal{X} into \mathbb{R}^Q

Lemma 4 Let \mathcal{G} be a class of functions from \mathcal{X} into $[-M_{\mathcal{G}}, M_{\mathcal{G}}]^Q$. For every value of ϵ in $(0, M_{\mathcal{G}}]$ and every integer value of n satisfying $n \geq N$ -dim $(\Delta \mathcal{G}, \epsilon/6)$, the following bound is true:

$$\mathcal{N}^{(p)}(\epsilon, \Delta^* \mathcal{G}, n) < 2 \left(n \, Q^2(Q - 1) \left\lfloor \frac{3M_{\mathcal{G}}}{\epsilon} \right\rfloor^2 \right)^{\left\lceil d \log_2 \left(enC_Q^2 \left(2 \left\lfloor \frac{3M_{\mathcal{G}}}{\epsilon} \right\rfloor - 1 \right) / d \right) \right\rceil}$$

where $d = N\text{-}dim(\Delta \mathcal{G}, \epsilon/6)$.

The proof does not hold true anymore if the operator Δ^* is replaced with the operator Δ .

Nature and rate of convergence

Theorem 3 Let \mathcal{G} be the class of functions from \mathcal{X} into $[-M_{\mathcal{G}}, M_{\mathcal{G}}]^Q$ that a large margin Q-category classifier can implement. Let $\delta \in (0,1)$. With probability at least $1-\delta$, uniformly for every value of γ in $(0, M_{\mathcal{G}}]$, the risk of any function g in \mathcal{G} is bounded from above by:

$$R(g) \le R_{\gamma,m}(g) +$$

$$\sqrt{\frac{2}{m} \left(\ln \left(4 \left(2m \ Q^2(Q-1) \left\lfloor \frac{12M_{\mathcal{G}}}{\gamma} \right\rfloor^2 \right)^{\left\lceil d \log_2 \left(emQ(Q-1) \left(2 \left\lfloor \frac{12M_{\mathcal{G}}}{\gamma} \right\rfloor - 1 \right) / d \right) \right\rceil} \right) + \ln \left(\frac{2M_{\mathcal{G}}}{\gamma \delta} \right) \right)} + \frac{1}{m}$$

where $d = N\text{-}dim(\Delta \mathcal{G}, \gamma/24)$.

$$R(g) \le R_{\gamma,m}(g) + c \ln(m) \sqrt{\frac{d}{m}}$$

Proposition 1 (Almost sure uniform convergences)

$$\lim_{m \to +\infty} \sup_{P} \mathbb{P} \left(\sup_{n \geq m} \sup_{g \in \mathcal{G}} \left(R(g) - R_{\gamma,n}(g) \right) > \epsilon \right) = 0 \quad \lim_{m \to +\infty} \sup_{P} \mathbb{P} \left(\sup_{n \geq m} \sup_{g \in \mathcal{G}} \left| R_{\gamma}(g) - R_{\gamma,n}(g) \right| > \epsilon \right) = 0$$

Multi-category classification with binary SVMs

One-against-all method (Rifkin & Klautau, 2004)

- Q SVMs: the k-th one distinguishes category k from the Q-1 other ones
- Decision rule: "winner-takes-all"

One-against-one method/pairwise classification (Fürnkranz, 2002)

- $\binom{Q}{2}$ SVMs: one for each pair of classes
- Decision rule: "max-wins voting"

Use of error correcting output codes (ECOC) (Allwein et al., 2000)

- $M = (m_{kl}) \in \mathcal{M}_{Q,N} (\{-1,0,1\})$: "coding matrix"
- N SVMs: one for each of the dichotomies defined by the columns of M
- Decision rule: computation of a loss function

Reproducing kernel Hilbert space

Let \mathcal{X} be a space and $(H, \langle \cdot, \cdot \rangle_H)$ a Hilbert space of functions on \mathcal{X} $(H \subset \mathbb{R}^{\mathcal{X}})$.

Definition 15 (Reproducing kernel, Aronszajn, 1950) Let κ be a function from \mathcal{X}^2 into \mathbb{R} . $\forall x \in \mathcal{X}$, let κ_x be the function from \mathcal{X} into \mathbb{R} given by $\kappa_x : t \mapsto \kappa(x, t)$. κ is a reproducing kernel of H if and only if:

- 1. $\forall x \in \mathcal{X}, \ \kappa_x \in H$;
- 2. $\forall x \in \mathcal{X}, \ \forall h \in H, \ \langle h, \kappa_x \rangle_H = h(x)$ (reproducing property).

Definition 16 (Reproducing kernel Hilbert space) If H possesses a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS) or a proper Hilbert space.

