Grammars and Generation

Claire Gardent

CNRS/LORIA Nancy (France)

Joint work with Ben Gottesman, German Kruszewski, Shashi Narayan, Yannick Parmentier, Laura Perez-Beltrachini and Sylvain Schmitz

Grammars and Corpus 2018, Paris

Outline

(1) Tree Adjoining Grammmar
(2) Writing Grammar
(3) Improving Grammars

4 Grammar for Language Learning
(5) Grammar for NL Interfaces

(2) Writing Grammar

(3) Improving Grammars

5 Grammar for NL Interfaces

Tree Adjoining Grammar

A set of trees

- Initial
- Auxiliary

Lexicalised Tree Adjoining Grammar

Trees are lexicalised

Feature-Based Lexicalised Tree Adjoining Grammar

Tree nodes are labelled with feature-structures

Feature-Based Lexicalised Tree Adjoining Grammar with Semantics

Trees are assigned a semantics

NP_{j} John john(j)

Grammar in Action: Parsing

Grammar in Action: Generation

Grammar-Based Generation

john(j), run(e,j), fast(e)

Grammar-Based Generation

john(j), run(e,j), fast(e)

Grammar-Based Generation

John runs

Grammar-Based Generation

John runs fast

Separating Grammar from Lexicon

Since each tree is lexicalised, the resulting grammar can be very large. In practice, we therefore

Separating Grammar from Lexicon

Since each tree is lexicalised, the resulting grammar can be very large. In practice, we therefore

- abstract over lexical items in the grammar

Separating Grammar from Lexicon

Since each tree is lexicalised, the resulting grammar can be very large. In practice, we therefore

- abstract over lexical items in the grammar
- use a lexicon to determine which grammar tree is lexicalised/anchored by which lexical items

Separating Grammar from Lexicon

Semantics: departure
Tree: nx0V
Syntax: CanonicalSubjec Anchor: departs

Semantics: arrival Tree: nx0V
Syntax: CanonicalSubjec Anchor: arrives

(1) Tree Adjoining Grammmar

(2) Writing Grammar

(3) Improving Grammars

4 Grammar for Language Learning

Which fruit has John eaten?

Which fruit has John eaten?

Creating and Curating Forests of TAG trees

How to write them?

XMG, a grammar writing environment

How to verify them?

Error Mining: Using Generation to debug the grammar

XMG

A declarative framework for specifying tree based unification grammars
B. Crabbe, D. Duchier, C. Gardent, J. Leroux and Y. Parmentier XMG, eXtensible Meta Grammar. In Computational Linguistics, 39:3, Pages 581-620.

XMG Tree Fragments

CanonSub

CanonObj

Creating Trees with XMG

(Extracted Subject)

(Active verb morph)

Applying General Principles

Compact Grammar Specifications

293 tree fragments $\Rightarrow 6,000$ TAG tree

Large Scale XMG Grammars

FrenchTAG: a Tree Adoining Grammar for French (Benoît Crabbé)
SemTAG: XMG-based XTAG extended with semantics (Claire Gardent)
FrenchTAG + MWE: a FrenchTAG grammar updated with a number of Multi Word Expressions (Agata Savary)

XMG_GC_metagrammar: a Tree Adjoining Grammar for Guadeloupean Creole (Emmanuel Schang)

Interaction Grammar for French (Guy Perrier)
XMG-based XTAG: a Tree Adjoining Grammar for English based on XTAG (Katya Saint-Amand, Claire Gardent)

Ikota Morphology

Morphological Lexicon: 600+ trees

Denys Duchier, Brunelle Magnana Ekoukou, Yannick Parmentier, Simon Petitjean and Emmanuel Schang
Describing Morphologically-rich Languages using Metagrammars: a Look at Verbs in Ikota
Proceedings of the Workshop on Language Technology for Normalisation of Less-Resourced Languages SaLTMiL 8 AfLaT, 2012

XMG Extensions

- Simon Petitjean, Denys Duchier and Yannick Parmentier. XMG 2: Describing Description Languages LACL 2016

