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Abstract. Roughly speaking, there is one single model of pattern recognition
support vector machine (SVM), with variants of lower popularity. On the con-
trary, among the different multi-class SVMs (M-SVMs) published, none is clearly
favoured. Although several comparative studies between M-SVMs and decomposi-
tion methods have been reported, no attention had been paid so far to the com-
bination of those models. We investigate the combination of M-SVMs with low
capacity linear ensemble methods that estimate the class posterior probabilities.
Keywords: Ensemble methods, M-SVMs, Capacity control.

1 Introduction

Most of the statistical models developed for pattern recognition are based on
a principle that does not change fundamentally with the number of categories.
Things are more complex in the case of SVMs. Those machines were initially
devised to compute dichotomies [2], and the first articles dealing with their
use for polytomy computation report results obtained with decomposition
methods [10]. M-SVMs were introduced later [11]. Since then, a few M-SVMs
have been proposed and evaluated, with the attention of the community
focusing on four models exhibiting distinct properties. Several comparative
studies between M-SVMs and decomposition methods have established that
in practice, each model has its advantages and drawbacks (see for instance
[7]). The behaviours observed are different, in accordance with what was
predicted by the theory. To the best of our knowledge, nobody has tried
so far to take benefit of that phenomenon by combining different M-SV Ms.
To fill this void, we deal with the combination of M-SVMs subject to two
constraints: the sample complexity of the combiners must be low, to avoid
overfitting, and the outputs must be class posterior probability estimates.
We propose to combine the post-processed outputs of M-SVMs with lin-
ear ensemble methods which differ with respect to their objective function.
They satisfy the aforementioned constraints and experimental results illus-
trate their potential. The organization of the paper is as follows. Section 2
provides a general introduction to the M-SVMs and characterizes the four
main models. Section 3 deals with the description and statistical analysis of
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the linear combiners. Experimental results are exposed in Section 4, and we
draw conclusions in Section 5. For lack of space, simple proofs are omitted.

2 Multi-class SVMs

We consider discrimination problems where X is the description space and
Y =[1,Q]is the set of categories. M-SVMs are kernel machines: they operate
on a class of functions induced by a positive semidefinite function/kernel [1].
Let x be a kernel on X2 and let (H,, (-, >H,{) be the RKHS spanned by & [1].

Let H = (H,, (-, .>HK)Q and H = ((Hx, (-, )y, ) + {1})Q. By construction,
H is the class of vector-valued functions h = (hy), <k<g On & such that:

Vk €[1,Q1, hi() = Birr (win,-) + b
=1

where the z;; are elements of X (the B;; and by are scalars), as well as the
limits of these functions as the sets {x;x : 1 < i < my} become dense in X, in
the norm induced by (-, )y . It springs from Mercer’s theorem [1] that there
exists a map @ from X into a Hilbert space (E@(X), (-, )) such that H defines
a multivariate affine model on @ (X). Functions h can then be rewritten as

h(-) = ((wk: ) + br)1<rzq

where the vectors wy, belong to Eg(x). H can then be seen as a multivariate
linear model on @ (X'), endowed with a norm || - ||z given by:

Q Q Q
e R, [l =y D2 el = o D el = | 3 o).
k=1 k=1 =

k=1

Definition 1 (M-SVM). Let (%, ¥i)),<icm € (X x[1,Q])™ and X € R
A Q-category M-SVM is a classifier obtained by minimizing over the hyper-
plane )7 | hy = 0 of H a penalized convexified empirical risk of the form:

Nisvm (h) = [[ém-svmlRgvm + A HBH;

where &gy is a vector of slack variables associated with the constraints
of good classification, which are linear, and |||\, gy 15 either the £, norm
(p = 1) or the norm induced by a symmetric positive definite matrix (p = 2).