Positive semidefinite kernel and RKHS

Definition 17 (Positive semidefinite (positive type) kernel) A function κ from \mathcal{X}^2 into \mathbb{R} is called a positive semidefinite kernel (or a positive type kernel) if

$$\forall n \in \mathbb{N}^*, \forall (a_i)_{1 \le i \le n} \in \mathbb{R}^n, \forall (x_i)_{1 \le i \le n} \in \mathcal{X}^n, \ \sum_{i=1}^n \sum_{j=1}^n a_i a_j \kappa(x_i, x_j) \ge 0.$$

Theorem 4 (Moore-Aronszajn) Let κ be a positive semidefinite kernel on \mathcal{X}^2 . There exists only one Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$ of functions on \mathcal{X} with κ as reproducing kernel.

Building a M-SVM starting from a kernel

Basic class of functions

Let κ be a positive semidefinite kernel on \mathcal{X} and let $(H_{\kappa}, \langle \cdot, \cdot \rangle_{H_{\kappa}})$ be the corresponding RKHS.

Let
$$\bar{\mathcal{H}} = (H_{\kappa}, \langle \cdot, \cdot \rangle_{H_{\kappa}})^Q$$
 and $\mathcal{H} = ((H_{\kappa}, \langle \cdot, \cdot \rangle_{H_{\kappa}}) + \{1\})^Q$.

 \mathcal{H} : class of functions $h = (h_k)_{1 \leq k \leq Q}$ from \mathcal{X} into \mathbb{R}^Q such that:

$$h(\cdot) = \left(\sum_{i=1}^{m_k} \beta_{ik} \kappa(x_{ik}, \cdot) + b_k\right)_{1 \le k \le Q}$$

with $\{x_{ik}: 1 \leq i \leq m_k\} \subset \mathcal{X}$, $(\beta_{ik})_{1 \leq i \leq m_k} \in \mathbb{R}^{m_k}$ and $b_k \in \mathbb{R}$, as well as the limits of these functions when the sets $\{x_{ik}: 1 \leq i \leq m_k\}$ become dense in \mathcal{X} in the norm induced by the kernel

Class of functions implemented

convex subset of \mathcal{H} (defined by constraints on an affine subspace)

Basic class of functions

An affine model in the feature space

Theorem 5 (Mercer's theorem) For all Mercer kernel κ , there exists a map Φ such that:

$$\forall (x, x') \in \mathcal{X}^2, \ \kappa(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

where $\langle \cdot, \cdot \rangle$ is the dot product of the ℓ_2 space.

 Φ is called a *feature map*. Let $\Phi(\mathcal{X}) = {\Phi(x) : x \in \mathcal{X}}.$

A feature space is any of the Hilbert spaces $(E_{\Phi(\mathcal{X})}, \langle \cdot, \cdot \rangle)$ spanned by the $\Phi(\mathcal{X})$.

 $\Longrightarrow \mathcal{H}$ can be seen as a class of multivariate affine functions on $\Phi(\mathcal{X})$

$$h(\cdot) = (\langle w_k, \cdot \rangle + b_k)_{1 \le k \le Q}$$

$$\mathbf{w} = (w_k)_{1 \le k \le Q} \in E_{\Phi(\mathcal{X})}^Q, \ \mathbf{b} = (b_k)_{1 \le k \le Q} \in \mathbb{R}^Q$$

Basic class of functions

Putting things the other way round: the "kernel trick"

Norms on $\bar{\mathcal{H}}$ and $E^Q_{\Phi(\mathcal{X})}$

$$\|\bar{h}\|_{\bar{\mathcal{H}}} = \sqrt{\sum_{k=1}^{Q} \|\bar{h}_{k}\|_{H_{\kappa}}^{2}} = \sqrt{\sum_{k=1}^{Q} \langle w_{k}, w_{k} \rangle} = \sqrt{\sum_{k=1}^{Q} \|w_{k}\|^{2}} = \|\mathbf{w}\|$$
$$\|\mathbf{w}\|_{\infty} = \max_{1 \le k \le Q} \|w_{k}\|$$

$Q \geq 3$: multi-class support vector machines

 $((x_i, y_i))_{1 \le i \le m} \in (\mathcal{X} \times [1, Q])^m$: training set

 $\ell_{\text{M-SVM}}$: convex loss function (built around the *hinge loss*)

M-SVM: solution of a convex (quadratic) programming problem

Problem 1

$$\min_{h \in \mathcal{H}} \left\{ \sum_{i=1}^{m} \ell_{M-SVM}(y_i, h(x_i)) + \lambda \|\bar{h}\|_{\bar{\mathcal{H}}}^2 \right\}$$
s.t. $\sum_{k=1}^{Q} h_k = 0$

Representer theorem

This theorem states that training (solving Problem 1) amounts to finding the values of the coefficients β_{ik} in

$$h(\cdot) = \left(\sum_{i=1}^{m} \beta_{ik} \kappa(x_i, \cdot) + b_k\right)_{1 \le k \le C}$$

(the values of the "biases" b_k are deduced by application of the Kuhn-Tucker conditions).