Laura Kallmeyer's TreeGrasp ERC Project

HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

LTAG with Frame Semantics

$$
\boldsymbol{e}\left[\begin{array}{ll}
\text { love } & \\
\text { actor } & x\left[\begin{array}{ll}
\text { person } & \\
\text { name } & \text { 'John' }
\end{array}\right] \\
\text { theme } & y\left[\begin{array}{ll}
\text { person } & \\
\text { name } & \text { 'Mary' }
\end{array}\right]
\end{array}\right]
$$

Depictive grammar: an LTAG grammar fragment with semantic frames for English depictives (Benjamin Burkhardt)

(1) Tree Adjoining Grammmar

(2) Writing Grammar

(3) Improving Grammars

4 Grammar for Language Learning

5 Grammar for NL Interfaces

Spotting Errors

Grammar traversal

Statistical Error Mining

GraDe (Grammmar Debugger)

Top-Down Grammar Traversal

Outputs the sentences generated by the grammar

User-Defined parameters control the search to ensure (i) termination and (ii) interesting linguistic coverage.

Claire Gardent and Eric Kow
Spotting overgeneration suspects.
ENLG 2007
Claire Gardent and German Kruszewski
Generation for Grammar Engineering
INLG 2012

GraDe Example: Checking for Coherence

For each grammar rule anchored by a verb, can we find at least one derivation?

```
family: VERB_FAMILY
cat: s
features: [mod:ind]
max_results: 1
max_adjunctions:
    {N: 1, NP: 0, V:1, VP: 1, ADJ: 0, S: 0}
depth: 5
```


Checking for Grammar Coherence

Tree Family	Trees	Fails	Fails/Trees
CopulaBe	60	1	1%
ilV	2	0	0%
n0V	10	0	0%
n0CIV	9	0	0%
n0CIVn1	45	2	4%
n0CIVden1	36	3	8%
n0CIVpn1	29	3	10%
n0Vn1	84	3	3%
n0Vn1Adj2	24	6	25%
n0Van1	87	3	3%
n0Vden1	38	3	7%
n0Vpn1	30	3	10%
ilVcs1	2	0	0%
n0Vcs1	30	23	74%
n0Vas1	15	10	66%
n0Vn1Adj2	24	0	0%
s0Vn11	72	9	12%
n0Vs1int	15	12	80%
n0Vn1n2	24	0	0%
n0Vn1an2	681	54	7%

Approximately 10% of the verb trees fail to licence a complete derivation.

Syntactic Variants

Which syntactic variants does the grammar generate for a given verb type?

```
family: n0V
cat: s
features: [mod:ind]
max_results: all
adjunctions:
    {N: 2, NP: 0, V:1, VP: 1, ADJ: 0, S: 0/1}
depth: 5
```


Example Output

Elle chante (She sings), La tatou chante-t'elle? (Does the armadillo sing?), La tatou chante (The armadillo sings), Chacun chante -t'il (Does everyone sing?), Chacun chante (Everyone sings), Quand chante chacun? (When does everyone sing?), Quand chante la tatou? (When does the armadillo sing?) Quand chante quel tatou? (When does which armadillo sing?), Quand chante Tammy? (When does Tammy sing?), Chante-t'elle? (Does she sing?) Chante -t'il? (Does he sing?), Chante! (Sing!), Quel tatou chante ? (Which armadillo sing?), Quel tatou qui chante ..? (Which armadillo who sings ..?) Tammy chante-t'elle? (Does Tammy sing?), Tammy chante (Tammy sings), une tatou qui chante chante (An armadillo which sings sings), C'est une tatou qui chante (It is an armadillo which sings), ...

Some incorrect cases

Chacun chante-t'elle?
(Everyone sings?)
Missing agreement constraint between the inverted subject clitic and the subject.

