

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Natural Language Generation:
From Data Creation to Evaluation

via Modelling

THÈSE

présentée et soutenue publiquement le 26 février 2021

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Anastasia Shimorina

Composition du jury

Rapporteurs : Emiel Krahmer Professor, Tilburg University, the Netherlands
Kees van Deemter Professor, Utrecht University, the Netherlands

Examinateur : Dimitra Gkatzia Associate Professor, Edinburgh Napier University, UK

Directeur de thèse : Claire Gardent Directrice de recherche, CNRS, LORIA, France

Co-directeur de thèse : Yannick Parmentier Mâıtre de conférences, Université de Lorraine, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Моим родителям

i

ii

Abstract
Natural language generation is a process of generating a natural language text from some

input. This input can be texts, documents, images, tables, knowledge graphs, databases, di-
alogue acts, meaning representations, etc. Recent methods in natural language generation,
mostly based on neural modelling, have yielded significant improvements in the field. Despite
this recent success, numerous issues with generation prevail, such as faithfulness to the source,
developing multilingual models, few-shot generation. This thesis explores several facets of nat-
ural language generation from creating training datasets and developing models to evaluating
proposed methods and model outputs.

In this thesis, we address the issue of multilinguality and propose possible strategies to
semi-automatically translate corpora for data-to-text generation. We show that named entities
constitute a major stumbling block in translation exemplified by the English-Russian translation
pair. We proceed to handle rare entities in data-to-text modelling exploring two mechanisms:
copying and delexicalisation. We demonstrate that rare entities strongly impact performance
and that the impact of these two mechanisms greatly varies depending on how datasets are
constructed. Getting back to multilinguality, we also develop a modular approach for shallow
surface realisation in several languages. Our approach splits the surface realisation task into three
submodules: word ordering, morphological inflection and contraction generation. We show, via
delexicalisation, that the word ordering component mainly depends on syntactic information.
Along with the modelling, we also propose a framework for error analysis, focused on word order,
for the shallow surface realisation task. The framework enables to provide linguistic insights
into model performance on the sentence level and identify patterns where models underperform.
Finally, we also touch upon the subject of evaluation design while assessing automatic and
human metrics, highlighting the difference between the sentence-level and system-level type of
evaluation.

Keywords: natural language generation, data-to-text generation, surface realisation, evalua-
tion, error analysis

iii

Résumé
La génération en langue naturelle (natural language generation, NLG) est le processus qui con-
siste à générer du texte dans une langue naturelle à partir de données d’entrée. Ces entrées
peuvent prendre la forme de textes, de documents, d’images, de tableaux, de graphes (réseaux
de connaissances), de bases de données, d’actes de dialogue, ou d’autres représentations séman-
tiques. Les méthodes récentes en NLG, principalement basées sur des modèles neuronaux, ont
apporté des améliorations significatives. Malgré ces récents progrès, de nombreux problèmes
liés à la tâche de génération subsistent, tels que celui de la fidélité aux données d’entrée, du
développement de modèles multilingues, ou de la génération à partir de peu d’exemples. Cette
thèse explore trois aspects de la NLG : tout d’abord, la création de données d’apprentissage,
puis le développement de modèles de génération, et enfin l’évaluation des méthodes proposées.

Nous abordons la question du multilinguisme et proposons des stratégies de traduction semi-
automatique de corpus destinés à l’entraînement de modèles de NLG. Nous montrons que les
entités nommées constituent un obstacle majeur dans la réalisation de la tâche de traduction, ici
considérée de l’anglais vers le russe. Nous décrivons ensuite deux méthodes de traitement des en-
tités rares dans les données d’apprentissages des modèles de NLG : la copie et la délexicalisation.
Nous démontrons que l’effet de ces deux mécanismes varie fortement selon la manière dont les
données sont construites, et que les entités rares ont un impact important sur les performances
des modèles. Concernant la génération multilingue, nous développons une approche modulaire
de réalisation de surface superficielle (shallow surface realisation, SSR) pour plusieurs langues.
Notre approche consiste à diviser la tâche de SSR en trois composantes : l’ordonnancement des
mots, l’inflexion morphologique et la génération de contractions. Nous montrons, via la délex-
icalisation, que la composante d’ordonnancement s’appuie principalement sur les informations
syntaxiques. En plus de nos contributions concernant la modélisation, nous proposons un cadre
d’analyse des erreurs axé sur l’ordre des mots, pour la tâche de SSR. Ce cadre permet d’obtenir
un aperçu linguistique des performances des modèles au niveau de la phrase et d’identifier les
cas où un modèle échoue. Enfin, nous abordons le sujet de l’évaluation de manière plus générale
et comparons différentes métriques automatiques et humaines ; nous soulignons la différence
entre les méthodes d’évaluation au niveau de la phrase et les méthodes d’évaluations au niveau
du corpus.

Mots-clés: génération en langue naturelle, génération à partir de données, réalisation de sur-
face, évaluation, analyse d’erreurs

iv

Contents

Génération en langue naturelle : de la création des données à l’évaluation, en
passant par la modélisation xv

1 Introduction 1

2 Background 5
2.1 Natural Language Generation . 5

2.1.1 Introduction to NLG . 5
2.1.2 Input Data in NLG . 7

2.2 Methods in Natural Language Generation . 11
2.2.1 Encoder-Decoder Framework . 11
2.2.2 Attention . 13
2.2.3 Copy and Coverage Mechanisms . 14
2.2.4 Factored Models . 16
2.2.5 Transformers, Pre-trained Language Models 16
2.2.6 Encoder-Decoder Models for NLG . 18

2.3 Future Directions . 19

3 Creating Training Corpora for Natural Language Generation 21
3.1 Introduction . 21
3.2 Related Work . 22

3.2.1 Corpus Construction for Natural Language Generation 22
3.2.2 Automatic Post-Editing . 24

3.3 WebNLG Data-to-Text Dataset . 24
3.4 Creating Russian Version of WebNLG Dataset 25

3.4.1 Neural Machine Translation . 25
3.4.2 Manual Post-Editing and Error Analysis 25

3.5 Automatic Post-Editing . 27
3.5.1 Rule-Based Post-Editing . 27

v

Contents

3.5.2 Automatic Post-Editing Model . 28

3.6 Evaluation of Rule-Based Post-Editing . 29

3.7 Conclusion . 29

4 Handling Rare Items in Natural Language Generation 31

4.1 Introduction . 31

4.2 Related Work . 32

4.3 Experiments . 33

4.3.1 Datasets . 33

4.3.2 Model Parameters . 38

4.3.3 Evaluation . 38

4.4 Results and Discussion . 40

4.5 Conclusion . 43

5 Training Models for Surface Realisation 45

5.1 Introduction . 45

5.2 Motivation and Related Work . 46

5.2.1 Motivation . 46

5.2.2 Related Work . 47

5.3 Data . 48

5.3.1 SR’18 . 48

5.3.2 SR’19 . 48

5.4 Model . 49

5.4.1 Word Ordering . 49

5.4.2 Morphological Realisation . 51

5.4.3 Contraction Generation . 51

5.5 Evaluation on SR’18 . 52

5.5.1 Word Ordering . 52

5.5.2 Morphological Realisation . 55

5.5.3 Contraction Generation . 56

5.5.4 Global Evaluation . 56

5.6 Participation in SR’19 . 57

5.6.1 Model Adaptation . 57

5.6.2 Results and Discussion . 58

5.7 Conclusion . 63

vi

6 Evaluating Surface Realisers 65
6.1 Introduction . 65
6.2 Related Work . 66
6.3 Framework for Error Analysis . 67

6.3.1 Syntactic Complexity Metrics . 67
6.3.2 Performance Metrics . 69
6.3.3 Correlation Tests . 70
6.3.4 Error Mining . 70

6.4 Data and Experimental Setting . 70
6.5 Error Analysis . 72

6.5.1 Tree-Based Syntactic Complexity . 72
6.5.2 Projectivity . 74
6.5.3 Entropy . 75
6.5.4 Which Syntactic Constructions Are Harder to Handle? 78

6.6 Using Error Analysis for Improving Models or Datasets 81
6.7 Conclusion . 83

7 Evaluating Natural Language Generation Systems 85
7.1 Introduction . 85
7.2 Context and Motivation . 86
7.3 Experimental Setup . 87

7.3.1 Data . 87
7.3.2 Design . 87
7.3.3 Ensuring Quality . 88
7.3.4 Correlations . 88

7.4 Correlation Analysis Results . 88
7.5 Conclusion . 89

8 Conclusion 91

Appendices 93

A Appendix A 93

B Appendix B 115

Bibliography 117

vii

Contents

viii

List of Figures

1 Délexicalisation et linéarisation (dans l’arbre d’analyse de la phrase de sortie, la
première ligne montre les lemmes, la deuxième les formes de mots, la troisième les
parties du discours et la quatrième les identifiants). Les identifiants sont assignés
aux nœuds de l’arbre dans l’ordre donné par une recherche en profondeur. xviii

2.1 A game record and its corresponding document (partial view) in RotoWire.
Picture from Wiseman et al. (2017). 7

2.2 A dialogue act and its corresponding text in E2E. MR: meaning representation.
Picture from http://www.macs.hw.ac.uk/InteractionLab/E2E. 8

2.3 SR shallow track. Input for English in the CoNLL-U format and in a graphical
form for the output sentence This happened very quickly, and I wanted to make
sure that I let everyone know before I left. Picture from http://taln.upf.edu/
pages/msr2018-ws/SRST.html#examples. 10

2.4 SR deep track. Input for English in a graphical form for the output sentence This
happened very quickly, and I wanted to make sure that I let everyone know be-
fore I left. Picture from http://taln.upf.edu/pages/msr2018-ws/SRST.html#
examples. 11

2.5 An RNN-based sequence-to-sequence model in the training phase. Picture modi-
fied from http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.
pdf. 12

2.6 A sequence-to-sequence model with attention. Picture modified from http://
web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf. . 13

2.7 Pointer-generator model. Picture from See et al. (2017). 15
2.8 Factored model. Picture from Hokamp (2017). 17
2.9 Source sentence dependency tree and its factored representation after subword

segmentation. B: beginning, I: inside, E: end of a word. O is used if a symbol
corresponds to the full word. Picture from Sennrich and Haddow (2016). 17

5.1 Delexicalising and linearising (in the parse tree of the output sentence the first
row shows the lemmas, the second–the word forms, the third–the POS tags and
the fourth–the identifiers). Identifiers are assigned to the source tree nodes in the
order given by depth-first search. 49

5.2 Linear regression between BLEU scores for each module and final BLEU scores.
Data points are treebanks (ids are from Table 5.6). In orange: MR on gold lemma
vs. final BLEU (WO + MR); in blue: WO vs. final BLEU (WO + MR). 62

ix

http://www.macs.hw.ac.uk/InteractionLab/E2E
http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples
http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples
http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples
http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

List of Figures

6.1 A reference UD dependency tree (nodes are lemmas) and a possible SR model
output. The final output is used to compute human judgments and the lemma-
tised output to compute BLEU and dependency edge accuracy (both are given
without punctuation). 68

6.2 Spearman ρ coefficients between metrics. Ad: Adequacy z-score, Fl: Fluency
z-score, DEA: dependency edge accuracy, MFS: mean flux size, MFW: mean flux
weight, MA: mean arity, TD: tree depth, TL: tree length, MDD: mean dependency
distance. * – non-significant coefficients at α = 0.05 corrected with the Holm-
Bonferroni method for multiple hypotheses testing. 73

6.3 Entropy of dependency relations in the treebanks used in the SR shared tasks.
A cross indicates the absence of a dependency relation in a treebank. Treebanks
are grouped by language families. 76

6.4 Spearman correlation coefficient heatmap between dependency edge accuracy and
entropy. A cross indicates that a team did not make a submission for the treebank.
Treebanks are grouped by language families. The same correlation matrix but
annotated with coefficient numbers is available in the Appendix B. 77

7.1 System- and sentence-level correlation analysis. 89

B.1 Spearman ρ coefficients between dependency edge accuracy and entropy. A cross
indicates that a team did not make a submission for the treebank. Treebanks are
grouped by language families. 116

x

List of Tables

1 Exemple original de WebNLG dans la catégorie ComicsCharacter, sa traduction
russe (MT), et sa traduction post-éditée (PE) ainsi que l’annotation des erreurs.
Les erreurs sont colorées en bleu. gen—génitif; anim—animé; inan—inanimé. . . xvi