A general framework that encompasses the bi-class case

$$((x_i, y_i))_{1 \le i \le m} \in (\mathcal{X} \times \{-1, 1\})^m$$
: training set $h = (h_1, h_2) = (h_1, -h_1), \ \tilde{h}(x) = h_1(x) = \Delta^{\#} h_1(x) = \frac{1}{2} (\langle w_1 - w_2, \Phi(x) \rangle + b_1 - b_2)$ $\ell_{\text{SVM}}(y, \tilde{h}(x)) = (1 - y\tilde{h}(x))_+ \text{ (hinge loss)}$

SVM: solution of a convex (quadratic) programming problem

Problem 2

$$\min_{\tilde{h} \in \tilde{\mathcal{H}}} \left\{ \sum_{i=1}^{m} \ell_{SVM} \left(y_i, \tilde{h}(x_i) \right) + \lambda \left\| \bar{\tilde{h}} \right\|_{H_{\kappa}}^{2} \right\}$$

Representer theorem

This theorem states that training (solving Problem 2) amounts to finding the values of the coefficients β_i in

$$\tilde{h}(\cdot) = \sum_{i=1}^{m} \beta_i \kappa(x_i, \cdot) + b$$

(the value of the "bias" b is deduced by application of the Kuhn-Tucker conditions).

Hard margin M-SVMs and geometrical margins

Geometrical margins

$$d_{\text{M-SVM}} = \min_{1 \le k < l \le Q} \left\{ \min \left[\min_{i:y_i = k} \left(h_k(x_i) - h_l(x_i) \right), \min_{j:y_j = l} \left(h_l(x_j) - h_k(x_j) \right) \right] \right\}$$

$$\forall (k, l), \ 1 \le k < l \le Q,$$

$$d_{\text{M-SVM},kl} = \frac{1}{d_{\text{M-SVM}}} \min \left[\min_{i:y_i = k} \left(h_k(x_i) - h_l(x_i) - d_{\text{M-SVM}} \right), \min_{j:y_j = l} \left(h_l(x_j) - h_k(x_j) - d_{\text{M-SVM}} \right) \right]$$

$$\forall (k, l), \ 1 \le k < l \le Q, \ \gamma_{kl} = d_{\text{M-SVM}} \frac{1 + d_{\text{M-SVM},kl}}{\|w_k - w_l\|}$$

Connection between the penalizer and the geometrical margins

$$\left(\sum_{k

$$\sum_{k=1}^{Q} \|w_k\|^2 = \frac{d_{\text{M-SVM}}^2}{Q} \sum_{k$$$$

M-SVM of Weston and Watkins

Training algorithm - primal formulation

Problem 3 (M-SVM1, Vapnik & Blanz, 1998; Weston & Watkins, 1998; ...)

$$\min_{h \in \mathcal{H}} \left\{ \frac{1}{2} \sum_{k=1}^{Q} \|w_k\|^2 + C \sum_{i=1}^{m} \sum_{k \neq y_i} \xi_{ik} \right\}$$
s.t.
$$\begin{cases}
\langle w_{y_i} - w_k, \Phi(x_i) \rangle + b_{y_i} - b_k \ge 1 - \xi_{ik}, & (1 \le i \le m), (1 \le k \ne y_i \le Q) \\
\xi_{ik} \ge 0, & (1 \le i \le m), (1 \le k \ne y_i \le Q)
\end{cases}$$

Remark 6 The constraint $\sum_{k=1}^{Q} h_k = 0$ is implicit.

M-SVM of Weston and Watkins

Training algorithm - dual formulation

 α_{ik} : Lagrange multiplier corresponding to the constraint $\langle w_{y_i} - w_k, \Phi(x_i) \rangle + b_{y_i} - b_k \ge 1 - \xi_{ik}$ $\alpha = (\alpha_{ik})_{1 \le i \le m, 1 \le k \le Q}, (\alpha_{iy_i})_{1 \le i \le m} = 0$