La tatou qui chante-t'elle?
(The armadillo which does she sing?)
Missing constraint on the inverted subject clitic (should be disallowed in embedded clauses)

Generation-Based Grammar Analysis

- Can all rules in the grammar be used in at least one derivation?
- Are all possible syntactic realisations of the verb and of its arguments generated and correct?
- Does the grammar correctly capture the interactions between basic clauses and modifiers?
- etc.

Statistical Error Mining

Generate from large corpus of input meaning representations
Divide the input into FAIL and PASS

Use statistics to identify subtrees (forms) in the set of inputs which frequently associate with failure and rarely with success

Shashi Narayan and Claire Gardent
Error Mining with Suspicion Trees: Seeing the Forest for the Trees
COLING 2012

Claire Gardent and Shashi Narayan
Error Mining on Dependency Trees
ACL 2012

Error Mining using Generation

The most troublesome report is the August merchandise trade effect deficit due out tomorrow.

Error Mining on trees

Input tree \Rightarrow FAIL | PASS
Calculate a suspicion score for each subtree in the input
Structure the suspicious subtrees into a tree

Suspicious Forms

Subtrees of the input dependency trees labelled with lemma, parts-of-speech and/or dependency information

Suspicion Score Metrics

Adapted from ID3 decision tree algorithm
The suspicion score of a form f

$$
\mathrm{S}_{\text {score }}(f)=\frac{1}{2}(\text { Fail }(f) * \ln \operatorname{count}(f)+\operatorname{Pass}(\neg f) * \ln \operatorname{count}(\neg f))
$$

FAIL score

$$
\operatorname{Fail}(f)=\frac{\operatorname{count}(f \mid \text { FAIL })}{\operatorname{count}(f)}
$$

PASS score

$$
\operatorname{Pass}(\neg f)=\frac{\operatorname{count}(\neg f \mid \operatorname{PASS})}{\operatorname{count}(\neg f)}
$$

Ranked List of Suspicious Forms

(1) (POSS)
(2) (NNP, (POSS))
(3) (CC)

4 (NN, (POSS))
(5) (NN, (NNP, (POSS)))
(6) (NN, (NN, (POSS)))

O (NN, (CC))
(8) (NNP, (NNP), (POSS))
(0) (NN,(NNP,(NNP),(POSS)))
(10) (NN, (NNP, (NNP)))
(1) (CC, (JJ))
(12) (JJ, (CC))
(3) (NNP, (NNP, (POSS)))
(44) (NN, (NN), (POSS))
(15) (DT, (IN))
(6) ...

Tree of suspicious forms

The Right Frontier shows the most important sources of errors

Building the Tree of suspicious forms

The decision tree algorithm recursively partitions the data by

- selecting the most suspicious form
(2) splitting the data into two subsets, a subset of the data that contain that suspicious form (yes) and a subset that does not (no) .

Example Suspicion Tree

- (POSS) A mismatch between input and grammar representation (DAD/NN, (John/NNP, ('s/POSS)))
(DAD/NN, ('s/POSS, (JOHN/NNP)))
- (CC) conflicting feature values in the grammar of NP coordination
- (DT, (IN)) POS tag mismatch some DT/PRP of the audience

Different Views highlight Different Errors

(days/NN) POS tag assignment error. DAYS/NN mapped to the wrong TAG family
(DT, (IN)) POS tag mismatch some DT/PRP of the audience

Cases that always fail

Single source of error

Cases that always fail

Several sources of error

- (im-VB) - infinitival verbs.
- (oprd-TO) - control / raising cases
- (im-VB, (prd-JJ)) - adjectival complement
- (nmod-TO, (im-VB)) - infinitival is a noun modifier

Cases that sometimes fail

Cardinals lead to generation failure in the contexts shown but not in all context (CD does not occur)

Experiment

Surface Realisation Challenge Dataset (Belz et al. 2011). 26,725 input dependency trees derived from the Penn Treebank

XMG induced FB-LTAG Grammar (K. Alahverdziehva)
Grammar-Based Surface Realiser (Narayan and Gardent, COLING 2012)