2.1 RDF triples and their corresponding text in WebNLG. 8

3.1 WebNLG original instance in the ComicsCharacter category, its Russian trans-
lation (MT), and post-edited translation (PE) along with error annotation. Er-
rors are highlighted in blue. Links are RDF triples of the form <English entity,
sameAs, Russian entity>. However, such links are not available for all entities in
DBpedia. gen—genitive; anim—animate; inan—inanimate. 24

3.2 Main categories and subcategories of error classification. 26
3.3 Proportion of main error types in the manually post-edited data and Cohen’s κ

scores on the held-out category Athlete. 26
3.4 Corpus statistics: number of post-edited (PE) texts. Total corresponds to both

PE and non-PE texts. 28
3.5 BLEU-4 scores. 29

4.1 Entry examples of the E2E (top) and WebNLG (bottom) datasets with and with-
out delexicalisation. 34

4.2 Statistics on attribute values in E2E (above) and on RDF-triple constituents in
WebNLG (below). 35

4.3 Training/development/test sets statistics in E2E and WebNLG in original (un-
constrained) and constrained splits. Instances count is a number of (data, text)
pairs; MRs count is a number of unique data inputs. 35

4.4 Manual annotation of text predictions for E2E and WebNLG data. Annotations
are between curly braces. 39

4.5 E2E dataset (D: Delexicalisation, D+C: delexicalisation and copying, C: copy
and coverage, NIL: Neither copy nor delexicalisation). The upper half of the
table presents automatic evaluation results; the lower half—human evaluation
results. Best scores are in bold. 40

4.6 WebNLG dataset (D: Delexicalisation, D+C: delexicalisation and copying, C:
copy and coverage, NIL: Neither copy nor delexicalisation). The upper half of the
table presents automatic evaluation results; the lower half—human evaluation
results. Best scores are in bold. * – word repetitions present in predictions. . . . 41

4.7 Example predictions for E2E. Mistakes are in bold. 42
4.8 Example predictions for WebNLG. Mistakes are in bold. 43

xi

List of Tables

5.1 Word Ordering: BLEU scores on lemmatised data. Mean and standard deviation
across three random seeds. BL: Baseline. All pairwise comparisons of BL and
our model showed a statistically significant difference in BLEU via the bootstrap
resampling (1000 samples, p < .05). 52

5.2 Proportion of correct head/dependent positioning for the five selected dependency
relations: det, nsubj, obj, amod, acl, and overall performance across all dependency
relations. +1: exact match; +2: approximate match, i.e. head and dependent
are in the correct order but there is a one-token difference between gold and
prediction. NA: no dependency relation found in a treebank. ∆ indicates the
difference between our delexicalised model and the baseline. 54

5.3 Morphological Realisation Results. MR Accuracy: accuracy of the MR mod-
ule. WO: BLEU scores on lemmas. WO+MR: BLEU scores on inflected tokens
without contraction (S−c). 55

5.4 Contraction Generation Results (BLEU scores). S−c/S+c: a sentence without
contractions vs. a reference sentence including contractions; S−c: BLEU with
respect to sentences before contractions; S+c: BLEU with respect to a reference
sentence. The scores were computed on detokenised sequences. 56

5.5 BLEU, DIST and NIST scores on the SR’18 test data (shallow track). SR’18 is
the official results of the shared task but do not include OSU scores, since they
are given in the line below. We also excluded the ADAPT and NILC scores as
they were obtained using data augmentation. OSU is the submission of King and
White (2018). 57

5.6 The MR module applied to the gold word ordering input. Predictions and refer-
ence sentences are both tokenised. Results on the development set. 59

5.7 Accuracy of the morphological realisation component. NA: no MR component
was developed. Percentage and count of lemmas with ambiguous forms found in
the training data. 59

5.8 WO component performance on the development set. Predictions and references
(sequences of lemmas) are both tokenised. 61

5.9 Automatic metrics on the development set (WO +MR). Predictions and reference
sentences are both tokenised. 61

6.1 Metrics for Syntactic Complexity of a sentence (the values in braces indicate the
corresponding value for the tree in Figure 6.1). 69

6.2 Descriptive statistics (mean and stdev apart from the first two and the last col-
umn) for the UD treebanks used in SR’18 and SR’19. S: number of submissions,
count: number of sentences in a test set, MDD: mean dependency distance, MFS:
mean flux size, MFW: mean flux weight, MA: mean arity, NP: percentage of
non-projective sentences. For the tree-based metrics (MDD, MFS, MFW, MA),
macro-average values are reported. 71

6.3 Median values for BLEU, Fluency, and Adequacy for projective/non-projective
sentences for each submission. Medians for non-projective sentences which are
higher than for the projective sentences are in bold. All comparisons were signif-
icant with p < 0.001. Human judgments were available for ru_syntagrus only. . . 75

6.4 Macro-average dependency edge accuracy over all submissions sorted from the
lowest accuracy to the highest. Count is a number of times a relation was found
in all treebanks. 79

xii

6.5 Top-20 of the most frequent suspicious trees (dep-based) across all submissions.
In case of conj, when tree patterns were similar, they were merged, X serving as
a placeholder. Coverage: percentage of submissions where a subtree was mined
as suspicious. MSS: mean suspicion score for a subtree. 80

6.6 Most frequent suspicious trees (pos-based) across all submissions. 80
6.7 Most frequent suspicious trees (dep-pos-based) across all submissions. 81

A.1 Arabic. Exact match. 94
A.2 Arabic. Approximate match. 95
A.3 Czech. Exact match. 96
A.4 Czech. Approximate match. 97
A.5 English. Exact match. 98
A.6 English. Approximate match. 99
A.7 Spanish. Exact match. 100
A.8 Spanish. Approximate match. 101
A.9 Finnish. Exact match. 102
A.10 Finnish. Approximate match. 103
A.11 French. Exact match. 104
A.12 French. Approximate match. 105
A.13 Italian. Exact match. 106
A.14 Italian. Approximate match. 107
A.15 Dutch. Exact match. 108
A.16 Dutch. Approximate match. 109
A.17 Portuguese. Exact match. 110
A.18 Portuguese. Approximate match. 111
A.19 Russian. Exact match. 112
A.20 Russian. Approximate match. 113

xiii

List of Tables

xiv

Génération en langue naturelle : de
la création des données à

l’évaluation, en passant par la
modélisation

À l’heure actuelle, une part importante des données disponibles est sous forme non textuelle :
tables, images, bases de données, graphes de connaissance. Un des buts de la Génération en
Langue Naturelle (natural language generation, NLG) est de convertir ces données en texte. Ce
texte doit servir l’objectif de transmettre l’information contenue dans les données au lecteur.
Pour cela, il doit respecter les règles grammaticales et syntaxiques de la langue dans lequel il
est écrit, et représenter fidèlement l’information contenue dans les données dont il est issu.

La production d’un texte respectant ces deux conditions est une tâche difficile. Les avancées
récentes en Traitement Automatique des Langues (Natural Language Processing, NLP) ont ac-
céléré les progrès dans le domaine de la NLG. L’émergence de nouvelles méthodes augmentant
la visibilité de certaines tâches et difficultés, la modélisation de la langue offre des défis sans
cesse renouvelés. Le champ du NLP a encore de nombreux défis à surmonter, puisqu’un grand
nombre des capacités linguistiques des humains ne peut pas être imité par les machines.

Dans de nombreuses sciences appliquées, le cycle de recherche traditionnel consiste en une
collection de données, suivie d’expériences, puis d’analyse des résultats. Dans cette thèse, nous
nous penchons sur les trois phases de ce cycle en NLG : la création de données, la modélisation
et l’évaluation.

De nos jours, la plupart des approches de NLG s’appuient sur des données annotées via des
méthodes d’apprentissage automatique. L’annotation de ces données est un processus coûteux
; de plus, la plupart des données annotées permettant l’entraînement de modèles de NLG sont
en anglais. Dans cette thèse, nous explorons comment les données annotées créées en anglais
peuvent être transférées à d’autres langues et les difficultées induites par cette approche.

En ce qui concerne la modélisation, nous nous concentrons sur plusieurs aspects. Première-
ment, nous étudions de quelle manière la problématique des mots peu fréquents peut être gérée
dans le cadre des approches à base de réseaux de neurones. Puisque dans ces approches, les
patrons sont appris de manière statistique, le traitement des mots les plus rares requiert une
procédure particulière. Deuxièmement, nous nous penchons sur la tâche de réalisation de surface
qui consiste en la génération de texte à partir d’une représentation linquistique et qui est une
composante particulière des systèmes de NLG. Cette composante peut servir d’intermédiaire
dans le processus de génération afin d’améliorer l’encodage de la sortie désirée. Nous avons
développé un réalisateur de surface, grâce auquel nous montrons de quels facteurs dépend la
performance de la réalisation de surface. Ce réalisateur de surface est développé dans un cadre

xv

Génération en langue naturelle : de la création des données à l’évaluation, en passant par la modélisation

multilingue, ce qui permet de constater les différences de performances entre les langues.
Après qu’un système de NLG ait produit un texte, ce dernier doit être évalué. Cette éval-

uation est difficile, du fait de la variété des données d’entrée et du nombre infini des textes
générés possibles. Pour l’analyse des modèles de réalisation de surface, nous proposons un
cadre d’identification des erreurs conditionnées par certaines caractèristiques des entrées. Cette
analyse est réalisée sur plusieurs systèmes multilingues. Enfin, nous nous intéressons à la méta-
évaluation et évaluons le pouvoir de corrélation entre certains indicateurs et les jugements hu-
mains à propos des textes générés.

Dans ce qui suit, nous détaillons ces sujets de recherche.

Création d’un corpus d’apprentissage pour la Génération en Langue
Naturelle

La génération data-to-text est une tâche clé de la NLG, qui consiste à verbaliser les informa-
tions contenues dans les données, par exemple, dans les bases de connaissance. Un corpus
contenant des données mises en correspondance avec leur expression textuelles peut permet-
tre l’apprentissage d’un modèle data-to-text. Cependant, de tels corpus sont peut courants
et leur création manuelle est hautement complexe. Enfin, les quelques corpus existant ont été
développés en anglais. Des méthodes permettant la création automatique de corpus data-to-text
multilingues à partir de ces corpus existants seraient donc d’une grande valeur.

triplets RDF <Asterix, creator, René Goscinny> <René Goscinny, nationality, French people>
Original Rene Goscinny is a French national and also the creator of the comics character Asterix.

MT Ðåíå Ãîñêèíî -ôðàíöóçñêèé ãðàæäàíèí, à òàêæå ñîçäàòåëü êîìè÷åñêîãî ïåðñîíàæà Àñòåðèêñ.
Rene Goskino French national and also creator comicgen charactergen Asterixinan

PE Ðåíå Ãîñèííè -ôðàíöóçñêèé ãðàæäàíèí, à òàêæå ñîçäàòåëü ïåðñîíàæà êîìèêñîâ Àñòåðèêñà.
Rene Goscinny French national and also creator charactergen comicsgen Asterixanim

Erreurs entité nommée, vocabulaire, grammaire

Table 1: Exemple original de WebNLG dans la catégorie ComicsCharacter, sa traduction russe
(MT), et sa traduction post-éditée (PE) ainsi que l’annotation des erreurs. Les erreurs sont
colorées en bleu. gen—génitif; anim—animé; inan—inanimé.

Dans cette thèse nous introduisons une méthode de création d’un corpus data-to-text en
russe à partir du corpus data-to-text anglophone de WebNLG (Gardent et al., 2017a). Notre
méthode inclut trois étapes principales. Premièrement, nous utilisons un modèle neuronal de
traduction automatique (neural machine translation, NMT) pour traduire en russe les textes
anglophones de WebNLG. Deuxièmement, nous analysons en détail les erreurs contenues dans
le texte produit par le modèle de NMT. Nous constatons que les entités nommées sont la source
d’erreur la plus importante durant la traduction. La Table 1 montre un exemple tiré deWebNLG.
Troisièmement, nous exploitons deux méthodes de post-édition automatique des entités nommées
: l’une à base de règles de post-édition obtenues à partir de corrections manuelles, l’autre
basée sur un réseau de neurones séquence-vers-séquence. Nos résultats montrent que la post-
édition basée sur le modèle neuronal a des performances égales à la baseline, ce qui confirme les
observations effectuées lors des tâches communes de post-édition automatique (Chatterjee et al.,

xvi

2018, 2019). D’une manière générale, nous concluons de nos expériences que l’approche à base
de règles est plus robuste que sont équivalent neuronal.