Problem 4 (M-SVM1)

$$\min_{\alpha} \left\{ \frac{1}{2} \alpha^T H_{WW} \alpha - 1_{Qm}^T \alpha \right\}$$

s.t.
$$\begin{cases} 0 \le \alpha_{ik} \le C, & (1 \le i \le m), \ (1 \le k \ne y_i \le Q) \\ \sum_{i:y_i=k} \sum_{l=1}^{Q} \alpha_{il} - \sum_{i=1}^{m} \alpha_{ik} = 0, \ (1 \le k \le Q - 1) \end{cases}$$

$$H_{WW} = \left(\left(\delta_{y_i, y_j} - \delta_{y_i, l} - \delta_{y_j, k} + \delta_{k, l} \right) \kappa(x_i, x_j) \right)_{1 \le i, j \le m, 1 \le k, l \le Q}$$

$$w_k^* = \sum_{i:y_i=k} \sum_{l=1}^{Q} \alpha_{il}^* \Phi(x_i) - \sum_{i=1}^{m} \alpha_{ik}^* \Phi(x_i) = \sum_{i=1}^{m} \sum_{l=1}^{Q} (\delta_{y_i,k} - \delta_{k,l}) \alpha_{il}^* \Phi(x_i)$$

M-SVM of Crammer and Singer

Training algorithm - primal formulation

Problem 5 (M-SVM2, Crammer & Singer, 2001)

$$\min_{\bar{h} \in \bar{\mathcal{H}}} \left\{ \frac{1}{2} \sum_{k=1}^{Q} \|w_k\|^2 + C \sum_{i=1}^{m} \xi_i \right\}$$
s.t. $\langle w_{y_i} - w_k, \Phi(x_i) \rangle + \delta_{y_i, k} \ge 1 - \xi_i, \ (1 \le i \le m), (1 \le k \le Q)$

Remark 7 The constraint $\sum_{k=1}^{Q} \bar{h}_k = 0$ is implicit.

M-SVM of Crammer and Singer

Training algorithm - dual formulation

 α_{ik} : Lagrange multiplier corresponding to the constraint $\langle w_{y_i} - w_k, \Phi(x_i) \rangle + \delta_{y_i,k} \geq 1 - \xi_i$

$$\alpha = (\alpha_{ik})_{1 \le i \le m, 1 \le k \le Q}, \ \delta = (\delta_{y_i,k})_{1 \le i \le m, 1 \le k \le Q}$$

Problem 6 (M-SVM2)

$$\min_{\alpha} \left\{ \frac{1}{2} \alpha^T H_{WW} \alpha + \delta^T \alpha \right\}$$

s.t.
$$\begin{cases} \alpha_{ik} \ge 0, & (1 \le i \le m), \ (1 \le k \le Q) \\ \sum_{k=1}^{Q} \alpha_{ik} = C, & (1 \le i \le m) \end{cases}$$

M-SVM of Lee, Lin and Wahba

Training algorithm - primal formulation

Problem 7 (M-SVM3, Lee et al., 2004)

$$\min_{h \in \mathcal{H}} \left\{ \frac{1}{2} \sum_{k=1}^{Q} \|w_k\|^2 + C \sum_{i=1}^{m} \sum_{k \neq y_i} \xi_{ik} \right\}$$

s.t.
$$\begin{cases} \langle w_k, \Phi(x_i) \rangle + b_k \le -\frac{1}{Q-1} + \xi_{ik}, & (1 \le i \le m), (1 \le k \ne y_i \le Q) \\ \xi_{ik} \ge 0, & (1 \le i \le m), (1 \le k \ne y_i \le Q) \\ \sum_{k=1}^{Q} w_k = 0, & \sum_{k=1}^{Q} b_k = 0 \end{cases}$$

Result of consistency (Zhang, 2004; Tewari & Bartlett, 2007)

This M-SVM is the only one for which training is Bayes/Fisher consistent.

M-SVM of Lee, Lin and Wahba

Training algorithm - dual formulation

 α_{ik} : Lagrange multiplier corresponding to the constraint $\langle w_k, \Phi(x_i) \rangle + b_k \leq -\frac{1}{Q-1} + \xi_{ik}$

$$\alpha = (\alpha_{ik})_{1 \le i \le m, 1 \le k \le Q}, (\alpha_{iy_i})_{1 \le i \le m} = 0$$

Problem 8 (M-SVM3)

$$\min_{\alpha} \left\{ \frac{1}{2} \alpha^T H_{LLW} \alpha - \frac{1}{Q-1} \mathbf{1}_{Qm}^T \alpha \right\}$$

s.t.
$$\begin{cases} 0 \le \alpha_{ik} \le C, & (1 \le i \le m), \ (1 \le k \ne y_i \le Q) \\ \sum_{i=1}^{m} \sum_{l=1}^{Q} \left(\frac{1}{Q} - \delta_{k,l}\right) \alpha_{il} = 0, & (1 \le k \le Q - 1) \end{cases}$$

$$H_{\text{LLW}} = \left(\left(\delta_{k,l} - \frac{1}{Q} \right) \kappa(x_i, x_j) \right)_{1 \le i, j \le m, 1 \le k, l \le Q}$$

$$w_k^* = \sum_{i=1}^m \sum_{l=1}^Q \left(\frac{1}{Q} - \delta_{k,l}\right) \alpha_{il}^* \Phi(x_i)$$