Results

Corrections

- 11 rewrite rules (Gen-1, Dt-4, Adv-1, Inf-3, Aux-1 and Final-1),
- 2 grammar corrections and
- a few lexicon updates

	Input Data	Initial Failures	Final Failures
S-ALL	26725	$19280(72.1)$	$5157(19.3)$

- Sentence length - min:1, max:134, avg:22
- Coverage: 81.74\% , BLEU:0.73 (for the covered data)

(1) Tree Adjoining Grammmar

(2) Writing Grammar

(3) Improving Grammars

5 Grammar for NL Interfaces

Generating Grammar Exercises

Generate sentences

Use the detailed linguistic information output by the generator to select and build exercises

Three types of exercises: FIB, Shuffle and Reformulation

C. Gardent and L. Perez-Beltrachini.

Using FB-LTAG Derivation Trees to Generate Transformation-Based Grammar Exercices.
TAG+11: The 11th International Workshop on Tree Adjoining Grammars and Related Formalisms, Paris, France, September 2012.
L. Perez-Beltrachini, C. Gardent and G. Kruszewski

Generating Grammar Exercices.
The 7th Workshop on Innovative Use of NLP for Building Educational Applications, NAACL-HLT Worskhop 2012, Montreal, Canada, June.

Grammar Exercises

Built from a single sentence.

[FIB] Complete with an appropriate personal pronoun.
(S) Elle adore les petits tatous
(She loves the small armadillos)
(Q) ___ adore les petits tatous \quad (gender=fem)
(K) elle
[Shuffle] Use the words below to make up a sentence.
(S) Tammy adore les petits tatous
(Tammy loves the small armadillos)
(Q) tatous / les / Tammy / petits / adore
(K) Tammy adore les petits tatous.

Grammar Exercises

Built from a pair of syntactically related sentences

[Reformulation] Rewrite the sentence using passive voice
(Q) C'est Tex qui a fait la tarte. (It is Tex who has baked the pie.)
(K) C'est par Tex que la tarte a été faite.
(It is Tex by whom the pie has been baked.)

Active/Passive, NP/Pronoun, Assertion/Wh-Question, Assertion/YN-Question

The GramEx framework: generating and selecting sentences to build exercises

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)

Bette aime le bijou.
\Downarrow
C'est Bette qui aime les bijoux.
Bette aime les bijoux.

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)
Goal: Plural form of irregular nouns. Exercise type: Fill-in-the-blank.

Bette aime le bijou. \square
C'est Bette qui aime les bijoux.
Bette aime les bijoux.

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)

Bette aime le bijou.

C'est Bette qui aime les bijoux.
Bette aime les bijoux.

Goal: Plural form of irregular nouns. Exercise type: Fill-in-the-blank.

1. Select sentences
$\mathrm{NP}[$ num $=p l \wedge$ plural $=$ irreg $]$
\wedge CanonicalOrder

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)

Bette aime le bijou.

C'est Bette qui aime les bijoux.
Bette aime les bijoux.

\{CanonicalObject, CanonicalSubject, ActiveVerb\}

Goal: Plural form of irregular nouns. Exercise type: Fill-in-the-blank.

1. Select sentences

NP[num = pl \wedge plural = irreg]
\wedge CanonicalOrder

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)

Bette aime le bijou.

C'est Bette qui aime les bijoux.
Bette aime les bijoux.

\{CanonicalObject, CanonicalSubject, ActiveVerb\}

Goal: Plural form of irregular nouns. Exercise type: Fill-in-the-blank.

1. Select sentences $\mathrm{NP}[$ num $=p l \wedge$ plural $=$ irreg]
\wedge CanonicalOrder
2. Process the selected sentence $\mathrm{NP}[$ num $=p l] \Rightarrow$ blank NP[lemma $=$ bijou $] \Rightarrow$ hint

Creating a grammar exercise

aime(e,be,bi),bijou(bi),les(bi),betty(be)

Bette aime le bijou.

C'est Bette qui aime les bijoux.
Bette aime les bijoux.