Gestion des items peu fréquents en génération en langue naturelle

Les corpus de NLG décrivent souvent des informations factuelles, et par conséquent les entrées
des systèmes de NLG contiennent souvent des items peux fréquents tels que des noms, lieux ou
dates. Par conséquent, dans le cadre de l’apprentissage supervisé, il est difficile pour les modèles
neuronaux de prédire la verbalisation de ces entrées. Typiquement les approches de génération
neuronales tentent de surmonter ces problèmes par la délexicalisation (Wen et al., 2015; Dušek
and Jurčíček, 2015; Trisedya et al., 2018; Chen et al., 2018) ou en utilisant un mécanisme de
copie (Chen, 2018; Elder et al., 2018; Gehrmann et al., 2018). Les encodages charactère par
charactère (Agarwal and Dymetman, 2017; Deriu and Cieliebak, 2018a; Jagfeld et al., 2018) et
les encodages par paires d’octets ont également été utilisés (Elder, 2017; Zhang et al., 2018).

Dans cette thèse nous étudions l’impact de la copie et de la délexicalisation sur la qualité des
textes générés par deux modèles sequence-to-sequence avec mécanisme d’attention : l’un utilisant
un mécanisme de copie et couverture See et al. (2017), l’autre utilisant la délexicalisation. Nous
évaluons leurs sorties respectives sur deux datasets, à savoir E2E (Novikova et al., 2017b) et le
dataset de WebNLG (Gardent et al., 2017a). Nous comparons les deux méthodes dans deux
cadres : d’une part les partitions “apprentissage/validation/test” originales données par E2E
et par WebNLG, d’autre part des partitions plus contraintes visant à minimiser le nombre de
redondance entre les partitions d’apprentissage, validation et test. Nous montrons que (i) les
items peu fréquents impactent fortement la performance, (ii) combiner la délexicalisation et
la copie donnent les améliorations les plus importantes, (iii) la copie est moins performante
que la délexicalisation pour la gestion des items peu fréquents, (iv) que l’impact de ces deux
mécanismes dépendent grandement de la manière dont le dataset est construit et de comment
la partition “apprentissage/validation/test” est réalisée.

Entrainement des modèles de réalisation de surface

Dans les sections précédentes, nous nous sommes concentrés sur les entités nommées et avons
abordé la manière de les traiter lors de la création de données d’entraînement pour la NLG
et lors de la génération à partir de données riches en entités nommées. Les données d’entrée
considérées étaient des triplets RDF et des actes de dialogue. Dans cette section, nous traitons
d’un autre type d’entrée — les arbres de dépendance non ordonnés — et nous explorons la
génération multilingue en nous concentrant sur la tâche de réalisation de surface.

La réalisation de surface (surface realisation, SR) est une tâche consistant à associer une
représentation sémantique à une phrase. Dans le cas du data-to-text, elle s’intègre à un processus
complexe visant à sélectionner, compresser et structurer les données d’entrée afin d’obtenir
un texte (Reiter and Dale, 2000). Dans le cas du text-to-text, elle peut servir à reformuler
une partie ou la totalité du texte d’entrée. Dans cette thèse, nous nous concentrons sur les
campagnes d’évaluation de réalisation de surface peu profondes de SR’18 et SR’19, où l’entrée
est un arbre de dépendance lemmatisé et non ordonné, à partir duquel une phrase bien formée
doit être produite. Dans cette thèse, nous proposons une approche neuronale qui décompose la
réalisation de surface en trois sous-tâches : l’ordonnancement des mots, l’inflexion morphologique
et la génération de contractions (comme les clitiques en portugais ou l’élision en français). Nous
fournissons une analyse détaillée de la façon dont chacun de ces phénomènes (ordre des mots,

xvii

Génération en langue naturelle : de la création des données à l’évaluation, en passant par la modélisation

réalisation morphologique et contraction) est traité par le modèle, et nous commentons les
différences observées d’une langue à l’autre.

Entrée Sortie

(a) Arbre source non ordonné (b) Lemmes de sortie avec l’arbre d’analyse d’or

pomme la John manger
noun det pnoun verb
2 3 4 1

root

nsubj

obj

det
Jean manger la pomme
Jean mange la pomme
pnoun verb det noun

4 1 3 2

root

nsubj det

obj

2:noun:obj:1 3:det:DET:2 4:pnoun:nsubj:1 1:verb:root:0 4 1 3 2

Figure 1: Délexicalisation et linéarisation (dans l’arbre d’analyse de la phrase de sortie, la
première ligne montre les lemmes, la deuxième les formes de mots, la troisième les parties du
discours et la quatrième les identifiants). Les identifiants sont assignés aux nœuds de l’arbre
dans l’ordre donné par une recherche en profondeur.

Dans ce qui suit, nous décrivons plus en détail notre approche de réalisation de surface.
Comme nous l’avons déjà mentionné, elle comporte un module distinct pour chacun des trois
composants.

Ordonnancement des mots

L’ordonnancement des mots peut être vu comme une tâche sequence-to-sequence, où un arbre
d’entrée est linéarisé (voir Figure 1). Nous linéarisons les noeuds via une recherche en profondeur
et délexicalisons tous les lemmes d’entrée (autrement dit, nous les remplaçons par des identifiants
dans l’entrée et la sortie et les enrichissons avec des attributs). Nous entraînons ensuite, pour
chaque langue, un modèle neuronal de type encodeur-décodeur factorisé, où les facteurs sont les
relations de dépendance, les labels de parties du discours et les identifiants des nœuds parents
(Elder and Hokamp, 2018; Alexandrescu and Kirchhoff, 2006). Lors de la relexicalisation, nous
remplaçons tous les identifiants par les lemmes infléchis.

Réalisation de morphologie

Les paradigmes morphologiques sont appris à partir de paires (lemme, partie du discours+attributs)
extraites des données d’entraînement (les champs upos et features du format CoNLL) en util-
isant le modèle d’Aharoni and Goldberg (2017). Les lemmes sans attributs morphologiques ne
sont pas utilisés. Comme les attributs ne sont pas fournis pour certains lemmes, le module de
réalisation morphologique n’est pas entraîné pour les langues contenant ces lemmes. Au lieu
de cela, pendant la phase d’inflexion, les lemmes sont soit copiés tels quels dans la sortie, soit
un dictionnaire (construit à partir des données d’entraînement) associant chaque lemme+POS
à la forme du mot est utilisé. Si la clé lemme+POS est absente du dictionnaire, le lemme est
copié tel quel dans la sortie. La même règle s’applique pour tout lemme ne présentant aucune

xviii

caractéristique morphologique connue (par exemple, les URL, les mots étrangers, les chiffres, les
signes de ponctuation, etc.)

Génération de contractions

La génération de contractions est implémentée pour certaines langues afin de gérer les clitiques,
les contractions et l’élision. L’exemple 1 montre quelques types de contractions.

(1) Français : “Le chat dort.” / “L’alouette chante.” (Élision pour l’article défini le devant
une voyelle : Le → L’)
Italien : “In il mare.” → “Nel mare.” (Contraction de la préposition in et de l’article il :
In il → Nel)
Portugais : “*Eis lo.” → “Ei-lo.” (Attachement du pronom clitique : Eis lo → Ei-lo)

Nous avons développé deux modules pour la génération de contractions : l’un basé sur des
expressions régulières, l’autre basé sur un modèle sequence-to-sequence. Ce dernier est entraîné
sur des paires de phrases avec et sans contractions. Le module à base d’expressions régulières
est inspiré de la décomposition d’expression plurilexicales telles que les contractions, qui est
appliquée pendant la tokenisation et le parsing.

Finallement, nous avons inclus une dernière étape de détokenisation consistant à regrouper
certains tokens, certains langues exigeant des règles de détokenisation spécifiques afin de produire
des phrases naturelles pour un utilisateur final.

Conclusions principales

Les résultats expérimentaux montrent qu’une délexicalisation complète améliore les perfor-
mances de manière nette. Linguistiquement parlant, cela confirme l’intuition selon laquelle
la correspondance entre la structure peu profonde de dépendance et l’ordre des mots peut être
apprise indépendamment des mots spécifiques employés. Nous menons également une évalua-
tion détaillée des performances de notre modèle d’ordonnancement des mots pour chaque langue
de la campagne d’évaluation SR. L’évaluation des contraintes d’ordonnancement parent/enfant
montre que les relations à longue distance et les contraintes d’ordres irréguliers de mots (comme
par exemple la position du verbe dans les clauses principales et subordonnées en néerlandais)
impacte négativement le résultat.

Le développement de cette approche multilingue nous a permis de constater la difficulté
d’adapter un modèle de génération à une nouvelle langue. La composante d’ordonnancement
des mots est aisément transférable d’une langue à l’autre et ne demande que peu d’effort pour
être appliqué aux langues non encore traitées. En revanche, la composante de réalisation mor-
phologique demande beaucoup d’attention et doit être réglée pour chaque langue séparément.

Evaluation des réaliseurs de surface

Dans cette partie de la thèse, nous tentons d’approfondir notre méthode d’évaluation de la
réalisation de surface et de l’étendre en un cadre d’évaluation complet en considérant les sorties
de tous les systèmes soumis à deux tâches de réalisation de surface multilingues.

Les mesures d’évaluation standards des modèles de NLG telles que BLEU ou METEOR
échouent à indiquer quels facteurs linguistiques impactent les performances. En nous concentrant
sur la réalisation de surface (c’est à dire la tâche de conversion d’un arbre de dépendance

xix

Génération en langue naturelle : de la création des données à l’évaluation, en passant par la modélisation

non ordonné en une phrase bien formée), nous proposons un cadre d’analyse des erreurs qui
permet d’identifier quelles caractéristiques de l’entrée affectent les résultats du modèle. Ce cadre
consiste en deux composantes principales : (i) une analyse de corrélations entre de nombreuses
mesures syntaxiques et des mesures de performances standards, (ii) un ensemble de techniques
pour détecter automatiquement les constructions syntaxiques corrélées avec de faibles scores de
performance. Nous montrons les avantages de notre cadre en effectuant une analyse des erreurs
sur les résultats de 174 tests de systèmes de réalisation de surface soumis à des campagnes
d’évaluation ; nous montrons que la précision des liens de dépendance est corrélée avec des
mesures automatiques, fournissant une base plus interprétable pour l’évaluation ; nous suggérons
des utilisations de notre modèle visant à améliorer les modèles et les données. Nous mettons ce
cadre à disposition sous la forme d’un outil à destination des chercheurs souhaitant améliorer
leurs modèles et datasets, ainsi que des organisateurs de campagnes d’évaluation souhaitant
fournir des retours détaillés et linguistiquement interprétables sur l’état de l’art de la réalisation
de surface multilingue.

xx

1

Introduction

A lot of information in the world comes in the form of non-textual data: tables, images,
databases, knowledge graphs. One of the goals of natural language generation (NLG) is to
convert data to a well-formed text. This text should achieve a communicative goal: transmit-
ting information encoded in the data to the reader. To this end, it should be fluent and accurate.
A fluent text respects syntactical and grammatical rules of natural language, and an accurate
text faithfully reflects the information conveyed in the data.

Producing accurate and fluent texts is a challenging task. Recent advances in natural lan-
guage processing (NLP), principally based on neural networks, have given a boost to language
generation tasks. However, modelling language is always a moving target. With the emergence
of new methods, new tasks and challenges become more apparent, and computational linguis-
tics as a field has a long way to go, since many human, language-related capabilities are not
replicated by machines.

The traditional research cycle in many applied sciences consists in collecting some data,
doing some experiments, and analysing them. In this work, we investigate the three main steps
of this cycle in NLG: data creation, modelling, evaluation.

In NLG, most approaches nowadays are data-driven, i.e. learning happens on the basis of
some labelled data. Performing annotation is a costly process; furthermore, most labelled data
in generation has been created for English. In this thesis, we explore how annotated data created
in English can be transferred to another language and what difficulties this process entails.