Use of different norms on w

Problem 9 (ℓ_{∞} -norm M-SVM)

$$\min_{h \in \mathcal{H}} \left\{ \frac{1}{2} t^2 + C \sum_{i=1}^m \sum_{k \neq y_i} \xi_{ik} \right\}$$

$$s.t. \left\{ \begin{array}{l} \langle w_{y_i} - w_k, \Phi(x_i) \rangle + b_{y_i} - b_k \geq 1 - \xi_{ik}, & (1 \leq i \leq m), (1 \leq k \neq y_i \leq Q) \\ \xi_{ik} \geq 0, & (1 \leq i \leq m), (1 \leq k \neq y_i \leq Q) \\ \|w_k\| \leq t, & (1 \leq k \leq Q) \end{array} \right.$$

ℓ_1 -norm M-SVM (Wang et al., 2006)

$$\kappa\left(x, x'\right) = x^T x' \ (\Phi = Id)$$

Problem 10 (ℓ_1 -norm M-SVM)

$$\min_{h \in \mathcal{H}} \left\{ \sum_{i=1}^{m} \ell_{M-SVM}(y_i, h(x_i)) \right\}$$
s. t.
$$\begin{cases}
\sum_{k=1}^{Q} ||w_k||_1 \leq K \\
\sum_{k=1}^{Q} h_k = 0
\end{cases}$$

Use of a different norm on ξ : quadratic loss M-SVMs

Definition 18 (Quadratic loss M-SVM) A quadratic loss M-SVM is a M-SVM for which the empirical term of the objective function, $\|\xi\|_1$, is replaced by a quadratic form, $\xi^T M_{\xi} \xi$, where M_{ξ} is a symmetric positive semidefinite matrix.

Definition 19 (M-SVM²) Variant of the M-SVM of Lee, Lin and Wahba corresponding to

$$M_{\xi} = \left(\left(\delta_{k,l} - \frac{1}{Q} \right) \delta_{i,j} \right)_{1 \le i,j \le m, 1 \le k, l \le Q}.$$

Training algorithm of the M-SVM²

Primal formulation

Problem 11 $(M-SVM^2)$

$$\min_{h \in \mathcal{H}} \left\{ \frac{1}{2} \sum_{k=1}^{Q} \|w_k\|^2 + C\xi^T M_{\xi} \xi \right\}$$
s.t.
$$\begin{cases}
\langle w_k, \Phi(x_i) \rangle + b_k \leq -\frac{1}{Q-1} + \xi_{ik}, & (1 \leq i \leq m), (1 \leq k \neq y_i \leq Q) \\
\sum_{k=1}^{Q} w_k = 0, & \sum_{k=1}^{Q} b_k = 0
\end{cases}$$

Dual formulation

Problem 12 $(M-SVM^2)$

$$\min_{\alpha} \left\{ \frac{1}{2} \alpha^T \left(H_{LLW} + \frac{1}{2C} M_{\xi} \right) \alpha - \frac{1}{Q - 1} \mathbf{1}_{Qm}^T \alpha \right\}$$

s.t.
$$\begin{cases} \alpha_{ik} \ge 0, & (1 \le i \le m), \ (1 \le k \ne y_i \le Q) \\ \sum_{i=1}^{m} \sum_{l=1}^{Q} \left(\frac{1}{Q} - \delta_{k,l}\right) \alpha_{il} = 0, & (1 \le k \le Q - 1) \end{cases}$$

Margins and support vectors of a M-SVM

Figure 2: 3 categories linearly separable in \mathbb{R}^2

Margins and support vectors of a M-SVM

Figure 3: Separating hyperplanes and soft margins of a linear M-SVM1

Figure 4: 3 categories non-linearly separable in \mathbb{R}^3

Figure 5: Separating hyperplanes and support vectors of a linear M-SVM1

Margin Natarajan dimension of the multi-class SVMs

Theorem 6 Let $\bar{\mathcal{H}}$ be the class of functions that a Q-category M-SVM can implement under the hypothesis that $\Phi(\mathcal{X})$ is included in the ball of radius $\Lambda_{\Phi(\mathcal{X})}$ about the origin in $E_{\Phi(\mathcal{X})}$, that the vector \mathbf{w} satisfies $\|\mathbf{w}\|_{\infty} \leq \Lambda_w$ and that $\mathbf{b} = 0$. Then, for all $\epsilon \in \mathbb{R}_+^*$,

$$N$$
-dim $\left(\Delta \bar{\mathcal{H}}, \epsilon\right) \leq \binom{Q}{2} \left(\frac{\Lambda_w \Lambda_{\Phi(\mathcal{X})}}{\epsilon}\right)^2$.