\{CanonicalObject, CanonicalSubject, ActiveVerb\}

Goal: Plural form of irregular nouns. Exercise type: Fill-in-the-blank.

1. Select sentences $\mathrm{NP}[$ num $=p l \wedge$ plural $=$ irreg]
\wedge CanonicalOrder
2. Process the selected sentence $\mathrm{NP}[$ num $=p /] \Rightarrow$ blank NP[lemma $=$ bijou $] \Rightarrow$ hint
(Q) Bette aime les \qquad . (bijou) (K) bijoux

Selecting appropriate sentences

GramEx's boolean constraint language: syntax and use

Boolean constraint language

- conjunction, disjunction and negation of morpho-syntactic and syntactic properties

Describes the linguistic requirements imposed by pedagogical goals

- Permits retrieving appropriate sentences from the DB

Selecting appropriate sentences

Some examples
Pedagogical goal: Pre/post nominal irregular adjectives
[Epith \wedge flexion: irreg]
\checkmark Tammy a une voix douce (Tammy has a soft voice)
X Tammy a une jolie voix (Tammy has a nice voice)

Pedagogical goal: Prepositions with infinitives; Simple Clause
POBJinf \wedge CLAUSE
POBJinf $\equiv(D E-O B J i n f \vee A$-OBJinf)
CLAUSE \equiv Vfin $\wedge \neg$ Mod $\wedge \neg$ CCoord $\wedge \neg$ Sub
\checkmark Tammy refuse de chanter (Tammy refuses to sing)
X Jean dit que Tammy refuse de chanter (John says that Tammy refuses to sing)

Transformation-based grammar exercices

Finding syntactically related sentences (e.g. active/passive)
(Q) C'est Tex qui a fait la tarte.
(It is Tex who baked the pie.)

X (K) Tex a fait la tarte.
(Tex baked the pie.)
X (K) La tarte a été faite par Tex.
(The pie was baked by Tex.)
X (K) C'est par Tex que la tarte sera faite.
(It is Tex who will bake the pie.)
$X(K)$ Est-ce que la tarte a été faite par Tex ?
(Has the pie been baked by Tex?)
$\checkmark(K)$ C'est par Tex que la tarte a été faite.
(It is Tex by whom the pie was baked.)

Derived and Derivation Tree

Creating transformation-based grammar exercises

- Define tree filters on pairs of derivation trees
- Retrieve sentences pairs that match those tree filters

Why Derivation Trees?

Detailed syntactic information

Why Derivation Trees?

More compact than derived trees. Allow fewer and simpler filters.

Derivation Tree Filters

Tree filter types

Tree filter types

e.g. active/passive
\bullet_{s} \{Active,CleftSubj,CanObj\}
$\leftrightarrow \bullet_{t}\{$ Passive, CleftAgent, CanSubj $\}$

e.g. Assertion/YN-Question
$\varnothing \leftrightarrow \bullet$ \{questionMark\}

Meaning Preserving Transformations

Same core meaning (e.g. active/passive)

(Q) C'est Tex qui a fait la tarte. $\quad \leftrightarrow$ (It is Tex who has baked the pie)
(K) C'est par Tex que la tarte a été faite.
(It is by Tex that the pie has been baked)
$\leftrightarrow \quad(\mathrm{K})$ La tarte a été faite par Tex.
(The pie has been baked by Tex)
(Q) C'est Tex qui a fait la tarte. $\quad \leftrightarrow \quad(\mathrm{K})$ C'est par Tex que la tarte a été faite.
(It is Tex who has baked the pie) (It is by Tex that the pie has been baked)
$\leftrightarrow \quad(\mathrm{K})$ La tarte a été faite par Tex.
(The pie has been baked by Tex)

- ${ }_{s}$ \{Active, CleftSubj, CanObj\}
$\leftrightarrow \bullet_{t}\{$ Passive, CleftAgent, CanSubj $\}$

Meaning Altering Transformations

Related core meaning: content deleted, added or replaced (e.g. Assertion/Wh-Question)

α-dort: $\{$ whSubj $\}$

Quel petit tatou dort?
Which small armadillo sleeps?