In chronological order, the four main M-SVMs are the machines of We-
ston and Watkins (WW) [11], Crammer and Singer (CS) [3], and Lee, Lin
and Wahba (LLW) [8], and the M-SVM? [6]. Their characteristics are sum-
marized in Table 1 (in the sequel, when no confusion is possible, the subscript
identifying the machine, i.e., instantiating M-SVM, is omitted).
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M-SVM &vsvm (constraints of good classification) Il vrsvar

v (Xi) — i) =2 1-&

WW |Vi [1,m], k€ [LQI\ {y}, 4w @) —hel@)=1=Cu |,

ik =0

Vie[l,m], vk €[1L,QI\{wi}, hy, (i) = he (z:) 2 1-¢&

Cs . 2

Vke[[l,Q]],bk:O,Vze[[ m], 5120
LLW | Vie[l,m], vk e[1,Q]\ {u}, u (xlz) BERE 0
M-SVM? Vie[1,m], vk €[1,Q]\ {yi}, hn(2:) < —go3 + & M

Table 1. Specifications of the four main M-SVMs

While the CS-M-SVM has one slack variable per training example, the
other three have Q — 1. In that second case, ¢ is the vector of R2™ whose
component of index (i — 1)Q + k is &, with the &, being equal to 0. The
matrix M is such that the quadratic form ¢7 M¢ defining ||€yigvme ||§/[.SVM2
is given by ¢"M¢ = 30T Y S S 60y Ok + 1) Er&jr, where § s
the Kronecker symbol. The following observations illustrate the differences
between these machines. The implementation of the training algorithm of
the CS-M-SVM is the easiest one, the LLW-M-SVM was the first M-SVM
with a Fisher consistent loss and the M-SVM? is the first soft margin M-SVM
for which a generalized radius-margin bound applies.

3 Linear ensemble methods

We make the hypothesis that N classifiers gU) = (g}gj))1<k< , (1 <j<N),
are available to perform the classification task of interest.\ForQ all n in N*, let
U,, be the polytope given by: U, = {u = (up)1gp<n e R} : 22:1 Up = 1}.
The outputs of the classifiers are supposed to be nonnegative and sum to one,

i.e., to belong to Ug. We first describe the ensemble methods considered, and
then characterize their sample complexity as a function of N and Q.

3.1 Class of functions and training algorithms

Let g be the function from X to Ug obtained by appending the component
functions of the N classifiers g\¥): g,(cj )
G—-DHQ + k.

Definition 2 (multivariate linear model). We consider the multivariate
linear model parameterized by the matrix B € Mg ng (R) such that

Ve e X, g(z) = (9k(2))1<heq = BI(@)

s.t. Yu € Ué\’, Bu € Ug.

is its component function of index
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The transposes of the rows of B are denoted S, so that gp(z) = B g(x),

and 8 = (Bk)1<peo € RN@®. The general term of B is written with three
indices, i.e., Brji (Okji is the component of f; of index (j — 1)Q +1). Let
dm = {(z;,y;) : 1 < i< m} be a training set. Let ¢; denote the one of Q
coding of category k: t; = (5;@’1)1@@2. We consider combiners obtained by
solving convex programming problems of the form:

Problem 1 (Linear ensemble methods).

mgn Z_; lLEM (ty,, Bg (3))

s.t. Yu € Ug, Bu € Ug
where the loss function ¢1g\ 1S convex.
Proposition 1 makes the optimization computationally tractable.

Proposition 1. Irrespective of the nature of L1z, there is an optimal so-
lution of Problem 1 which belongs to the polytope Vi g given by:

BeRrY @
vj €[LN], VI [1,Q ~ 1], 34, (Bujt — Brjq) =0
N

Zszl Zj:l Briq =1
We focus on two natural choices for /1 gy that give rise to class posterior
probability estimates: the quadratic loss and the cross-entropy loss. Let G
be the matrix of M,, nvo (R) whose rows are the vectors g (z:)". Let Io
denote the identity matrix of size Q and ® the Kronecker product. For all
kin [1,Q], let Y = (3y,.4);<;c; and let Y = (Vi) e € {0,1}°™. The
objective function (empirical risk) corresponding to the quadratic loss is:

Jaua @) = 557 {Ig @ (G70) V8- {¥7 (1506} 5.

The standard expression of the cross-entropy loss {cg is:
Q
V(w,y) € XXV, Low (ty, 3 (2)) = =Y {8y (gr () + (1 = 6,0) In (1= ge ()}
k=1

This loss function can be used here since Ug C [0, 1]Q. We take benefit of
the fact that the component functions sum to one to substitute to fcg a
simplified expression, so that the objective function becomes

m Q T ~ )
Jer (9) = —Zz%,kln <W> .