The proof

- does not hold true anymore if the operator Δ is replaced by the operator Δ^* ;
- calls for the use of the ℓ_{∞} -norm instead of the ℓ_2 -norm (used by the penalizer);
- rests directly on the one-against-one decomposition scheme.

$$Q = 2: P_{\epsilon}\text{-dim}(H_{\kappa}) \le \left(\frac{\Lambda_w \Lambda_{\Phi(\mathcal{X})}}{\epsilon}\right)^2$$

From covering numbers to entropy numbers

Definition 20 (Entropy numbers of a set) Let (E, ρ) be a pseudo-metric space (or $(E, \|\cdot\|_E)$ a Banach space) and E' a bounded subset of E. Then, for $n \in \mathbb{N}^*$, the n-th entropy number of E', $\epsilon_n(E')$, is:

$$\epsilon_n(E') = \inf \{ \epsilon > 0 : \mathcal{N}(\epsilon, E', \rho) \le n \}.$$

Definition 21 (Entropy numbers of a bounded linear operator) Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be two Banach spaces. Let $\mathcal{L}(E, F)$ denote the Banach space of all (bounded linear) operators from $(E, \|\cdot\|_E)$ into $(F, \|\cdot\|_F)$ endowed with the norm: $\forall S \in \mathcal{L}(E, F), \|S\| = \sup_{e \in E: \|e\|_E = 1} \|S(e)\|_F$. The n-th entropy number of S is defined as

$$\epsilon_n(S) = \epsilon_n(S(U_E)).$$

From covering numbers to entropy numbers

Definition 22 (Evaluation operator) For $n \in \mathbb{N}^*$, let $x^n \in \mathcal{X}^n$. The evaluation operator S_{x^n} on $\bar{\mathcal{H}}$ is defined as:

$$S_{x^n}: \bar{\mathcal{H}} \longrightarrow \ell_{\infty}^{Qn}$$

$$\bar{h} = (w_k)_{1 \leq k \leq Q} \mapsto S_{x^n}(\bar{h}) = (\langle w_k, \Phi(x_i) \rangle)_{1 \leq i \leq n, \ 1 \leq k \leq Q}$$

Let \mathcal{U} be the unit ball of $\bar{\mathcal{H}}$ in the ℓ_{∞} -norm ($\mathcal{U} = \{\bar{h} \in \bar{\mathcal{H}} : ||\mathbf{w}||_{\infty} \leq 1\}$). The connection between $\mathcal{N}(\epsilon, \mathcal{U}, n)$ and the entropy numbers of S_{x^n} is provided by the following proposition:

Proposition 2 Let $\epsilon \in \mathbb{R}_+^*$ and $n \in \mathbb{N}^*$.

$$\sup_{x^n \in \mathcal{X}^n} \epsilon_p(S_{x^n}) \le \epsilon \Longrightarrow \mathcal{N}(\epsilon, \mathcal{U}, n) \le p.$$

Upper bound on the entropy numbers Finite-dimensional feature space

Proposition 3 (Carl & Stephani, 1990) Let E and F be Banach spaces and $S \in \mathfrak{L}(E,F)$. If S is of rank r, then for $n \in \mathbb{N}^*$,

$$\epsilon_n(S) \le 4||S||n^{-1/r}.$$

Theorem 7 Let \mathcal{H} be the class of functions that a Q-category M-SVM can implement under the hypothesis that $\Phi(\mathcal{X})$ is included in the ball of radius $\Lambda_{\Phi(\mathcal{X})}$ about the origin in $E_{\Phi(\mathcal{X})}$, that the vector \mathbf{w} satisfies $\|\mathbf{w}\|_{\infty} \leq \Lambda_w$ and $\mathbf{b} \in [-\beta, \beta]^Q$. If the dimensionality of the space $E_{\Phi(\mathcal{X})}$ is finite and equal to d, then for all $\gamma \in \mathbb{R}_+^*$,

$$\mathcal{N}^{(p)}\left(\gamma/4, \Delta_{\gamma}\mathcal{H}, 2m\right) \leq \left(2\left\lceil\frac{8\beta}{\gamma}\right\rceil + 1\right)^{Q} \cdot \left(\frac{64\Lambda_{w}\Lambda_{\Phi(\mathcal{X})}}{\gamma}\right)^{Qd}.$$

