
Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Sentence Generation: Input, Algorithms and
Applications

Claire Gardent

CNRS/LORIA Nancy (France)

Joint work with Paul Bedaride, Ben Gottesman, Eric Kow, Shashi Narayan, Laura
Perez-Beltrachini and Sylvain Schmitz

TALN 2011, Montpellier

1 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Outline

1 Surface Realisation

2 Generating from semantic representations

3 Generating from Shallow Dependency Structures

2 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Surface Realization

Surface realisation (SR) maps an abstract linguistic
representation to a sentence

3 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example

Arg1:

Caledon-Exp
Relation:

departure
Arg2:

10am

4 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example

NP

The Caledonian
Express

S

NP↓ VP

V[agr:3sg]

depart

VP

VP∗ PP

P

at

NP

10am

Arg1:

Caledon-Exp
Relation:

departure
Arg2:

10am

5 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example

S

NP

The Caledonian Express

VP

V depart

VP

VP∗ PP

P

at

NP

10am

Arg1:

Caledon-Exp
Relation:

departure
Arg2:

10am

6 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example

S

NP

The Caledonian Express

VP

VP

V[agr:3sg]

depart

PP

P

at

NP

10am

The Caledonian Express departs at 10am.

Arg1:

Caledon-Exp
Relation:

departure
Arg2:

10am

7 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

What is Surface Realisation used for?

at the end of the Natural Language Generation (NLG) pipeline, to
produce the clauses making up the generated text

in experiments on symbolic, transfer-based machine translation
(http://www.emmtee.net/)

to develop intelligent, user friendly interfaces to knowledge bases (cf.
the Quelo querying tool or the SWAT ontology verbaliser,
http://kcap11.stanford.edu/tutorials.html)

8 / 71

http://www.emmtee.net/
http://kcap11.stanford.edu/tutorials.html

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

What is the input to SR?

There is no well-defined input to SR. It varies depending on the
application:

LOGON Machine Translation System: flat semantics (Minimal
Recursion Semantics) formulae produced by the HPSG ERG grammar

Quelo ontology querying tool : OWL formulae

NLG Systems: typed feature structures, dependency trees

Generation Challenge 2011 SR Task: shallow and flat dependency
structures

9 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

What is the input to SR?

The input is more syntactic or more semantic; a tree or a graph.

Open Questions:

How does the choice of input representation types affect efficiency
and applications ?

Can a single grammar be used with different input representations ?

Can a unifying framework be provided for SR algorithms working on
both types of input ?

10 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Table of Contents

1 Surface Realisation

2 Generating from semantic representations

3 Generating from Shallow Dependency Structures

11 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating from semantic representations

Complexity

Algorithms
I Geni
I RTGgen

Applications
I Generation of graduated Test Suites for Entailment Recognition
I Error Mining in Grammars
I Language teaching and Ontology verbalisation

12 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating from Flat Semantics

Caledon-Exp(c) departure(e,c) 10am(e)

13 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating from Flat Semantics

NP[idx:c]

The Caledonian
Express

S

NP↓
[idx:c]

VP[idx:e]

V[agr:3sg]

depart

VP

VP∗

[idx:e]
PP

P

at

NP

10am

Caledon-Exp(c) departure(e,c) 10am(e)

14 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating from Flat Semantics

S

NP[idx:c]

The Caledonian Express

VP[idx:e]

V[agr:3sg]

depart

VP

VP∗

[idx:e]
PP

P

at

NP

10am

Caledon-Exp(c) departure(e,c) 10am(e)

15 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating from Flat Semantics

S

NP[idx:c]

The Caledonian Express

VP[idx:e]

VP

V[agr:3sg]

depart

PP

P

at

NP

10am

The Caledonian Express departs at 10am.