Regarding modelling NLG systems, we focus on several aspects. First, we investigate how
non-frequent words can be handled in data-driven, neural approaches. Since in those approaches
patterns are learnt statistically, one needs a special procedure for treatment of rare words.
Second, we deal with surface realisation, a special component of NLG systems, which generates
text from a linguistic representation. This component may serve as an intermediary in the
generation process to better encode the desired output. The developed surface realiser enables
to show which linguistic factors surface realisation performance depends on. Moreover, the
realiser is developed in a multilingual setting, what allows to see differences in performance
between languages.

Once an NLG system produces a text, it needs to be evaluated. NLG evaluation is notoriously
difficult given a variety of inputs and an infinite number of possible generated texts. Given a
task of surface realisation, we propose a framework for identifying errors conditioned on the
input characteristics. This analysis is carried out on several multilingual systems. Finally, we
also deal with meta-evaluation and assess the ability of some automatic indicators to correlate
with human judgments as far as generated texts are concerned.

1

Chapter 1. Introduction

Thesis Outline

Chapter 2 (Background) introduces the field of Natural Language Generation. We discuss inputs
to NLG systems and neural methods used in the thesis. We review recent neural-based NLG
systems and point out some directions for future research.

Chapter 3 (Creating Training Corpora for Natural Language Generation) discusses how to
create a data-to-text generation corpus for Russian using English data. We propose a semi-
automatic approach based on machine translation and highlight that most translation errors
are related to named entities. We discuss two approaches to remedy those errors: a rule-based
method and an approach based on automatic post-editing.

Chapter 4 (Handling Rare Items in Natural Language Generation) focuses on handling rare
input items in neural NLG systems. In such systems, the rare items are usually managed using
either delexicalisation or a copy mechanism. We investigate the relative impact of these two
methods on two datasets (E2E and WebNLG) and using two evaluation settings. We show that
rare items strongly impact performance; that combining delexicalisation and copying yields the
strongest improvement; that copying underperforms for rare and unseen items; and that the
impact of these two mechanisms greatly varies depending on how the dataset is constructed and
on how it is split into training, development and test sets.

Chapter 5 (Training Models for Surface Realisation) presents our model for shallow surface
realisation—generation from unordered dependency trees. We propose a modular approach to
surface realisation and evaluate our approach on the multiple languages covered by the SR’18 and
SR’19 Surface Realisation Shared Task shallow tracks. We provide a detailed evaluation of how
word order, morphological realisation and contractions are handled by the model and an analysis
of the differences in word ordering performance across languages. Our experimental results show
that mapping between a dependency tree and word order can be learned independently of the
lexical forms.

Chapter 6 (Evaluating Surface Realisers) presents a framework for error analysis which per-
mits identifying which features of the input affect surface realisation models’ results. This
framework consists of two main components: (i) correlation analyses between a wide range of
syntactic metrics and standard performance metrics and (ii) a set of techniques to automatically
identify syntactic constructs which often co-occur with low performance scores. We demonstrate
the advantages of our framework by performing error analysis on the results of 174 system runs
submitted to the Multilingual Surface Realisation shared tasks. We show that tree character-
istics do not correlate with model performance, and we identify constructions where models
underperform. We also suggest ways in which our framework could be used to improve models
and data.

Chapter 7 (Evaluating Natural Language Generation Systems) discusses the difference be-
tween sentence-level and system-level evaluation in NLG. We validate three automatic metrics
by correlating them to human judgments and show that depending on the usage of a system-
or sentence-level correlation analysis, correlation results between automatic scores and human
judgments are inconsistent.

Chapter 8 (Conclusion) sums up the main research conclusions of the thesis and outlines
some future research directions.

List of Publications

Parts of this thesis have appeared in the following publications and reports:

2

• Shimorina, A., Parmentier, Y., and Gardent, C. (2021). An Error Analysis Framework for
Shallow Surface Realization. Transactions of the Association for Computational Linguis-
tics, 9:429–446

• Shimorina, A. and Gardent, C. (2019b). Surface realisation using full delexicalisation. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3086–3096, Hong Kong, China. Association for Computational Linguistics

• Shimorina, A. and Gardent, C. (2019a). LORIA / Lorraine University at multilingual
surface realisation 2019. In Proceedings of the 2nd Workshop on Multilingual Surface
Realisation (MSR 2019), pages 88–93, Hong Kong, China. Association for Computational
Linguistics

• Shimorina, A., Khasanova, E., and Gardent, C. (2019). Creating a corpus for Russian
data-to-text generation using neural machine translation and post-editing. In Proceedings
of the 7th Workshop on Balto-Slavic Natural Language Processing, pages 44–49, Florence,
Italy. Association for Computational Linguistics

• Shimorina, A. and Gardent, C. (2018). Handling rare items in data-to-text generation. In
Proceedings of the 11th International Conference on Natural Language Generation, pages
360–370, Tilburg University, The Netherlands. Association for Computational Linguistics

• Shimorina, A. (2018). Human vs automatic metrics: on the importance of correlation
design. Peer-reviewed, non-archival, presented at the Widening NLP Workshop 2018 at
NAACL, arXiv: 1805.11474

• Shimorina, A., Gardent, C., Narayan, S., and Perez-Beltrachini, L. (2018). WebNLG
Challenge: Human Evaluation Results. Technical report, Loria & Inria Grand Est

3

Chapter 1. Introduction

4

2

Background

Contents
2.1 Natural Language Generation . 5

2.1.1 Introduction to NLG . 5
2.1.2 Input Data in NLG . 7

2.2 Methods in Natural Language Generation 11
2.2.1 Encoder-Decoder Framework . 11
2.2.2 Attention . 13
2.2.3 Copy and Coverage Mechanisms . 14
2.2.4 Factored Models . 16
2.2.5 Transformers, Pre-trained Language Models 16
2.2.6 Encoder-Decoder Models for NLG . 18

2.3 Future Directions . 19

2.1 Natural Language Generation

2.1.1 Introduction to NLG

Natural language generation (NLG) is the process of generating a natural language text from
some input. This input can be texts, documents, images, tables, knowledge graphs, databases,
dialogue acts, meaning representations, etc.

The purpose of NLG is to model natural language texts in their full variety. NLG is encoun-
tered in numerous applications which extend well beyond Natural Language Processing (NLP)
tasks: medicine, finance, commerce, sports, journalism, and any other where there is a need to
generate texts based on some data. NLG is a field on its own within NLP, however, it may be
also a component of other NLP tasks whose output is language: dialogue, question answering,
creative writing.

Let us consider a few examples of NLG applications:

• in health care and medicine, reports for health professionals and explanatory materials
for patients are generated based on medical databases and patient records (Cawsey et al.,
1997; DiMarco et al., 2007; Portet et al., 2009; Hasan and Farri, 2019);

5

Chapter 2. Background

• in finance, stock reports are generated by aggregating financial and economic indicators
(Plachouras et al., 2016);

• in journalism, automated reports and news stories are generated based on machine-readable
data such as polling station statistics or candidate profiles in elections (van Dalen, 2012;
Leppänen et al., 2017);

• in sports, summaries of football matches are generated using game statistics (Theune et al.,
2001; Chen and Mooney, 2008).

In research, NLG has been a long-standing problem. Early works in NLG deal with genera-
tion of answers from databases (McKeown, 1982) and report generation from knowledge bases
(Kukich, 1983). Initial NLG systems were mainly based on rules and templates. Rule-based
systems which were dominant at that time led to the construction of the standard NLG pipeline
where several components are commonly identified:

1. Document Planning, which decides what information should be included.

2. Microplanning, which decides how to organise information and how to convey it.

3. Realisation, which, relying on the decisions taken in steps 1-2, converts abstract represen-
tations to a well-formed text.

More fine-grained steps of this pipeline are described in Reiter and Dale (2000), and for an
overview of developments related to each of these components and their subproblems, we refer
the reader to Gatt and Krahmer (2018). In early, traditional NLG systems those stages were
executed in a sequence, leading to errors propagating along the pipeline. Since decisions taken
upstream inevitably affect those taken downstream in the pipeline architecture, it is quite pos-
sible for early decisions to result in problems later on (e.g., because the document is planned in
such a way that the microplanner lacks the resources to express relations between messages co-
herently). For instance, Meteer (1991) and Robin and McKeown (1996) discuss this “generation
gap”, which arises when a module’s choices result in a dead end in a later module (e.g., an or-
dering of events is such that the microplanner does not know how to express temporal relations).
To address that architectural issue, a number of end-to-end approaches have been developed: at
first, statistical (Konstas and Lapata, 2013), and then neural-based, which constitute a dominant
trend in NLG today.

Statistical methods, replacing hand-crafted rules and templates, tended to perform gener-
ation in a more unified framework, rather than strictly separating the pipeline’s steps (Belz,
2008; Liang et al., 2009; Angeli et al., 2010; Kondadadi et al., 2013; Mairesse and Young, 2014).
Current neural methods, more than ever, conflate all the components into a single end-to-end
NLG system (Lebret et al., 2016; Wiseman et al., 2017). Neural-based NLG will be briefly
reviewed below in Sections 2.2.5 and 2.2.6.

Another important strand of early NLG research has been dedicated to surface realisation
from grammars. The goal consists in rendering a text given a grammar. Different grammar for-
malisms were used to perform surface realisation: a Probabilistic Context-Free Grammar (Belz,
2008), Head-driven Phrase Structure Grammar (Nakanishi et al., 2005a), Lexical Functional
Grammar (Cahill and van Genabith, 2006), Combinatory Categorial Grammar (White et al.,
2007), etc. Although many of these systems were statistical, they focused exclusively on one
part of the generation process.

6

2.1. Natural Language Generation

Figure 2.1: A game record and its corresponding document (partial view) in RotoWire. Picture
from Wiseman et al. (2017).

2.1.2 Input Data in NLG

Historically stand-alone NLG was often viewed as a data-to-text task (Reiter and Dale, 2000).
With the course of time this has changed; nowadays vision-to-text and text-to-text applications—
machine translation, summarisation, simplification, paraphrasing, etc.—are included into the
NLG definition as well. In this thesis, we restrict the definition of NLG by excluding vision-
and text-to-text generation. So our focus will be primarily on tasks including data or meaning
representations as an input to NLG systems.

As discussed in Section 2.1.1, a plethora of inputs exist for NLG, depending on a task in
question; this section is chiefly devoted to the inputs that are used in the thesis and some
challenges related to them.

Tables and Structural Records

A common input to data-to-text NLG systems are tables and other structural records (Sripada
et al., 2002; Chen and Mooney, 2008; Lebret et al., 2016; Parikh et al., 2020). Figure 2.1 gives
an example of such input from the RotoWire dataset (Wiseman et al., 2017), which provides
summaries of basketball games paired with game statistics. As illustrated by the example,
table-to-text tasks quite often require a content selection process: not all the scores and entities
mentioned in the tables are found in the text. Furthermore, such inputs may require reasoning
about entity relationship and some numerical inference, which, in addition, makes tables an
interesting target for Natural Language Understanding (NLU) tasks.

Generally, tabular data is the least specified NLG input, leaving a lot of choices for NLG
systems in terms of microplanning and realisation.

7

Chapter 2. Background

RDF triples:
Arròs_negre - country - Spain
Arròs_negre - ingredient - White_rice
Text:
White rice is an ingredient of Arròs negre which is a traditional dish from Spain.

Table 2.1: RDF triples and their corresponding text in WebNLG.

Figure 2.2: A dialogue act and its corresponding text in E2E. MR: meaning representation.
Picture from http://www.macs.hw.ac.uk/InteractionLab/E2E.

RDF triples

Another type of input of data-to-text systems are records from databases and knowledge bases
(Elsahar et al., 2018). Here we consider an example from the WebNLG dataset (Gardent et al.,
2017a), which aligns DBpedia (Lehmann et al., 2015) records to text (Table 2.1). DBpedia is a
knowledge base extracted fromWikipedia, and it is constructed using technologies from Semantic
Web and Linked Data. DBpedia data is stored as Resource Description Format (RDF) triples
of the form subject-predicate-object where the subject is a Uniform Resource Identifier (URI),
the predicate is a binary relation, and the object is either a URI or a literal value such as a
string, a date or a number.

Comparing to tabular data, RDF triples can be considered as a more specified semantic
representation, with predicates serving to link entities and indicating the relation between them.

In case of WebNLG, no content selection is to be modelled: all triples are found in texts. On
the other hand, microplanning has a lot of operations to handle: mapping data to words (lexical-
isation), using linguistic constructs to avoid repetitions (aggregation), exploiting the appropriate
syntactic constructs to build sentences (realisation), and referring expression generation.