Le petit tatou qui chantera dort.
The small armadillo that will sing sleeps

Evaluation

Correctness

- around 80% of the automatically generated exercises are correct (Manual annotation of a sample of generated exercises)

Productivity

- 52 input formulae \Rightarrow around 5000 exercises (using SemFraG and lexicon tailored to Tex's French Grammar vocabulary)

Integration

- Exercises generated by GramEx are integrated in I-FLEG (serious game) and WFLEG (web interface)

WFLEG

Welcome!

ALLEGRO is an EU funded INTERREG IV A project which focuses on the development of new technologies for second language learning. Our aim is to exploit research technologies from Natural Language Generation to automatically generate grammar exercises and Leamer/Computer Dialog Systems which enable self practice. While the learner has full autonomy to decide on the exercices to be practiced, the system keeps tracks of the learner's activities and results. This in tum opens the door for adaptive training systems i, e, , systems which promote learning by suggesting new activities based on the learner's history.
To showcase the power of our technology, we embedded our exercise generator tool both in WFLEG (this web service) and in the IFLEG (Interactive French Learning Garne) serious game.

Please select the exercise you want to play with during this session:

Vocabulary exercises	I-FLEG Grammar exercises	Tex and Tammy exercises

W-FLEG Vocabulary exercises

W-FLEG hcudes axerches deserned to hel haming French vecabulary. The warner is shown an image depiothe an oblioct and prompled for its name. All hloractions are
 data to develop ardapive learning systerns which make use of a learner's hatory to assat the learner in chooang acturites likely to erhance ne/her propress. The durabase recordino WFLEG sctivthes (vocabulary and gremmar) a common to the IFLEG astious game so that a learner's activilies in both IFLEG and WFLEG can equally be laken
into accountio arayse his her progess. into account to aralyse his her progres.
Aryone can play with W-FLEG!
Aevister WFLEG a OpensIM IFLEG here

I-FLEG Grammar exercises

WFFLEG proposes grammar exercses which wero thomaticaly penerated usho Natural Languaga Generallion technizues. The WFLEG grammar exerclises can be Practiced ssing the IfLeG serious danes whers the leanner
practice by walkng trough a house, cleking on obecte and selecting a training activty relaled to that dibect
I-FLEG is a came to heb you leann French. Develioed by uriversity researchers, tis a currently a research prototype, peopie learn French. More can be tound here
We provide you with sinule yet compeling exercises based on this technology.
Foglear here to play wht our 1-FLEG grammar based exercises

Tex and Tammy exercises

These exerctises tolow the curricutm proposed h the Tex and Tammy French Grammar course which b arrangedike many cher readilional felerenco crammars with te parts of grammar inomis (gender of nouns, itroguler verbsa) NOTE
-The orbonal Tex s Tammply about the eplo bye story of Tex and Ternny, two star-struck ammatios, and Betts, the sexy kitian bent on deesroymo ther bove. In addition to this mennage a trois, the cast of characters holud din-wited squirel from Colege Sazion, and Corey, cockroech who prelers getirgy high and watching the x-Fies on TV to doing iss French homework.
More can be tound here
Hegater here to play with our Tex grammar based evercicies

WFLEG

WFLEG

Tex and Tammy grammar exercises
$\begin{array}{rll}\text { Amount of tests done } & 616 \\ \text { Average score } & & 43.67\end{array}$
Average score $\quad 43.67 \%$
Average time 00:01:39

Last Tests results

(1) Tree Adjoining Grammmar

(2) Writing Grammar

(3) Improving Grammars

4 Grammar for Language Learning

(5) Grammar for NL Interfaces

Natural Language Interfaces

Incremental Query Refinement

The user queries the KB using NL

- Possible extensions of the current user query are computed by an automated reasoner
- Each formal extension is then verbalised using NLG
- grammar based generation is used to convert KB formulae into text
- a statistical module is used to choose the best output

R
L. Perez-Beltrachini and C. Gardent

Incremental Query Generation
EACL 2014. Gothenburg, Sweden, April 2014.
C. Gardent and L. Perez-Beltrachini

A Statistical, Grammar-Based Approach to Micro-Planning Computational Linguistics, 43:1, March 2017.