Caledon-Exp(c) departure(e,c) 10am(e)

16 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Feature-based Lexicalised Tree Adjoining Grammar

Set of trees, each anchored with a word and associated with a flat
semantics.
Two combining operations: substitution and adjunction
Tree nodes decorated with Feature Structures which are unified during
combination

Claire Gardent and Laura Kallmayer
Semantic construction in Feature-Based TAG.
EACL 2003, Budapest (Hungary)

17 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Complexity

Surface realisation is exponential in the length of the input
(Brew92,Kay96)

Unordered Input: At least 2n possible combinations with n the
number of literals in the input

intersective modifiers: 2m+1 possible intermediate structures with
m the number of modifiers for a given structure

lexical ambiguity:
∏i=n

i=1 Lexi possible combinations with Lexi the
number of lexical entries associated with literal li and n the number
of literals in the input

18 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

SR Algorithm 1: GenI

3 steps:

1 Lexical selection: select trees whose semantics subsumes the input
semantics.

2 Combination: perform substitutions or adjunctions between selected
trees.

3 Extraction: Return the trees which are syntactically complete and
whose semantics matches the input semantics.

Claire Gardent and Eric Kow.
A Symbolic Approach to Near-Deterministic Surface Realisatin useing Tree
Adjoining Grammar.
ACL 2007, Prag

19 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example

Jean aime Marie

lex selection
(SemTAG)

combination

extraction

jean(j) ∧ aimer(e, j,m) ∧ marie(m)
N↓t

S

V
aN↓s

aime

Jean

Nj

Marie

Nm

· · ·

S

aimeJean Marie

· · ·

N
j

N
m

V
e

Marie est aimée par Jean
C'est Marie que Jean aime
C'est par Jean que Marie est aimée
...

and also...

20 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Optimisations

Semantic indices used to limit the impact of unordered input

Substitutions before Adjunctions to deal with intersective modifiers

Polarity based filtering to reduce the initial search space and limit the
impact of lexical ambiguity

21 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Intersective modifiers

fierce(x),little(x),cat(x),black(x)

15 intermediate structures:
F,L,B,FL,FB,BL,BF,LB,LF,FLB,FBL,BLF,BFL,LBF,LFB

multiplied by the context :
x 2: the F,L,B,FL,FB,BL,BF,LB,LF,FLB,FBL,BLF,BFL,LBF,LFB

x 2: the F,L,B,FL,FB,BL,BF,LB,LF,FLB,FBL,BLF,BFL,LBF,LFB runs

45 structures built

22 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Substitutions before Adjunctions

Adjunction restricted to syntactically complete trees
The 2m+1 intermediate structures are not multiplied out by the context :
the cat runs

the fierce cat runs, the black cat runs, the little cat runs, the fierce little cat runs, the

fierce black cat runs, the black fierce cat runs,

16 structures built

23 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Polarity based filtering (Perrier 2003)

Polarity based filtering filters out all combinations of lexical items which
cannot result in a grammatical structure

The grammar trees are associated with polarities reflecting their
syntactic resources and requirements

A combination of trees covering the input semantics but whose
polarity is not zero is necessarily syntactically invalid and is therefore
filtered out.

A finite state automata is built which represent the possible choices
(transitions) and the cumulative polarity (states)

The paths leading to a state with polarity other than zero are deleted
(automata minimisation)

24 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Polarity Filtering

Many combinations are syntactically incompatible. Polarity filtering aims
to detect these combinations and to filter them out.

john(j) drink(e,j,w) water(w) Polarity Count

+1np SFIN -2np +1np +0np
SINF -1np +1np

25 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

SR Algorithm 2: RTGen

Builds derivation rather than derived trees ...

using a conversion from FB-LTAG to Feature Based Regular Tree
Grammar (FB-RTG, Schmitz and Leroux 2009)

Earley algorithm with packing and sharing

Claire Gardent, Benjamin Gottesman, and Laura Perez-Beltrachini.
Using Regular Tree Grammars to enhance Sentence Realisation.
Natural Language Engineeering, 2011.

26 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Derived and Derivation Tree

27 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Converting a TAG to an RTG

28 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Earley Algorithm

Axiom
[S ′ → •SS , ∅]

Goal [S ′ → SS•, φ] where φ is the input semantics.

Prediction
[A→ a(α • Bx β), ϕ]

[σ(B0 → b(•B1, ...,Bn), ψ)]

with 〈B → b(B1, ...,Bn), ψ〉 a grammar rule

σ = mgu(B,B0), P[x] ∈ ψ and ϕ ∩ ψ = ∅

Completion
[A→ a(α • B δ), ϕ][B → b(β)•, ψ]

[σ(A→ a(α(B, f) • δ), ϕ ∪ ψ)]

with σ = mgu(B,B0), ϕ ∩ ψ = ∅

29 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

RTGen vs GenI

All trees are taken into account while filtering (GenI’s polarity filtering
ignores auxiliary trees)

All features can be used (GenI’s polarity filtering can only use ground
features i.e., categories)

All syntactic constraints are applied (not just counting)

Intersective Modifiers are handled using packing

30 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Comparison on two Automatically Generated Benchmarks

Modifiers benchmark: modification differently distributed over the
predicate argument structures + lexical ambiguity in modifiers. 1 789
input formulae.