Dialogue Acts

NLG modules are used in dialogue modelling to generate utterances in conversations. Input
data for utterance generation is a dialogue act expressed through a meaning representation
(Mairesse et al., 2010; Wen et al., 2015; Juraska et al., 2019). Exemplified by the E2E dataset
(Figure 2.2), a meaning representation consists of an unordered set of attributes/slots and their

8

http://www.macs.hw.ac.uk/InteractionLab/E2E

2.1. Natural Language Generation

values. Utterances in most dialogue systems also have an intent, i.e. they may serve different
functions in a conversation, such as request, statement, opinion, agreement, etc. In E2E, the
focus was on restaurant recommendations only, so the intent (recommend/inform) was omitted.

Dialogue acts give a more semantically specified representation of input than in data-to-text
applications. The main challenges in generation from dialogue-based meaning representations
include reproducing lexical richness and syntactic complexity and handling diverse discourse
phenomena.

Semantic and Syntactic Representations

Another type of input to NLG systems stems from syntactic or semantic formalisms. Those can
be regarded as the most specified representations. For NLG systems, these inputs require to
perform a surface realisation step, i.e. to decide which syntactic constructs should be used to
render lexical items to a well-formed text.

One of the examples of such input is the data used in the surface realisation shared tasks
(Belz et al., 2011; Mille et al., 2018a). These tasks have two tracks: shallow and deep. In
the shallow track, inputs are derived from syntactic trees constructed according to dependency
grammar (Figure 2.3). The task of NLG systems is to reconstruct the correct word order and
perform morphological inflection given lemmas and their morphological features. In the deep
track, morphological and syntactical information is removed, and relations between words are
now semantic, akin to predicate-argument labels (Figure 2.4).

Apart from dependency trees, other representations have been used as input for NLG: Ab-
stract Meaning Representation (Banarescu et al., 2013), Minimal Recursion Semantics (Hajdik
et al., 2019), Discourse Representation Structures (Basile and Bos, 2011), lambda calculus ex-
pressions (Lu and Ng, 2011), first-order logic (Gerdemann and Hinrichs, 1990), and various
grammar formalisms (Cahill and van Genabith, 2006; White et al., 2007).

9

Chapter 2. Background

Figure 2.3: SR shallow track. Input for English in the CoNLL-U format and in a graphical
form for the output sentence This happened very quickly, and I wanted to make sure that I
let everyone know before I left. Picture from http://taln.upf.edu/pages/msr2018-ws/SRST.
html#examples.

10

http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples
http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples

2.2. Methods in Natural Language Generation

Figure 2.4: SR deep track. Input for English in a graphical form for the output sentence This
happened very quickly, and I wanted to make sure that I let everyone know before I left. Picture
from http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples.

2.2 Methods in Natural Language Generation
After rule-based, grammar-based and statistical methods which were dominant in NLG, nowa-
days methods mostly rely on deep learning, a paradigm based on deep neural networks. In the
thesis, deep learning was our primary method to model NLG systems. In Sections 2.2.1–2.2.4,
we cover some concepts of neural networks, which we will use throughout the thesis. In Sec-
tion 2.2.5, we review some recent developments in deep learning, and in Section 2.2.6, we provide
an overview of some neural-based systems in NLG.

2.2.1 Encoder-Decoder Framework

One of the common frameworks for neural modelling is an encoder-decoder model, initially
introduced for machine translation (Sutskever et al., 2014; Cho et al., 2014). In this framework,
the encoder reads the input and creates its representation, the decoder uses this representation
and produces the output.

Here, we consider a type of the encoder-decoder framework, a sequence-to-sequence model
based on Recurrent Neural Networks, where both encoder and decoder take a sequential form
(Figure 2.5). This model is used in many NLG and NLP applications: in summarisation, a long
document is encoded to produce a summary; in simplification, a complex sentence is encoded
to produce a simple sentence; in data-to-text generation, a data input is encoded to produce a
text describing the data, etc.

In sequence-to-sequence models, given an input sequence X: x1, x2, x3, ..., xn and an output
sequence Y : y1, y2, y3, ..., ym, the learning consists in finding a function p, which is a conditional
probability p(Y |X, θ), where θ are learned parameters. Given this function, the goal is to find
the most probable output sequence for the input sequence, that is

Y ′ = argmax
Y

p(Y |X, θ). (2.1)

Each sequence element is represented as a vector (embedding). Embeddings can be either ini-

11

http://taln.upf.edu/pages/msr2018-ws/SRST.html#examples

Chapter 2. Background

Figure 2.5: An RNN-based sequence-to-sequence model in the training phase. Picture modified
from http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf.

tialised randomly and then learned with other network parameters, or they can be pretrained.
For instance, word2vec or GloVe are pretrained embeddings for words (Mikolov et al., 2013;
Pennington et al., 2014). As illustrated in Figure 2.5, each input element is fed into the encoder,
which is a Recurrent Neural Network (RNN), over a series of timesteps from 1 to 4. At each
timestep i, the RNN takes an input vector xi and produces a hidden state hi:

hi = f(xi, hi−1, θ), (2.2)

where hi−1 is the hidden state of the previous timestep and f is an activation function. There
exists a variety of activation functions ranging from logistic sigmoid and hyperbolic tangent non-
linear functions to complex architectures, such as Long short-term memory (LSTMs; Hochreiter
and Schmidhuber, 1997) or Gated Recurrent Units (GRUs; Cho et al., 2014). The last hidden
state of the encoder is a final representation of the input sequence (in the orange frame in the
figure), called a context vector.

In our example, the RNN encoder takes information from the left context only. An im-
proved model, known as the bidirectional RNN, uses both left and right contexts and consists
of two RNNs: an encoder which reads the sequence from left to right (forward pass) and a
second encoder which reads the sequence from right to left (backward pass). Another possible
modification of sequence-to-sequence models is to have more than one RNN layer.

The decoder in sequence-to-sequence models is also an RNN. Conditioned on the context
vector, the decoding consists in generating an output sequence. The context vector is used as
an initial decoder hidden state, and a special embedding representing the start of the sequence
(<start>) is given to the decoder as input. A probability vector (this vector is a distribution
over the output vocabulary) over the next element is outputted at each timestep i, and then the
most probable element y′i is chosen as prediction. This process is repeated with the next element

12

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

2.2. Methods in Natural Language Generation

Figure 2.6: A sequence-to-sequence model with attention. Picture modified from http://web.
stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf.

yi+1, which is given as input at the next timestep. The method when a gold output sequence is
given to the decoder during training is called teacher forcing. At test phase, previously predicted
elements y′i are used for feeding rather than a gold output sequence.

The training goal of sequence-to-sequence models is to predict a probability of the next
element given the input and previous target elements. An objective function is used to maximise
the probability that was assigned to the correct element. In sequential learning tasks, this
optimisation function is often a cross-entropy loss, which then should be minimised with a
gradient descent and back-propagation.

2.2.2 Attention

The context vector, a fixed-size representation of the input, is considered a main bottleneck of
sequence-to-sequence models. First, it compresses all the information of the input sequence into
one vector, which may be not optimal for long input sequences, and second, particular inputs
of the encoder may be relevant for the decoder at each timestep.

To remedy this issue, the attention mechanism (Bahdanau et al., 2015) was introduced
(Figure 2.6). Intuitively, attention creates a mapping between an output element and one or
several input elements by assigning higher weights to the most important inputs. With attention,
the model learns how to focus (or to attend) on particular parts of the source sequence during
decoding, rather than using a fixed representation for the whole input (i.e. the context vector).

An attention score is computed by taking the dot product between a decoder hidden state st

13

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

Chapter 2. Background

at the timestep t and each encoder hidden state hi. That gives attention scores for each input
element:

et =
[
sth1, sth2, . . . , sthn

]
. (2.3)

Then the softmax function is applied to all the scores to get a probability (attention) distribution:

αt = softmax(et). (2.4)

Finally, an attention output is a weighted sum of the encoder hidden states:

at =
n∑

i=1
αt

ihi . (2.5)

At each decoding step, the attention output is concatenated with the decoder hidden state
to compute the prediction y′i as it was done in a non-attention sequence-to-sequence model.

There are several ways to compute attention scores. Using the dot product as in the ex-
planation; Bahdanau et al. (2015) used a multi-layer perceptron; Luong et al. (2015) proposed
several methods, including their “general” alignment bilinear function, what is usually referred
to as “Luong attention”.

Overall, attention permits building a soft alignment between input elements and output
elements; this is similar in nature to alignment between source and target words in machine
translation.

2.2.3 Copy and Coverage Mechanisms

Copy Mechanism. Copy mechanism enables to copy elements from the input to the output.
This mechanism is useful for NLG tasks as it permits handling out-of-vocabulary (OOV) words
(not seen during training) and ensures faithfulness to the input. The latter can be illustrated by
data-to-text generation tasks, where input usually contains a lot of named entities or numbers,
which should be replicated in the output text.

Pointer networks introduced by Vinyals et al. (2015) use attention to model the copying
strategy. They make an extension to the decoder, which predicts whether to generate an element
or copy an element from the input. This decision is taken based on the attention distribution:
an element with higher weights will be more probably copied to the output.

Since the introduction of pointer networks several modifications of the copy mechanism have
been proposed (Gu et al., 2016; Miao and Blunsom, 2016; Nallapati et al., 2016; See et al.,
2017). Here we focus on the pointer-generator model of See et al. (2017) who applied it to
summarisation and explain how it works.

The general schema of the model is shown in Figure 2.7. The decoder uses an extended
vocabulary which consists of a predefined target vocabulary Pvocab which is dynamically extended
at inference time with the tokens contained in the input. At each time step t during decoding, the
model then decides whether to copy from the input or to generate from the target vocabulary
using a probability distribution over the extended vocabulary which is computed based on a
generation probability (sampling from the target vocabulary) and on the attention distribution
(sampling from the input).

The more formal definition of the copy mechanism is as follows. The attention distribution
αt is calculated as in Bahdanau et al. (2015):

et
i = vT tanh(Whhi +Wsst + battn) (2.6)

14

2.2. Methods in Natural Language Generation

Figure 2.7: Pointer-generator model. Picture from See et al. (2017).

αt = softmax(et) (2.7)

with v,Wh,Ws and battn parameters to be learned, st is the decoder state and hi is a variable
ranging over the encoder hidden states. Pvocab is a probability distribution over all elements in
the target vocabulary.

pgen ∈ [0, 1] is a generation probability, i.e. the probability whether to generate or to copy.
pgen is then defined as:

pgen = σ(W T
h ht +W T

s st +W T
x xt + bptr) (2.8)

whereWh,Ws,Wx, bptr are parameters to be learned, xt is the decoder input and ht is the context
vector produced by the attention mechanism as the weighted sum

∑N
1 αt

ihi of the encoder states
(with N the number of encoder states).

Finally, the probability distribution over the extended vocabulary, from which to predict
word w, is defined as:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

αt
i . (2.9)

So if word w is OOV, then Pvocab(w) is equal to zero, hence generation of w depends on its
attention score αw

t .

Coverage Mechanism. Coverage mechanism (Tu et al., 2016) serves to keep track which
elements of the input have been already attended. Initially, coverage was introduced in machine
translation to indicate whether a source word was translated or not. The mechanism stimulates

15

Chapter 2. Background

to pay less attention to already translated words and to pay more attention to untranslated
words. In NLG, coverage can be helpful to avoid repetitions in the output.

As defined by See et al. (2017), coverage vector ct is the sum of attention distributions over
all previous decoder timesteps:

ct =
t−1∑
t=0

αt (2.10)

Afterwards, the coverage vector is used as an additional input to the attention mechanism
of Bahdanau et al. (2015):

et
i = vT tanh(Whhi +Wsst + wcc

t
i + battn), (2.11)

where wc is a parameter to be learned.
A special coverage loss term is also added to the main loss function; it penalises focusing on

elements that have already been attended.
In sum, the coverage mechanism facilitates the work of the attention mechanism. It discour-

ages attention to focus repeatedly on the same elements, and therefore repetitions can be more
likely avoided in generated output.