Oy,
i=1 k=1 yi.k

It is well known that the combination of the one of @} coding of the desired
outputs with these two loss functions leads to the selection of a function that
generates estimates of the class posterior probabilities (see [9] for a proof).
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3.2 Sample complexity of the linear ensemble methods

For 8 € Vn,q, let gs = (9p,k), << e the function from U to Uq such that

gs(u) = (55“)1@«1 Let Gg = {gs : B € Vn,o}. We identify the capacity
of the combiners with that of Ggz. In [4], we prooved that for large mar-
gin multi-category classifiers, the appropriate generalizations of the Vapnik-
Chervonenkis dimension are the y-¥-dimensions. Their use involves the ap-
plication of margin operators. Here, a suitable y-W-dimension is an extension
of the Natarajan dimension and the operator needed is the A one.

Definition 3 (A operator). Let G be a class of functions from X to R?.

1

Vgeg, Ve e X, Agz) = (Ag(2))1<k<q = 5 (gk(w) - r}l;g@(fﬁ)) :
1<k<Q

For the sake of simplicity, Agy, is used in place of (Ag),.. Let AG = {Ag: g € G}.

Definition 4 (Natarajan dimension with margin v). Let G be defined
as above. For v € R% | s, = {x; : 1 <i < n} C X is said to be y-N-shattered
by AG if there is a set I(s,) = {(i1(x;),92(z;)) : 1 < i < n} of couples of
integers satisfying 1 < i1(x;) < i2(x;) < @ and a vector v, = (b;) in R™ such
that, for each vector v, = (y;) in {—1,1}", there is g, in G satisfying

. ify; = 1, Agyi,(z) (i) —bi =
viellnl {if Yi = =1, Agyis(ai) (i) +0i =7

The Natarajan dimension with margin v of AG, N-dim(AG, 7), is the maximal
cardinality of a subset of X' y-N-shattered by AG, if this maximum exists,
and +oco otherwise.

An upper bound on N-dim(AGg, ) is provided by Theorem 1.

Theorem 1.

(1)

Vy € R}, N-dim(AGgs,7) < (Q> NQ

2 ) 4y2°

The proof of Theorem 1 is based on two lemmas.

Lemma 1. Let v € R} and n € N*. Ifsn:{uizlgign}CUg is y-N-

n

shattered by AGg, then there exists a subset s, of s, of cardinality p = {m-‘

2
such that for every partition of s, into two subsets sp1 and sp 2,

Z u; — Z u; 2%7. (2)

U; €ESp,1 U; €Sp,2 9
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Proof. Let (I (s,),vy) witness the y-N-shattering of s,, by AGg. According
to the pigeonhole principle, there is at least one couple of indices (k1, k2) such
that there are at least p points in s,, for which (i1 (u;),2(u;)) is (k1, k2). For
the sake of simplicity, the points in s,, are reordered in such a way that the p
first of them exhibit this property. The corresponding subset of s,, is denoted
sp. This means that for all vector v, = (y;) in {—1,1}", there is a function
9s, in Gg characterized by the vector By = (By.x);<r<cq € Vv, such that:

. ify; = 1, Agp, k, (ui) — b =
Vz S Hlvp]]a {lf Y = _17 Agﬁy,kyz(ui) +bz 2 v .

By definition of Gz and the margin operator A, this is implies:

V'e[[l ]] ifyi: 1,% ;klui—ﬂ£k2ui —bi 2’)/ (3
P = 1 L (BT i — BT, w) A b sy )
ifyi = —1, 5 (Byrti = By, i) +0i 27

Consider now any partition of s, into two subsets s, 1 and s, 2. Consider any
vector v, in {—1,1}" such that y; = 1 if u; € 5,1 and y; = —1 if u; € sp 2.
It results from (3) that there exists gg, in Gg such that:

%(ﬁy,kl—ﬂy,kz)T Dowi— D> wi| = Y b+ Y bizpy.