All benchmark: modification, varying number and type of verb
arguments. 890 input formulae.

Claire Gardent, Benjamin Gottesman, and Laura Perez-Beltrachini.
Comparing the performance of two TAG-based surface realisers using
controlled grammar traversal.
COLING 2010: Posters, Beijing, China.

31 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Modification

0 1 2 3 4 5 6 7

103

104

p

p

p

p

p

p

number of modifiers

u
n

p
ac

ke
d

ch
ar

t
si

ze

RTGen-all

RTGen-level0
p RTGen-selective

GenI

Space performance results on the

Modifiers-benchmark.

when using no features (RTGen-level0)
over-generation increases the number of
intermediate structures.

when using all the features
(RTGen-all) or only a selected set of
them (RTGen-selective) (almost) the
same number of intermediate structures
are produced.

32 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Overall efficiency
0
-1
0
0

1
0
0
-1
0
0
0

1
0
0
0
-5
0
0
0

5
0
0
0
-1
0
0
0
0

1
0
0
0
0
-1
0
0
0
0
0

1
0
0
0
0
0
-5
0
0
0
0
0

5
0
0
0
0
0
-1
0
0
0
0
0
0

m
or
e
th
a
n
1
0
0
0
0
0
0

102

103

104

105

106

p

p p

p
p

p p p

Initial Search Space (ISS) size

u
n

p
ac

ke
d

ch
ar

t
si

ze

RTGen-all

RTGen-level0
p RTGen-selective

GenI

Space

performance results on the

Complexity-benchmark

For more complex cases,
RTGen’s sharing and packing
mechanisms perform better.

33 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Using GenI to generate Entailment Benchmarks

RTE Challenge (Recognising Textual Entailment)

Would a human says that Text1 can be inferred from Text2 ?

Basic semantic task

Useful for semantic based applications such as Question Answering,
Summarising, Information Extraction, etc.

Based on real world data. AI complete.

Paul Bedaride and Claire Gardent.
Benchmarking for syntax-based sentential inference.
COLING 2010, Beijing, China.

34 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Using GenI to generate Entailment Benchmarks

GenI can be used to generate linguistically focused entailment benchmarks
annotated with information that supports detailed error mining.

T: The man gives the woman the flowers that smell nice
smell:{n0Va1,active,relSubj,canAdj}
give:{n0Vn2n1,active,canSubj,canObj,canIObj}

H: The flowers are given to the woman
give:{n0Vn1Pn2,shortPassive,canSubj,canIObj}

Entailment: true

35 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Using GenI to generate Entailment Benchmarks

1 Use GenI to generate a Generation Bank i.e., a set of tuples 〈
semantics, sentence, syntactic properties 〉

2 Pair generation bank items and use theorem provers to determine
whether or not there is entailment between the two sentences

T: S1 , τ1
H: S2 , τ2
Entailment: true
If 〈φ1, S1, τ1〉, 〈φ2,S2, τ2〉, φ1 |= φ2

36 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Paraphrases and Tree Properties

One semantics generates several syntactic paraphrases
⇒ Syntax based textual entailments

Each elementary tree in the grammar is associated with the set of
classes used to build this tree
⇒ These classes (called Tree properties) can be used to support error
mining i.e., to identify the phenomena most often associated with
entailment detection errors

37 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example variants

(1) a. The flower which smells nice is given to
the woman by the man

b. The flower which smells nice is given
the woman by the man

c. The flower which is given the woman by
the man smells nice

d. The flower which is given to the woman
by the man smells nice

e. The flower that smells nice is given to
the woman by the man

38 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Associating sentences with tree properties

SemTag and SemXTAG are compiled from a factorised grammar
description (metagrammar).

Each tree is associated by the compiler with the set of MetaGrammar
classes used to build that tree

39 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Grammar and Metagrammar

Each TAG elementary tree is associated with a set of “tree properties”.