2.2.4 Factored Models

So far we considered sequence-to-sequence modelling using input elements only, i.e. without tak-
ing into account any other characterics they may have. To this end, Alexandrescu and Kirchhoff
(2006) introduced factored representations for neural language models. Each input element,
namely words in their application, is modelled, along with a usual source word embedding, with
some features, or “factors”. For example, for words, such factors can be part-of-speech (POS)
tags, lemmas, dependency relations, etc. In factored models, a separate embedding is learned
for each factor, and then all the embeddings are concatenated to form an input to the encoder
(Figure 2.8). Sennrich and Haddow (2016) applied factored models to neural machine transla-
tion. In their system, based on subword representations, each source element is modelled with
a subword, subword tag, POS, and dependency relation (Figure 2.9).

The formal definition of a factored representation is as follows. Let N be the number of
factors f that an input element xj has. Given a factor f , Ef is a factor embedding matrix and
xjf is a one-hot vector for the f -th input factor. The one-hot vector indicates which value the
factor has: for instance, given POS tags as a factor, noun can be a possible value encoded in
the one-hot vector. Then the input factored representation ej is defined as:

ej =
N

‖
f=1

Efxjf , (2.12)

where ‖ is the vector concatenation. In other words, we concatenate separate embedding vectors
for each factor. This representation is passed to the encoder, and training proceeds in the usual
fashion.

Beyond machine translation, factored models were used in other applications, such as auto-
matic post-editing (Hokamp, 2017) and surface realisation (Elder and Hokamp, 2018).

2.2.5 Transformers, Pre-trained Language Models

This section discusses some recent developments in NLP: transformers and pre-training.

16

2.2. Methods in Natural Language Generation

Figure 2.8: Factored model. Picture from Hokamp (2017).

Figure 2.9: Source sentence dependency tree and its factored representation after subword seg-
mentation. B: beginning, I: inside, E: end of a word. O is used if a symbol corresponds to the
full word. Picture from Sennrich and Haddow (2016).

17

Chapter 2. Background

In Section 2.2.1, the underlying structure of the encoder-decoder model was RNNs. Vaswani
et al. (2017) proposed an alternative architecture solely based on attention: a transformer model.
In transformers, encoding is no longer sequential, relationship between elements is modelled using
self-attention, an attention that is calculated from a sequence element over the sequence itself.
In self-attention, all the elements of the encoder “look” at each other, and their representations
get updated taking context into account. During decoding, the same self-attention mechanism is
applied; additionally, information about encoder states is used at each decoder step. To account
for element positions, the transformer model uses positional embeddings along with standard
input embeddings. Transformer has become a standard model for sequence-to-sequence tasks,
replacing an RNN-based encoder-decoder model.

The latest developments in NLG follow the main trends in NLP in general: contextual lan-
guage modelling, huge pre-trained models are starting to take the field in generation as well.
Large pre-trained language models, trained on open-domain corpora, are used as generators
which have an “innate grasp” of a language. They know which sequences are fluent and more
probable to appear in texts; in other words, they provide knowledge how to construct grammat-
ical and fluent sentences. The standard practice to use those pre-trained models is to fine-tune
them on a given task. Chen et al. (2020b) show how GPT-2 (Radford et al., 2019) can be used
for a few-shot data-to-text NLG on the WikiBio dataset. To handle the vocabulary limitation,
they trained byte-pair encoding (BPE) and subword vocabulary. Their model, using only several
hundreds of training instances, learns how to select and copy information from tables via the
field-gating encoder of Liu et al. (2018) (content selection) and uses the pre-trained language
model to produce final sentences (realisation). Mager et al. (2020) also show how to fine-tune
a large pre-trained language model (GPT-2), this time, for AMR-to-text generation. In their
experiments, the generative model is fine-tuned on the joint distribution of text and a sequential
AMR representation. Additionally, a simple rescoring technique is introduced: the best output
is chosen from top-n generated texts through AMR parsing and comparing them to the gold
AMR graph.

The trend of using pre-trained models can be also confirmed by looking at the results of
the WebNLG+ 2020 Challenge (Castro Ferreira et al., 2020) where most of the teams used pre-
training in some parts of their models. To give a flavour of the tendency, out of 15 participants,
two teams developed template-based approaches, one team used a Transformer-based encoder-
decoder, and 12 teams included different pre-trained models in their NLG systems: GPT-2, T5
(Raffel et al., 2020), BART (Lewis et al., 2020), and mBART (Liu et al., 2020).

2.2.6 Encoder-Decoder Models for NLG

In Sections 2.2.1–2.2.4 we described basic concepts of some neural techniques. Numerous ap-
proaches in generation have been built on these techniques. They are mainly focused on possible
improvements that can be made to the encoder or decoder components, and they aim at an-
swering such questions as how to encode the input better?, how to keep track what has been
verbalised during decoding?, etc. In this section, we briefly review some works on generation
from structured data, which use the neural encoder-decoder framework.

One of the first structure-aware encoder-decoder models was proposed by Wen et al. (2015).
They introduce a special mechanism into an LSTM cell to track what parts of a dialogue act have
been verbalised so far. Their proposal is similar in nature to the coverage mechanism discussed
in Section 2.2.3. Liu et al. (2018) propose to add a field gate to LSTM units in their decoder
to account for field-value records for table-to-text generation. Their field-gated LSTM performs
content selection, and surface realisation is done by the generator that uses dual attention for

18

2.3. Future Directions

the field and word level. Vougiouklis et al. (2018) introduce a triple encoder with attention
over RDF triples, which allows to see to which part of a triple the attention should be given at
each decoding step. In a similar vein, graph-based GTR-LSTM triple encoder of Trisedya et al.
(2018) considers both intra-triple and inter-triple relationships. Puduppully et al. (2019) create
entity-specific representations to keep track of entities during decoding. Wiseman et al. (2018)
use a hidden semi-markov model in their decoder to learn template-like structures jointly with
learning to generating text.

Another type of structure-aware models are graph-to-sequence architectures where an en-
coder takes a form of a graph. These models can take advantage of the inherent graph structure
of the data (AMRs are graphs, dependency relations form a tree) and encode them accordingly.
Graph-based approaches were also proven to be a powerful tool to encode NLG data (Marcheg-
giani and Perez-Beltrachini, 2018; Song et al., 2018b; Beck et al., 2018; Ribeiro et al., 2019).
Dual encoding of NLG data has also been proposed (Zhao et al., 2020). In their model, the
input is encoded using both graph- and sequence-based encoders.

The aforementioned studies are an example of end-to-end learning where a single model
is used to do the generation task bypassing the intermediate components of the traditional
NLG pipeline. While end-to-end approaches are attractive by their simplicity, some neural-
based approaches model each step of the NLG pipeline separately (Dušek and Jurčíček, 2016;
Moryossef et al., 2019; Castro Ferreira et al., 2019).

In this section, we discussed approaches based on supervised learning with a classical pre-
diction task (Section 2.2.1). However, other machine learning paradigms have been applied to
NLG, such as reinforcement learning (Dethlefs and Cuayáhuitl, 2015; Zhang and Lapata, 2017;
Perez-Beltrachini and Lapata, 2018; Narayan et al., 2018) and imitation learning (Lampouras
and Vlachos, 2016); the use of Natural Language Understanding modules for NLG (Qader et al.,
2019; Nie et al., 2019) or the use of autoencoders for sequence-to-sequence models (Chisholm
et al., 2017), where two models are jointly trained: a forward-only model that generates text
from facts and a backward-only model that predicts facts from text. We do not consider those
approaches here, since they lie outside the scope of this thesis.

2.3 Future Directions

Over recent years great advancements have been made in the field of NLG, mainly due to the
development of powerful machine learning methods. Despite the witnessed progress, current
approaches exhibit some limitations, and a lot of areas of NLG still remain under-explored.
In this section, we outline some restrictions of current practices and indicate ways for future
scientific endeavours in NLG.

Currently, the majority of NLG models are developed for English, which has relatively poor
morphology and mostly rigid word order. Methods developed for English may not work for
other languages (Dušek and Jurčíček, 2019). This state of affairs calls for developing data in
languages other than English and for building multilingual models. Furthermore, models, and
hence scientific hypotheses, are usually tested on one or, less often, several NLG benchmarks,
so it is not clear if the results and conclusions based on such models will generalise to other
benchmarks. This, in turn, calls for testing models not only cross-lingually but on several types
of data. Overall, of great interest for researchers could be generalisation and adaptability in the
broadest sense: across tasks, datasets, domains, and language phenomena.

On the other hand, since dataset production is a costly process, another interesting direction
of research could be training with few or zero examples (few- or zero-shot generation) and

19

Chapter 2. Background

exploring transfer learning approaches.
One of the main goals of NLG applications is to state facts encoded in data, as a result

of that, affirmative clauses are more frequent to see in data verbalisations. However, stating
facts can also be conveyed by other means, such as using negation or comparisons (Chen et al.,
2020a). A possible direction for future research is therefore generating diverse outputs in terms
of lexicon and syntax, and more generally, writing style and genre (Ficler and Goldberg, 2017;
Deriu and Cieliebak, 2018b).

Finally, evaluation remains one of the main concerns in NLG methodology (Gkatzia and
Mahamood, 2015; van der Lee et al., 2019; Howcroft et al., 2020). Given the variety of inputs to
NLG systems and an infinite number of possible outputs, it is hard to develop a common evalu-
ation schema across NLG tasks and to measure output correctness. This appeals to extensively
discuss evaluation strategies for NLG tasks.

In this thesis, we seek to address some of the limitations by looking at how to create non-
English datasets (Chapter 3), how to treat rare items in NLG (Chapter 4), how to build multi-
lingual models (Chapter 5), and how to create task-specific evaluation (Chapter 6).

20

3

Creating Training Corpora for
Natural Language Generation

Contents
3.1 Introduction . 21
3.2 Related Work . 22

3.2.1 Corpus Construction for Natural Language Generation 22
3.2.2 Automatic Post-Editing . 24

3.3 WebNLG Data-to-Text Dataset . 24
3.4 Creating Russian Version of WebNLG Dataset 25

3.4.1 Neural Machine Translation . 25
3.4.2 Manual Post-Editing and Error Analysis 25

3.5 Automatic Post-Editing . 27
3.5.1 Rule-Based Post-Editing . 27
3.5.2 Automatic Post-Editing Model . 28

3.6 Evaluation of Rule-Based Post-Editing 29
3.7 Conclusion . 29

3.1 Introduction

The majority of methods in NLP relies on supervised machine learning, which, in turn, requires
a set of training examples. Neural NLG is not an exception. Developing datasets for NLG
tasks has become crucial for working on those tasks. Nowadays having data to learn models,
which may eventually help to resolve research questions, is a major bottleneck. Furthermore,
research in NLP, and in NLG in particular, is mostly English-centric, where models and corpora
are developed for the English language at the first place. This is driven by several factors: an
ability to compare to other datasets/methods, English is the language that is understood by
most readers, a global need for English as a language of international communication, etc. Given
the current need for datasets in general and the need for non-English datasets in particular, in
this chapter, we focus on developing a data-to-text dataset for Russian.

Data-to-text generation is a key task in Natural Language Generation which focuses on
transforming data into text and permits verbalising the data contained in data- or knowledge

21

Chapter 3. Creating Training Corpora for Natural Language Generation

bases. However, creating the training data necessary to learn a data-to-text generation model
is a major bottleneck as (i) naturally occurring parallel data-to-text data does not commonly
exist and (ii) manually creating such data is highly complex. Moreover, the few parallel corpora
that exist for data-to-text generation have been developed mainly for English. Methods that
support the automatic creation of multilingual data-to-text corpora from these existing datasets
would therefore be highly valuable.

In this chapter, we introduce a semi-automatic method for deriving a parallel data-to-text
corpus for Russian from the data-to-text WebNLG corpus whose texts are in English. Our
method includes three main steps. First, we use neural machine translation (NMT) model to
translate WebNLG English texts into Russian (Section 3.4.1). Second, we perform a detailed
error analysis on the output of the NMT model (Section 3.4.2). Third, we exploit two techniques
for automatically post-editing the automatic translations (Section 3.5). As 53% of the translation
errors bear on named entities, we focus on these in the present chapter and leave other error
types for further research.

This chapter is based on the following publication:
Shimorina, A., Khasanova, E., and Gardent, C. (2019). Creating a corpus for Russian data-

to-text generation using neural machine translation and post-editing. In Proceedings of the 7th
Workshop on Balto-Slavic Natural Language Processing, pages 44–49, Florence, Italy. Association
for Computational Linguistics.