U; €Sp,1 U; €Sp,2 U;E€Sp,1 U;€ESp,2

Conversely, consider any vector v, such that y; = —1if u; € sp 1 and y; = —1
if u; € sp 2. There exists g, in G such that:

%(ﬁy,kz*ﬂy,kl)T Z U; — Z u; | + Z b — Z bi>p7~

U; €ESp,1 U; €ESp, 2 U; €8p,1 U; €Sp,2

Thus, whatever the sign of Zuiesp Cbi — Zui@p , bi is, by application of the
Cauchy-Schwarz inequality, there is a vector 3, in Vi g such that:

1
5 1By = By.ia S oui— Yo il =py. (4)

U €ESp,1 U; €8p,2 9

For 8 € Vg, maxi<izi<q ||Br — Bil|5 is reached when one of the vectors
is the null vector and the other one concentrates all the mass on as few
components as possible. A situation of this kind is obtained by choosing any
couple (ko,jo) in [1,Q] x [1, N] and defining the vector 3 as follows

vk e[[LQ]L VJ 6[[1,]\7]], Vi e IIl?Q]]v Bk:jl = 6ko,k6j07j‘

In that case, for all kin[1, Q\{ko}, |8k, — Brlly = VQ. Thus, [|Byk, — By lly <
v/Q, and a substitution in (4) concludes the proof.
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Lemma 2. For all n € N*, all subset s, = {u; : 1 <i<n} of U} can be
partitioned into two subsets s1 and so satisfying

dowi= ) u

u; €81 u; €S2

< VNn. (5)

Proof. Let o = (Ui)1<z<n be a Rademacher sequence: the o; arei.i.d. Bernoulli

random variables with parameter p = % Y (i,7) €[1, n]]2 JEq [0i04] = 0; 5.

n
E Ol
i=1

The points of Ug whose fo-norm is maximum are its vertices. The value of
their ¢o-norm is vV N. Thus, E, [|>°1 criul-||§ < Nn. This implies that there

exists a vector v = (vi);¢;c,, € {—1,1}" such that |37 v, < VNn.
Setting s1 = {u; € s, : v; = 1} and sy = s, \ 1 then concludes the proof.

2

n n
- ZZUZT“J [oi0] Z uill3 < n nax, ||u||2

9 =1 j=1

With Lemmas 1 and 2 at hand, the proof of Theorem 1 is straightforward.

Proof. Let s, = {u; : 1 < i < n} be a subset of Ug ~-N-shattered by AGg.
According to Lemma 1, there is at least a subset s, of s, of cardinality

D= {é)-‘ satisfying (2) for all its partitions into two subsets s, 1 and sp 2.

Since, according to Lemma 2, there is at least one of these partitions for
which (5) holds true, %'y < +/Np, which implies (1) since n < (g)p

4 Experimental results

The problem considered is protein secondary structure prediction. It consists
in assigning to each residue of a protein sequence its conformational state:
a-helix, B-strand or coil (@ = 3). The four main M-SVMs and the two
combiners resulting from using the quadratic and cross-entropy losses are
assessed on the P1096 data set [5]. The experimental protocol differs from the
one used in [5] in two respects. The outputs of the M-SVMs are normalized:

exp (h;cj)(-))
i exp (n()

and an additional level of cross-validation is introduced so as to train the M-
SVMs and the combiners on different data. Table 2 summarizes the results
obtained. Prediction accuracy is described by means of three standard mea-
sures giving complementary indications: the recognition rate O3, Matthews’
correlation coefficients C\/3/c0i1, and the segment overlap measure Sov.

The comparison of the performance of the M-SVMs considered individ-
ually and in the framework of a combination shows a gain induced by the
combination which is statistically significant with confidence at least 0.95.

Vi e[1,4], vk €[1,3], g9 () =
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WW]| CS [LLW|M-SVM?[Combiner Quad|Combiner CE
Q3 66.9]66.5/66.7]| 66.7 67.7 67.6
C. [0.52]0.50[ 0.51| 0.51 0.54 0.54
Cps 0.42]0.40[0.40 | 0.42 0.44 0.43
Croit| 0.46(0.44] 0.46 | 0.44 0.47 0.48
Sov[56.0[55.7]56.2| 56.0 58.1 57.9

Table 2. Relative prediction accuracy of the M-SV Ms and the linear combiners on
the 1096 sequences (268575 residues) of the P1096 data set

5

Conclusions and ongoing research

We have introduced linear combiners for M-SVMs. Their low sample com-
plexity should prevent them from overfitting and they provide estimates of
the class posterior probabilities. We are currently performing a large scale
study of their performance, focusing on the quality of these estimates, used
to derive emission probabilities in a hidden Markov model.
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