40 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example variants with Tree Properties

(2) a. The flower which smells nice is given to
the woman by the man
give:n0Vn1Pn2-Passive-CanSubj-ToObj-ByAgt,
smell:n0V-active-OvertSubjectRelative

b. The flower which smells nice is given
the woman by the man
give:n0Vn2n1-Passive,
smell:n0V-active-OvertSubjectRelative

c. The flower which is given the woman by
the man smells nice
give:n0Vn2n1-Passive-CovertSubjectRelative,
smell:n0V-active

d. The flower which is given to the woman
by the man smells nice
give:n0Vn1Pn2-Passive-OvertSubjectRelative,
smell:n0V-active

e. The flower that smells nice is given to
the woman by the man
give:n0Vn1Pn2-Passive,
smell:n0V-CovertSubjectRelative

41 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating Annotated Entailment Pairs

Generation Bank: generate sentences from semantics

81 input formula distributed over 4 verb types

Generates 226 syntactic variants

Entailment Benchmark: pair generated sentences and annotate the pair as
true or false entailment by comparing their semantics using FOL prover

6 396 entailment-pairs (42.6% true and 57.4% false entailments)

42 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Comparing Systems on Syntactic Entailment

system ERROR TN FN TP FP TN/N TP/P Prec

afazio 0 360 147 353 140 0.7200 0.7060 71.3%

nutcracker 155 22 62 312 449 0.0467 0.8342 60%

srl 0 487 437 63 13 0.9740 0.1260 55.0%

Table: Results of three systems on the entailment benchmark (TN = true
negatives, FN = false negatives, TP = true positives, FP = false positives, Prec
= Precision, ERROR: no parse tree found)

43 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Mining Errors

Tree Features can help identify the most likely sources of failures.

We use (Sagot and la Clergerie 2010)’s suspicion rate to compute the
probability that a given pair of sets of syntactic tags is responsible for
an RTE detection failure.

The tag set pairs with highest suspicion rate indicate which syntactic
phenomena often cooccurs with failure.

44 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example Suspect

n0Vs1:act:CanSubj nil 0.85

T contains a verb with a sentential argument not present in H

T: Bill sees the woman give the flower to the man
H: The man gives the flower to the woman.

In such cases, we found that the sentential argument in T is usually
incorrectly analysed, the analyses produced are fragmented and
entailment goes through (False Positive).

45 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Spotting Overgeneration

Output sentences mostly overgeneration (rough estimate: 70%).

The grammar was initially designed for parsing, where we are mostly
concerned with undergeneration.

It’s hard to detect overgeneration with a parser, but easier with a
surface realiser.

Metagrammars are highly factorised, thus fast to develop. But
mistakes have wide repercussions.

Gardent, C. and Kow, E. ENLG 2007, Dagsthul (Germany). “Spotting
overgeneration suspects”

46 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Spotting Overgeneration

Output sentences mostly overgeneration (rough estimate: 70%).

The grammar was initially designed for parsing, where we are mostly
concerned with undergeneration.

It’s hard to detect overgeneration with a parser, but easier with a
surface realiser.

Metagrammars are highly factorised, thus fast to develop. But
mistakes have wide repercussions... as do their corrections.

Gardent, C. and Kow, E. ENLG 2007, Dagsthul (Germany). “Spotting
overgeneration suspects”

47 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Semi-automated test harness

We use an incremental regression
testing approach, interleaving
manual annotations with an
automated

1 Derivations log

2 Suspects report

3 Progress report

generate sentences

(re)annotate as pass/overgeneration

summarise causes of overgeneration

debug and correct grammar

48 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Derivations log

For each sentence, its derivation tree, lexical selection and the tree
properties for each lexical item.

Output: jean se demande si c’est paul qui vient

demander:n8 <-(s)- venir

demander:n1 <-(s)- jean

venir:n4 <-(s)- paul

demander Tn0ClVs1int-630

CanonicalSubject NonInvertedNominalSubject

SententialInterrogative

venir Tn0V-615

CleftSubject NonInvertedNominalSubject

paul TproperName-45

jean TproperName-45

49 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Suspects report

For each lemma: tree families, trees and tree properties which are
consistently associated with overgeneration.

input t90

Lemma: dire

Tn0Vn1 (all) - InfinitiveSubject Passive

[699] CanonicalCAgent Passive

[746] CanonicalGenitive dePassive

[702] CleftCAgentOne Passive

[752] CleftDont dePassive

Also, what combinations of lexical items are consistently associated with
overgeneration.