I would like to gratefully acknowledge the participation of Elena Khasanova in this project
without whom Russian WebNLG would have never come into the world. Elena was responsible
for developing error classification, and she was involved in data annotation. The new corpus,
error classification and scripts for reproducing our experiments are available at https://gitlab.
com/shimorina/bsnlp-2019.

3.2 Related Work

3.2.1 Corpus Construction for Natural Language Generation

Various ways have been proposed to create NLG datasets. Most of them rely on automatic
crawling or crowdsourcing with a few exceptions when professionally written texts are used. All
techniques have their advantages and disadvantages: crawled texts allow building large-scale
open-domain datasets but they are often noisy; crowdsourcing, in turn, enables a more precise
mapping between meaning representations and texts but texts often suffer from being collected
in an artificial setting; finally, professionally written texts are the closest to real-life applications,
however they are usually limited in size.

Some examples of the datasets where texts were produced by experts are SumTime (Sri-
pada et al., 2002) where professional weather forecasters made weather reports and RotoWire
(Wiseman et al., 2017) where professionals wrote basketball game summaries targeted at fantasy
basketball fans. While texts in those datasets are long and natural, they are domain-specific,
and dataset size is rather small (not exceeding 5K training instances).

Automatic extraction from the web allows to compile large-scale datasets. Lebret et al.
(2016) used the first sentence of a Wikipedia article and a corresponding infobox to construct
WikiBio, the data-to-text dataset which deals with biographies. Similarly, Qader et al. (2018)
aligned Wikipedia abstracts and articles in the Company domain with infoboxes represented
as attribute-value pairs. The main challenge with the crawled datasets such as WikiBio is
that mapping between data instances and text can be noisy, and the reference text does not
always contain all the information present in the input (Perez-Beltrachini and Gardent, 2017;

22

https://gitlab.com/shimorina/bsnlp-2019
https://gitlab.com/shimorina/bsnlp-2019

3.2. Related Work

Qader et al., 2018) or the reference contains more information than declared in the input. Other
addressed this problem by applying filtering: Wang et al. (2018) aligned Wikipedia articles and
tables and applied some automatic filtering, collecting data in the Person and Animal domains.
Another way to create data-to-text datasets with less loose alignment is to start from text and
then derive a corresponding meaning representation. In T-REx (Elsahar et al., 2018), Wikipedia
abstracts were undergone several processing steps: entity and predicate extraction and linking
to knowledge base URI, date and time extraction, coreference resolution, and triple alignment.
These steps allowed to finally align the abstract with RDF triples from DBpedia. In a similar
manner, YelpNLG (Oraby et al., 2019) includes restaurant review descriptions mined from
the Yelp review website. The descriptions, which were annotated with NLP tools, are linked to
automatically extracted attribute-value pairs and sentiment information.

Crowdsourced datasets are usually smaller in size (around 20–100K instances) and are often
domain-specific. WebNLG (Gardent et al., 2017a) maps RDF triples to short texts providing
entity descriptions; ViGGO (Juraska et al., 2019) consists of dialogue acts in the domain of video
games; E2E (Novikova et al., 2017b) maps meaning representations to text in the restaurant
domain. The common way to produce such datasets is to show some structured data to workers
and ask to produce an utterance describing such data. Numerous ways are used in crowdsourcing
to engage people in this process in order to have more natural data. Novikova et al. (2017b)
proposed to use pictorial stimuli, and Balakrishnan et al. (2019) used a conversational setup to
collect weather descriptions.

There are also examples where crawling and crowdsourcing come together. For creating
ToTTo, Parikh et al. (2020) automatically extracted tables with descriptions from Wikipedia
and later asked people both to highlight cells with necessary information matching the descrip-
tion and to edit the sentence.

Additionally, several datasets have been proposed recently to include reasoning and inference
over data. Crowd-based CommonGen (Lin et al., 2020), targeted at commonsense reasoning,
provides descriptions of concept sets, where people were asked to reason about a possible combi-
nation of concepts. In crowdsourced LogicNLG (Chen et al., 2020a), crowdworkers were asked
to make logical inferences from tables.

Despite an abundance of the proposed techniques for collecting datasets and methods used,
all the above-mentioned datasets are focused on English. Most non-English corpora for gener-
ation got translated or adapted using existing practices and datasets for English. Nema et al.
(2018) introduced French and German versions of WikiBio following the original procedure of
the corpus creation. Some portion of RotoWire was translated into German by professional
translators (Hayashi et al., 2019). When creating Czech restaurant data, Dušek and Jurčíček
(2019) also made use of professionals to translate Wen et al. (2015)’s restaurant corpus. Cas-
tro Ferreira et al. (2018b) used a machine translation system to create a silver-standard version
of WebNLG for German.

Multilingual surface realisation data (Mille et al., 2018a, 2019) was derived from Univer-
sal Dependency treebanks (Nivre et al., 2017) by using trees as input. Based on the original
trees, an additional deep syntax input was also created by converting dependency relations into
argument-predicate relations and by removing function words (Mille et al., 2018b). The Ab-
stract Meaning Representation (AMR) formalism (Banarescu et al., 2013), initially developed
for English corpora, was also applied to other languages: Xue et al. (2014) experimented with
translated Chinese and Czech AMRs, Sobrevilla Cabezudo and Pardo (2019) translated and
adapted AMR annotations for Brazilian Portuguese. In addition, development of AMR parsers
permitted creating multilingual AMR-to-text datasets (Vanderwende et al., 2015; Damonte and
Cohen, 2018).

23

Chapter 3. Creating Training Corpora for Natural Language Generation

3.2.2 Automatic Post-Editing

The work presented in this chapter is also related to the field of automatic post-editing (APE) of
machine translation outputs. The task of APE consists in automatically correcting “black-box”
MT output by learning from human corrections. Several WMT APE shared tasks were held
focusing on English-German, German-English, English-Russian, and English-Spanish language
pairs1.

Recent neural approaches to APE include, inter alia, multi-source training with original
sentences and MT outputs (Junczys-Dowmunt and Grundkiewicz, 2018), encoding corrections
by a sequence of post-edit operations (Libovický et al., 2016), as well as standard encoder-
decoder architectures (Pal et al., 2016). Submissions which participate in the APE shared tasks
extensively use large synthetic corpora (Negri et al., 2018). Despite that fact, a do-nothing
baseline when MT outputs are kept unchanged is hard to beat according to the results of the
APE shared task in 2018 for English-German (Chatterjee et al., 2018) and in 2019 for English-
Russian (Chatterjee et al., 2019).

3.3 WebNLG Data-to-Text Dataset

RDF triples <Asterix, creator, René Goscinny> <René Goscinny, nationality, French people>
Original Rene Goscinny is a French national and also the creator of the comics character Asterix.

MT Ðåíå Ãîñêèíî -ôðàíöóçñêèé ãðàæäàíèí, à òàêæå ñîçäàòåëü êîìè÷åñêîãî ïåðñîíàæà Àñòåðèêñ.
Rene Goskino French national and also creator comicgen charactergen Asterixinan

PE Ðåíå Ãîñèííè -ôðàíöóçñêèé ãðàæäàíèí, à òàêæå ñîçäàòåëü ïåðñîíàæà êîìèêñîâ Àñòåðèêñà.
Rene Goscinny French national and also creator charactergen comicsgen Asterixanim

Errors named entity, vocabulary, grammar
Links <René Goscinny, sameAs, Ðåíå Ãîñèííè> <French people, sameAs, Ôðàíöóçû>

Table 3.1: WebNLG original instance in the ComicsCharacter category, its Russian translation
(MT), and post-edited translation (PE) along with error annotation. Errors are highlighted in
blue. Links are RDF triples of the form <English entity, sameAs, Russian entity>. However,
such links are not available for all entities in DBpedia. gen—genitive; anim—animate; inan—
inanimate.

Presented in Section 2.1.2, the WebNLG data-to-text corpus (Gardent et al., 2017a)2 aligns
knowledge graphs with textual descriptions verbalising the content of those graphs. The knowl-
edge graphs are extracted from DBpedia (Lehmann et al., 2015) and consist of sets of (one to
seven) RDF triples of the form <subject, predicate, object>. Textual descriptions are in English,
and due to the nature of the knowledge graphs, they have an abundance of named entities. The
first two lines of Table 3.1 show an example of a WebNLG instance.

WebNLG provides textual descriptions for entities in fifteen DBpedia categories (Airport,
Artist, Astronaut, Athlete, Building, CelestialBody, City, ComicsCharacter, Food, MeanOf-
Transportation, Monument, Politician, SportsTeam, University, WrittenWork). The corpus pos-
sesses a hierarchical structure: if a set consisting of more than one triple is verbalised, then

1WMT: workshop/conference on machine translation. See http://www.statmt.org/wmt19/ape-task.html for
the shared task in 2019.

2We used the version 2.0: https://gitlab.com/shimorina/webnlg-dataset.

24

http://www.statmt.org/wmt19/ape-task.html
https://gitlab.com/shimorina/webnlg-dataset

3.4. Creating Russian Version of WebNLG Dataset

verbalisations of every single triple are to be found in the corpus. Given the example in Ta-
ble 3.1, the pairs {<Asterix, creator, René Goscinny>: René Goscinny created Asterix} and
{<René Goscinny, nationality, French people>: René Goscinny is French} are also present in
the WebNLG data. That structure allows propagating post-edits made in texts describing one
triple to those verbalising triple sets of larger sizes.

For the ease of the post-editing translation effort, we enriched the corpus with triples repre-
senting links between entities in English and Russian by virtue of the predicate sameAs present
in the DBpedia knowledge graph between different languages. Since that predicate does not ex-
ist for all entities, the proportion of unique subjects and objects of RDF triples that got linked
was 44.42%.

3.4 Creating Russian Version of WebNLG Dataset

3.4.1 Neural Machine Translation

Following Castro Ferreira et al. (2018b), who created a silver-standard German version of
WebNLG, we translated the WebNLG English texts into Russian using the English-Russian
NMT system developed by the University of Edinburgh for the WMT17 translation shared task
(Sennrich et al., 2017)3. This system ranks first for the English-Russian News translation task
both in automatic metrics4 and human assessment (Bojar et al., 2017). It is learned using Ne-
matus, an encoder-decoder with attention, based on subword units (byte pair encoding). Since
the Edinburgh model was trained on sentence-to-sentence data, we split WebNLG texts into
sentences using the WebSplit sentence annotation (Narayan et al., 2017), input each sentence
to the NMT system, and then concatenated translations to reconstruct the target texts.

3.4.2 Manual Post-Editing and Error Analysis

To determine the most common translation errors, we start by manually annotating error types
in sentences verbalising one triple.

Error Classification. The manual post-editing was done by two experts, native Russian
speakers, on a part of the corpus for the categories Astronaut, ComicsCharacter, Monument,
University for texts verbalising one triple only. Out of 1,076 machine translation outputs anal-
ysed, 856 texts (80%) were post-edited. The experts also classified errors that they identified in
a translated text.

To define an error classification, we drew inspiration from various error typologies that
were developed in the MT community and applied to different languages. See, for instance,
Popović (2018) who provides an overview of different approaches to error classification. We also
got some ideas from studies focused on errors made by language learners and non-experienced
translators in the Russian-English and English-Russian translation directions (Kunilovskaya,
2013; Rakhilina et al., 2016; Komalova, 2017). That allowed us to extend the classification
with some phenomena typical for Russian. Lastly, the classification was augmented with the
notorious errors of the NMT systems: word repetitions, deletions, insertions (partly due to the
subword-based nature of the applied NMT), untranslated common words, etc. Main error classes
identified for the final classification are shown in Table 3.2. Named entities were treated as a

3http://data.statmt.org/wmt17_systems/. Specifically, we use their ensemble model consisting of four left-
to-right models.

4http://matrix.statmt.org/matrix/systems_list/1875

25

http://data.statmt.org/wmt17_systems/
http://matrix.statmt.org/matrix/systems_list/1875

Chapter 3. Creating Training Corpora for Natural Language Generation

Category Subcategory

Grammar

Case marking
Copula
Verbal aspect
Preposition
Possessive
Part-of-speech
Agreement
Voice, intentionality

Vocabulary

Ambiguity
Collocation
Incorrect translation

Structure
Word Order
Deletion
Insertion

Named entity
Punctuation

Table 3.2: Main categories and subcategories of error classification.

separate category to highlight problems while applying the NMT system on WebNLG. If a text
contained more than one mistake in a particular category, then each mistake was tagged as an
error. If a spotted mistake concerned an NE, annotators were allowed to add other categories
to specify the error.