$$R(h) \le R_{\gamma,m}(h) + O\left(\sqrt{\frac{1}{m}}\right)$$

Upper bound on the entropy numbers Infinite-dimensional feature space

Theorem 8 (Maurey-Carl theorem, Carl & Stephani, 1990) Let H be a Hilbert space and S an operator belonging to $\mathfrak{L}(\ell_1^n, H)$ or $\mathfrak{L}(H, \ell_\infty^n)$. Then, for each couple of integers (k, n) satisfying $1 \leq k \leq n$,

$$e_k(S) \le c \left(\frac{1}{k} \log_2 \left(1 + \frac{n}{k}\right)\right)^{1/2} ||S||,$$

where the dyadic entropy number $e_k(S)$ is equal to $\epsilon_{2^{k-1}}(S)$ and c is a universal constant.

Theorem 9 Let \mathcal{H} be the class of functions that a Q-category M-SVM can implement under the hypothesis that $\Phi(\mathcal{X})$ is included in the ball of radius $\Lambda_{\Phi(\mathcal{X})}$ about the origin in $E_{\Phi(\mathcal{X})}$, that the vector \mathbf{w} satisfies $\|\mathbf{w}\|_{\infty} \leq \Lambda_w$ and $\mathbf{b} \in [-\beta, \beta]^Q$. Then, for all $\gamma \in \mathbb{R}_+^*$,

$$\mathcal{N}^{(p)}(\gamma/4, \Delta_{\gamma}\mathcal{H}, 2m) \leq \left(2\left\lceil \frac{8\beta}{\gamma} \right\rceil + 1\right)^{Q} \cdot 2^{\frac{16c\Lambda_{w}\Lambda_{\Phi(\mathcal{X})}}{\gamma}\sqrt{\frac{2Qm}{\ln(2)}} - 1}.$$

$$R(h) \le R_{\gamma,m}(h) + O\left(\sqrt{\frac{1}{\sqrt{m}}}\right)$$

Basic probabilistic tools

Definition 23 (Rademacher average) For $n \in \mathbb{N}^*$, let \mathcal{A} be a bounded set of vectors $a = (a_i)_{1 \leq i \leq n}$ belonging to \mathbb{R}^n and let $(\sigma_i)_{1 \leq i \leq n}$ be a Rademacher sequence. The Rademacher average associated with \mathcal{A} , $\mathcal{R}_n(\mathcal{A})$, is defined by:

$$\mathcal{R}_n(\mathcal{A}) = \mathbb{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \left| \sum_{i=1}^n \sigma_i a_i \right|.$$

Theorem 10 (Bounded differences inequality, McDiarmid, 1989) Let $(T_i)_{1 \leq i \leq n}$ be a sequence of n independent random variables taking values in a set \mathcal{T} . Let g be a function from \mathcal{T}^n into \mathbb{R} such that there exists a sequence of nonnegative constants $(c_i)_{1 \leq i \leq n}$ satisfying:

$$\forall i \in [1, n], \sup_{(t_i)_{1 \le i \le n} \in \mathcal{T}^n, t_i' \in \mathcal{T}} |g(t_1, \dots, t_n) - g(t_1, \dots, t_{i-1}, t_i', t_{i+1}, \dots, t_n)| \le c_i.$$

Then, for all $\tau \in \mathbb{R}_+^*$, the random variable $g(T_1, \ldots, T_n)$ satisfies:

$$\mathbb{P}\left\{g\left(T_{1},\ldots,T_{n}\right)-\mathbb{E}g\left(T_{1},\ldots,T_{n}\right)>\tau\right\}\leq e^{-\frac{2\tau^{2}}{c}}$$

$$\mathbb{P}\left\{\mathbb{E}g\left(T_{1},\ldots,T_{n}\right)-g\left(T_{1},\ldots,T_{n}\right)>\tau\right\}\leq e^{-\frac{2\tau^{2}}{c}}$$

where $c = \sum_{i=1}^{n} c_i^2$.