Input t70

consistently overgenerating derivation items

le:Tdet-17:n0 <-(a)- riche:Tn0vA-90

50 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Progress report

Notifies the linguist of possible regressions (passing sentences that no are
longer produced), and also of any improvements.

New output?

jean dit c’est l’homme volontaire qui part

Oops! We lost these passes:

jean dit l’homme volontaire part

Hooray! no longer overgenerates:

dit part l’homme volontaire jean

dit jean part l’homme volontaire

51 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

One fourth the outputs

We got a 70% reduction in strings produced per input after 13
modifications to the metagrammar (31 lines, 12 linguist-hours).

total max mean median

before 28000 4900 200 25
after 8400 710 60 12

52 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating Teaching Material for Learners of French

Given an input semantics, GenI generates several syntactic variants
realising that input

Each variant is caracterised by tree features

Selection constraints can be used to impose formal constraints on
the output

Application to Computer Aided Language Learning

From the same knowledge base, adaptive and varied teaching material
(exercises, examples, exercise solutions) can be generated to suit (i) a
specific teaching goal and (ii) the learner level

53 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Tree properties as selectors

Tree properties can be used as a basis for paraphrase selection if we enrich
the input semantics accordingly:

give(e,j,b,m), john(j), mary(m)

John gives the book to Mary.
Mary is given the book by John.
The book is given to Mary by John.

Each tree property acts as a filter; the surface realiser retains only lexically
selected items that possess the requested properties.

54 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Tree properties as selectors

Tree properties can be used as a basis for paraphrase selection if we enrich
the input semantics accordingly:

give(e,j,b,m)[PassiveForm], john(j), mary(m)

John gives the book to Mary.
Mary is given the book by John.
The book is given to Mary by John.

Each tree property acts as a filter; the surface realiser retains only lexically
selected items that possess the requested properties.

55 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Tree properties as selectors

Tree properties can be used as a basis for paraphrase selection if we enrich
the input semantics accordingly:

give(e,j,b,m)[PassiveForm, CanonicalToObject], john(j), mary(m)

John gives the book to Mary.
Mary is given the book by John.
The book is given to Mary by John.

Each tree property acts as a filter; the surface realiser retains only lexically
selected items that possess the requested properties.

56 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Syntactic Variants

(3) a. lj :jean(j) la:see(e,j,m) lm:marie(m)

b. L’homme voit Marie

c. Marie est vue par l’homme

d. C’est l’homme qui voit Marie

e. C’est l’homme par qui Marie est vue

f. C’est l’homme par qui est vue Marie

g. C’est par l’homme que Marie est vue

h. C’est par l’homme qu’est vue Marie

i. C’est Marie qui est vue par l’homme

j. C’est Marie que voit l’homme

k. C’est Marie que l’homme voit

57 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Varying the teaching material

Teaching goal: Passive, Advanced User

(4) a. lj :jean(j) la:see(e,j,m)[Passive] lm:marie(m)

b. L’homme voit Marie

c. Marie est vue par l’homme

d. C’est l’homme qui voit Marie

e. C’est l’homme par qui Marie est vue

f. C’est l’homme par qui est vue Marie

g. C’est par l’homme que Marie est vue

h. C’est par l’homme qu’est vue Marie

i. C’est Marie qui est vue par l’homme

j. C’est Marie que voit l’homme

k. C’est Marie que l’homme voit

58 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Varying the teaching material

Teaching goal: Passive, Beginner (no inverted subject)

(5) a. lj :jean(j) la:see(e,j,m)[Passive,NonInvSubj] lm:marie(m)

b. L’homme voit Marie

c. Marie est vue par l’homme

d. C’est l’homme qui voit Marie

e. C’est l’homme par qui Marie est vue

f. C’est l’homme par qui est vue Marie

g. C’est par l’homme que Marie est vue

h. C’est par l’homme qu’est vue Marie

i. C’est Marie qui est vue par l’homme

j. C’est Marie que voit l’homme

k. C’est Marie que l’homme voit

59 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Varying the teaching material

Selection constraints can be used

To produce the solution from the exercise (Active/Passive
transformation)