A Statistical Grammar-Based Approach

Input = KB Query

Professor Π Researcher $\Pi \exists$ teach.LogicCourse
$\sqcap \exists$ worksAt.AlicanteUniversity
I am looking for a professor who is a researcher and teaches a course on logic. He should work for Alicante University.

Microplanning Task: Segment, lexicalise, aggregate and realise

A Statistical Grammar-Based Approach

The grammar

- Enforces grammaticality
- Accounts for language variability (paraphrasing)

The Statistical Module (Hypertagger)

- Enforces microplanning choices (fluency)
- Enhances efficiency (speed)

Results: Output quality

Human Evaluation

- 48 input queries
- from 13 knowledge bases (2 not used in training corpus)
- 24 raters
- Online evaluation
- Sliding ruler
- Scale 0-50
- Latin Square design

Results: Output quality

	II	Template
$\|l\| l \mid$	Hybrid	

1. Symbolic
I. Hybrid

Results: Output quality (BLEU Scores)

II	Templates
III	Symbolic
II	Hybrid

Example Ouput: Sentence Segmentation

3 relations, 4 concepts: 1 sentence
I am looking for a used car whose color should be white, which should be located in a France and whose model should be a toyota 4 runner.

4 relations, 5 concepts: 2 sentences
I am looking for a new car whose exterior color should be beige and whose body style should be a utility vehicle. The new car should run on a natural gas and should be located in a country.

3 relations, 5 concepts: 2 sentences
I am looking for a new car whose body style should be a utility vehicle, an off road. The new car should run on a natural gas and should be located in a country.

Example Output: Syntactic Variation

I am looking for a car dealer located in a country and who should sell a car whose make should be a toyota. The car should run on a fuel and should be equipped with a manual gear transmission system. (Participial)

I am looking for a car dealer who sells a car whose model is a toyota. It should be located in a country. (Sentence with Pronominal Subject)

I am looking for a new car, an off road whose body style should be a utility vehicle. The new car should run on a natural gas and should be located in a country.
(Coordinated VP)
I am looking for a car produced by a car make. The car make should be the make of a toyota. The car make should be located in a city and should produce a land rover freelander. Sentence)
(Canonical Declarative

Example Output: Aggregation

VP Coordination

NewCar (...) $\sqcap \exists r u n O n . N a t u r a l G a s ~ \sqcap \exists l o c a t e d I n C o u n t r y . C o u n t r y$ I am looking for a new car (...). This new car (should run on natural gas and should be located in a country) vp. N1 (V1 N1 and V2 N2)

Relative Clause Coordination
CommunicationDevice $\sqcap \exists$ assistsWith.Understanding
$\sqcap \exists a s s i s t s W i t h . H e a r i n g D i s a b i l i t y$
I am looking for a communication device (which should assist with a understanding and which should assist with a hearing disability) RelCl .

Example Output: Aggregation

NP Coordination

CarDealer $\sqcap \exists$ sell.CrashCar $\sqcap \exists$ sell. NewCar
I am looking for a car dealer who should sell (a crash car and a new car) ${ }_{N P}$.

N-Ary NP Coordination

Car $\sqcap \exists$ equippedWith. ManualGearTransmission
$\sqcap \exists$ equippedWith.AlarmSystem $\sqcap \exists$ equippedWith. NavigationSystem
$\sqcap \exists$ equippedWith. AirBagSystem
I am looking for a car equipped with (a manual gear transmission system, an alarm system, a navigation system and an air bag system) ${ }_{N P}$.

Summary

Ambiguous Grammar $=$ High Expressivity, Large Search Space

Hypertagging = Making Choices

Thanks!