Uniform convergence result

Convexified margin risk corresponding to the M-SVM of Crammer and Singer

$$\tilde{R}(h) = \mathbb{E}\left[\left(1 - \Delta h_Y(X)\right)_+\right]$$

Theorem 11 Let $\bar{\mathcal{H}}$ be the class of functions that a Q-category M-SVM can implement under the hypothesis that $\Phi(\mathcal{X})$ is included in the closed ball of radius $\Lambda_{\Phi(\mathcal{X})}$ about the origin in $E_{\Phi(\mathcal{X})}$, that the vector \mathbf{w} satisfies $\|\mathbf{w}\|_{\infty} \leq \Lambda_w$ and $\mathbf{b} = 0$. Let $K_{\bar{\mathcal{H}}} = \Lambda_w \Lambda_{\Phi(\mathcal{X})} + 1$ and $\delta \in (0,1)$. With probability at least $1 - \delta$, the risk of any function \bar{h} in $\bar{\mathcal{H}}$ is bounded from above by:

$$R(\bar{h}) \leq \tilde{R}_m(\bar{h}) + \frac{4}{\sqrt{m}} + \frac{4Q(Q-1)\Lambda_w}{m} \sqrt{\sum_{i=1}^m \kappa(X_i, X_i)} + K_{\bar{\mathcal{H}}} \sqrt{\frac{\ln(\frac{1}{\delta})}{2m}}.$$

$$R(\bar{h}) \leq \tilde{R}_m(\bar{h}) + O\left(\sqrt{\frac{1}{m}}\right)$$

Radius-margin bound

Theorem 12 (Vapnik, 1998) Let us consider a hard margin bi-class SVM. Let \mathcal{L}_m be the number of errors that it makes in a leave-one-out cross-validation procedure and let $\gamma = \frac{1}{\|w\|}$ denote its geometrical margin. Then the following upper bound holds true:

$$\mathcal{L}_m \le \frac{\mathcal{D}_m^2}{\gamma^2}$$

where \mathcal{D}_m is the diameter of the smallest ball of the feature space containing the support vectors.

Radius-margin bound for the M-SVM of Weston and Watkins

$$d_{\rm WW} = d_{\rm CS} = 1$$

Theorem 13 Let us consider a hard margin Q-category M-SVM of Weston and Watkins (or Crammer and Singer) on a domain \mathcal{X} . Let $d_m = \{(x_i, y_i) : 1 \leq i \leq m\}$ be its training set, \mathcal{L}_m the number of errors resulting from applying a leave-one-out cross-validation procedure to this machine, and \mathcal{D}_m the diameter of the smallest sphere of the feature space containing the set $\{\Phi(x_i) : 1 \leq i \leq m\}$. Then the following upper bound holds true:

$$\mathcal{L}_m \le \frac{K_{CV}}{Q} \mathcal{D}_m^2 \sum_{k < l} \left(\frac{1 + d_{WW,kl}}{\gamma_{kl}} \right)^2.$$

Constant K_{CV}

- The value of K_{CV} is obtained by solving as many QP problems as there are support vectors.
- For $Q=2,\,K_{\rm CV}=2,$ and the bound reduces itself to the bi-class one.

Radius-margin bound for the M-SVM of Lee, Lin and Wahba

$$d_{\text{LLW}} = \frac{Q}{Q-1}$$

Theorem 14 Let us consider a hard margin Q-category M-SVM of Lee, Lin and Wahba on a domain \mathcal{X} . Let $d_m = \{(x_i, y_i) : 1 \leq i \leq m\}$ be its training set, \mathcal{L}_m the number of errors resulting from applying a leave-one-out cross-validation procedure to this machine, and \mathcal{D}_m the diameter of the smallest sphere of the feature space containing the set $\{\Phi(x_i) : 1 \leq i \leq m\}$. Then the following upper bound holds true:

$$\mathcal{L}_m \le Q^2 \mathcal{D}_m^2 \sum_{k < l} \left(\frac{1 + d_{LLW,kl}}{\gamma_{kl}} \right)^2.$$

This bound does not reduce itself to the bi-class one for Q=2.

Conclusions

Capacity measures of the classes of functions

- The γ - Ψ -dimensions play for the M-SVMs (and the MLPs!) the same role as the fat-shattering dimension for the bi-class SVMs.
- The current upper bounds on the covering numbers are suboptimal but in specific cases.
- If the use of the Rademacher complexity currently provides the sharpest bound, better bounds, adapted to the problem of interest, should result from implementing hybrid approaches.

Guaranteed risks

- These studies highlight the specific character of the multi-class case.
- Model selection should provide a touchstone to assess the different guaranteed risks derived.

Open problems and future work

Bounds on the risk of large margin multi-category classifiers

- Computation of a bound on the universal constant of the Maurey-Carl theorem
- Use of Dudley's method of chaining to improve the VC bound
- Derivation of dedicated PAC-Bayes bounds

- ...

Model selection for M-SVMs

- Assessment of the guaranteed risks and radius-margin bounds to select the value of the soft margin parameter C
- Integration in the applications implementing the M-SVMs of procedures choosing automatically the values of the hyperparameters