To vary the exercising materials: from the same KB, produce all
possible realisation of the input semantics that respects the teaching
goal and the learner model

To vary the teaching material (example sentences)

Application

Selection constraints used in the Allegro I-FLEG (Interactive Game for
Learning French) serious game for learning French

60 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Table of Contents

1 Surface Realisation

2 Generating from semantic representations

3 Generating from Shallow Dependency Structures

61 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Generating from Shallow Dependency Structures

NLG systems often produce much more specific abstract linguistic
structures as input for Surface Realisation

Such structures can be derived from parse trees

Generation Challenge Surface Realisation Task

Shallow dependency trees are derived from the Penn Treebank and used as
input to test and compare surface realisers.

62 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Derivation and Dependency Trees

63 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

From RTGen to DRTGen

The elementary trees of FB-TAG are associated with dependency
triples (rather than with semantic literals)

The dependency relations between words 〈W ,Pos,Rel ,Head〉 guide
the search

Mismatches between dependency structures and derivation trees are
rewritten using graph rewriting tools (GrGen.Net)

Error mining techniques are used to identify these mismatches

64 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

runs

john often

NP

John

S

NPN
↓ VP

runs

VP

VPV
? Adv

often

sbj(john,runs) sbj(N,runs) vmod(often,V)

vmod(often,runs)

NP j
S → John SS → runs(NPN

S VPA) VPV
A → often(VPA)

sbj(N, runs) vmod(often,V)

65 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Earley Algorithm with Dependency Tree Input

Prediction (Subst)
[A→ a(α • BS β), ϕ, τ]

[σ(B0
S → b(•B1, ...,Bn), ψ, ∅)]

with 〈B0
S → b(B1, ...,Bn), ψ〉 a grammar rule

σ = mgu(B,B0), r(b, a) ∈ ϕ and ϕ ∩ ψ = ∅

Prediction (Adj)
[A→ a(α • BA β), ϕ, τ]

[σ(B0
A → b(•B1, ...,Bn), ψ, ∅)]

with 〈B0
A → b(B1, ...,Bn), ψ〉 a grammar rule

σ = mgu(B,B0), r(b, a) ∈ ψ and ϕ ∩ ψ = ∅

66 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Completion

Completion (Subs)
[A→ a(α • B δ), ϕa, τa][B → b(β)•, ϕb, τb]

[σ(A→ a(α(B, f) • δ), ϕa, τa ∪ τb ∪ {r(b, a)})]

with σ = mgu(B,B0),r(b, a) ∈ ϕa, ϕa ∩ ϕb = ∅

Completion (Adj)
[A→ a(α • B δ), ϕa, τa][B → b(β)•, ϕb, τb]

[σ(A→ a(α(B, f) • δ), ϕa, τa ∪ τb ∪ {r(b, a)})]

with σ = mgu(B,B0),r(b, a) ∈ ϕb, ϕa ∩ ϕb = ∅

67 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Example Run

Rule Infce Cdn Covered
1 S ′ → •S Axiom ∅
2 S → runs(•NPSVPA) PS(1) ∅
3 NPS → john• PS(2) sbj(j , r) ∈ δ(2) ∅
4 S → runs(NPS • VPA) C (2, 3) {sbj(j , r)}
5 VPA → often(•VPA) PA(4) vmod(o, r) ∈ δ(5) ∅
6 VPA → ε• PA(5) ∅
7 VPA → often(VPA•) C (5, 6) ∅
8 S → runs(NPSVPA•) C (4, 7) {sbj(j , r), vmod(o, r)}

68 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Conclusion

The development, evaluation and comparison of surface realisers has long
restricted by:

the lack of well defined and abundant input

the lack of applications (mainly as a backend to NLG systems)

69 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Things are changing

The Generation Challenge SR Task provides large scale deep and shallow
input

Exciting research questions are arising e.g.,

SR for developing intelligent Natural Language Interfaces to
knowledge bases (Quelo, SWAT, SRI, etc.)

SR for Quality focused transfer based machine translation (LOGON)

SR to detect overgeneration and improve deep symbolic grammars

70 / 71

Outline Surface Realisation Generating from semantic representations Generating from Shallow Dependency Structures

Thanks!

71 / 71

	Surface Realisation
	Generating from semantic representations
	Generating from Shallow Dependency Structures