Category Proportion Agreement
Grammar 17% 0.44
Vocabulary 14% 0.52
Structure 11% 0.32
Named entity 53% 0.67
Punctuation 4% 0.0

Table 3.3: Proportion of main error types in the manually post-edited data and Cohen’s κ scores
on the held-out category Athlete.

Error Analysis. Table 3.3 shows the error type distribution in the post-edited texts. In
total, 1,722 errors were found. Named entities is the largest source of errors with 53% (917)
of all corrections. Grammatical and lexical mistakes constitute 17% and 14% of the identified
errors respectively, while “Structure” (11%) ranks fourth. In fact, the majority of structural
mistakes were spotted in named entities. For example, the Baku Turkish Martyrs’ Memorial
was translated as ¾Ìåìîðèàë¿ ¾Ìåìîðèàë¿ â Áàêó (‘Memorial Memorial in Baku’) with the
following errors identified: named entity, deletion, deletion, insertion.

The most common errors found in NE translations are:

• copying verbatim English entities into Russian translations (person names, locations);

26

3.5. Automatic Post-Editing

• wrong transliteration, whereas a standard transliteration exists in Russian. E.g., Lan-
cashire translated as Ëàíêàññèð (‘Lancassir’) instead of Ëàíêàøèð;

• misinterpretation of a named entity as a common noun. E.g., Dane Whitman translated
as äàò÷àíèí Óèòìåí (‘inhabitant of Denmark Whitman’) instead of Äåéí Óèòìåí.

It should be noted that since the Edinburgh NMT system used subword units, there were also
errors with copying named entities, e.g., Visvesvaraya Technological University became Visves-
varaya Technical University. Similarly, in the example from Table 3.1, the surname Goscinny
was misinterpreted as the acronym Goskino meaning ‘State Committee for Cinematography’.

Inter-annotator Agreement. Erroneous words in translations can be attributed to several
possible error types. To evaluate consistency between annotators and the appropriateness of
the developed error classification, we calculated inter-annotator agreement (Cohen, 1960) on
the 86 texts from the DBpedia category Athlete, to which annotators were not exposed before.
Table 3.3 shows the kappa scores. The highest score (0.67) was reached for “Named entity”,
which corresponds to the substantial agreement. The main source of disagreement for named
entities was a decision to perform transliteration or not, e.g., sport club names as Tennessee
Titans can be kept ‘as is’ in Russian text or can be put into Cyrillic. For other categories,
agreements range from moderate to fair; as for “Punctuation”, the agreement is zero due to the
data sparseness in this category (there were two errors only identified by one annotator). In most
cases, moderate and fair agreement scores were related to the fact that annotators identified the
same error but attributed different tags for it (e.g., grammar and vocabulary were quite often
used interchangeably).

Overall, results show (i) consistency in correcting named entities, as well as (ii) the impor-
tance to perform more annotator training and/or establish clearer guidelines, especially for the
“Structure” category.

3.5 Automatic Post-Editing

Above we described how we got Russian WebNLG by translation and what the main sources of
errors are. In this section, we explore how MT outputs can be post-edited automatically, with
named entities being a central point of our discussion. To improve the automatic translations,
we experiment with two methods: a rule-based method based on the errors found during manual
annotation (Section 3.5.1) and a neural approach (Section 3.5.2).

3.5.1 Rule-Based Post-Editing

We witnessed in the previous section that the correction of named entities was dominant in the
post-editing process. So, in this section, we will focus on how to propagate changes made in
texts describing one triple to texts verbalising more than one triple with the attention to the
named entities only.

Based on the manual corrections applied to the 1-triple data (WebNLG instances where the
input graph consists of a single triple), we extract post-edit rules by building upon the operations
used to compute the edit distance (Levenshtein, 1966). For example, given the neural translation
(2a) and the manually edited correction (2b), the sequence of edit operations applied to compute
the Levenshtein edit distance is (2c), i.e. replace ‘Àëüáà’ by ‘Àëáà-Þëèÿ’, delete ‘Þëèÿ’, keep
‘–’, keep ‘ãîðîä’, keep ‘â’, keep ‘Ðóìûíèè’.

27

Chapter 3. Creating Training Corpora for Natural Language Generation

(2) a. ‘Aëüáà Þëèÿ � ãîðîä â Ðóìûíèè’
b. ‘Àëáà-Þëèÿ � ãîðîä â Ðóìûíèè’
c. sub del keep keep keep keep
d. ‘Alba Julia is a city in Romania’

Based on these edit sequences, we extracted sequences of substitution, deletion, and insertion
rules along with the corresponding tokens (e.g., Aëüáà Þëèÿ→ Àëáà-Þëèÿ). We then checked
these rules manually and excluded false positives: out of 856 initially extracted rules, we kept
568 rules. Lastly, we applied the validated rules to the automatic translations.

That method enabled us to increase the amount of post-edited data: after that procedure
the total number of post-edited translations sums up to 4,188 (see Table 3.4).

1 triple 2-7 triples All triples
PE 856 3,332 4,188
Total 1,076 4,109 5,185

Table 3.4: Corpus statistics: number of post-edited (PE) texts. Total corresponds to both PE
and non-PE texts.

3.5.2 Automatic Post-Editing Model

To see to which extent corrections can be learned automatically, we built a corpus of (MT, RPE)
pairs where MT is an automatic translation and RPE is its correction using the rule-based system
described in the preceding section and trained an APE model on it.

The baseline system is a do-nothing baseline where MT outputs are left unmodified. In our
case, that baseline gives 82.4 BLEU between MT and RPE on the test set, which sets quite high
standards for learning a new APE model.

The train/dev/test partition was 80/10/10. We used the OpenNMT-tf framework (Klein
et al., 2017)5 to train a bidirectional encoder-decoder model with attention (Luong et al., 2015).
A single-layer LSTM (Hochreiter and Schmidhuber, 1997) is used for both encoder and decoder.
We trained using full vocabulary and the maximal length in the source and target; all the
hyperparameters were tuned on the development set. The APE model was trained with a mini-
batch size of 32, a word embedding size of 512, and a hidden unit size of 512. It was optimised
with Adam with a starting learning rate of 0.0005. We used early stopping based on BLEU
on the development set, as a result of that, the model was trained for 23 epochs. Decoding
was done using beam search with a beam size of 5. As an evaluation metric, we used BLEU-4
(Papineni et al., 2002) calculated between our model predictions and RPE. BLEU and statistical
significance were calculated on tokenised texts using compare-mt tool (Neubig et al., 2019),
which, in turn, uses the NLTK implementation of BLEU. Results are shown in Table 3.5.

The APE model performance reached parity with the baseline on dev and test data. The
difference between scores was not statistically significant via the bootstrap resampling (1000
samples, p < 0.05). On the training data, the model yielded 94 BLEU, which indicates a
possible overfitting. We conjecture that this is due to a small amount of training data.

Our results are in line with the findings of the WMT’18 APE shared task that correcting
NMT-based translations is a challenging task: gains were only up to 0.8 BLEU points in the
NMT track (Chatterjee et al., 2018) for English-German. Similarly, for the English-Russian pair,

5version 1.22.0, https://github.com/OpenNMT/OpenNMT-tf

28

https://github.com/OpenNMT/OpenNMT-tf

3.6. Evaluation of Rule-Based Post-Editing

System Train Dev Test
Baseline 81.11 81.25 82.85
Our APE model 94.45 83.00 83.65

Table 3.5: BLEU-4 scores.

the WMT’19 APE challenge reported that none of the systems was able to beat the baseline
(Chatterjee et al., 2019).

3.6 Evaluation of Rule-Based Post-Editing

Evaluation was carried out only on the rule-based method output because it is more robust than
the neural approach, and because the APE model did not yield better results.

We analysed a sample of total 66 lexicalisations in 4 categories: Astronaut, University,
Monument (2-7 triples) and ComicsCharacter (2-5 triples). Around two thirds of analysed
named entities were replaced correctly. Below we analyse common sources of errors for the
erroneous NEs.

The most frequent case is unrecognised named entities. In 62% of the cases the replacement
was not performed, which includes 28% of kept Latin transcriptions, 27% of kept Cyrillic trans-
lations, and 7% of acronyms. For the majority of these NEs, the original translations include
unaccounted elements (not covered by the extracted rules) such as missing or wrongly inserted
prepositions or punctuation marks.

Another common error is lack of grammatical adaptation of the NE. Wrong case marking
occurred in 23% of all NEs (see example 3), and gender and number agreement make about
6.5%. The less frequent but important error categories are spelling errors, such as missing
capitalisation, insertions of quotation marks, and gender or number agreement with anaphors,
especially in texts verbalising 5-7 triples.

(3) En: ‘The dean of Accademia di Architettura’
MT: ‘Äåêàí Accademia di Projecttura’
RPE: ‘Äåêàí Àêàäåìèÿnomn àðõèòåêòóðû’
Correct: ‘Äåêàí Àêàäåìèègen àðõèòåêòóðû’

To conclude, many errors are caused by irregularities in the translations (which, in turn, are
often caused by misspelled input) and can be eliminated by introducing more variation to the
replacement algorithm. Grammatical adaptation of NEs, however, requires more careful further
investigation.

3.7 Conclusion

In this chapter, we proposed an approach for semi-automatically creating a data-to-text corpus
for Russian that can be used to learn a data-to-text natural language generation model. An error
analysis of the output of an English-to-Russian neural machine translation system showed that
80% of the automatically translated sentences contained an error and that 53% of all translation
errors bear on named entities. We therefore focused on named entities and tested two post-
editing techniques for correcting wrongly translated NEs. Specifically, we provided a rule-based
method which permits correcting the errors and trained a neural post-editing model.

29

Chapter 3. Creating Training Corpora for Natural Language Generation

One of the possible directions for further research is to extend the approach to other error
types and to investigate whether the neural model can be improved to help generalise post-
editing to errors not captured by the rule-based method. It is also interesting to see if error
annotation can help learning an automatic post-editing model—error types can be integrated
to neural models in a multi-source or multi-task fashion.

Another possible direction for future research will be to identify named entities before the
translation phase, perform translation on the texts stripped of named entities (see the WebNLG
delexicalised version of Castro Ferreira et al. (2018b)), and then insert named entities, which
were translated and verified separately. Of course, declension handling will be an additional issue
in that approach. Using cross-lingual embeddings may also be useful for translation of named
entities; even if they mostly capture frequent proper nouns, rather than rare, one may think of
a symbolic ingestion of proper noun mapping between languages, for example, extracted from a
knowledge base. Overall, handling personal names in machine translation for Slavic languages
should be studied more systematically, as also found in the English-Serbian case by Lohar et al.
(2019).

30

4

Handling Rare Items in Natural
Language Generation

Contents
4.1 Introduction . 31
4.2 Related Work . 32
4.3 Experiments . 33

4.3.1 Datasets . 33
4.3.2 Model Parameters . 38
4.3.3 Evaluation . 38

4.4 Results and Discussion . 40
4.5 Conclusion . 43

4.1 Introduction

In chapter 3 we have seen that named entities, or rare items, are problematic for NMT and are
the main source of errors in translation of data-to-text corpora. This chapter is also devoted to
named entities; this time we will see how to treat named entities but now from the modelling
perspective in natural language generation models.

NLG corpora often describe some factual information (cf. Section 3.2.1), thus the input to
NLG systems often contains rare items, i.e. low frequency items such as names, locations and
dates. This makes it difficult for neural models to predict their verbalisation. To address these
issues, neural approaches to generation in English typically resort either to delexicalisation (Wen
et al., 2015; Dušek and Jurčíček, 2015; Trisedya et al., 2018; Chen et al., 2018) or to a copy
mechanism (Chen, 2018; Elder et al., 2018; Gehrmann et al., 2018). Character-based encodings
(Agarwal and Dymetman, 2017; Deriu and Cieliebak, 2018a; Jagfeld et al., 2018) and byte pair
encodings have also been used (Elder, 2017; Zhang et al., 2018).

When using delexicalisation, the data is preprocessed to replace rare items with placehold-
ers, and the generated text is post-processed to replace these placeholders with appropriate
values based on a mapping between placeholders and initial values built during preprocessing.
While this method is often used, it has several drawbacks. It requires additional pre- and post-
processing steps. These processing steps depend on the target NLG application. The matching

31

Chapter 4. Handling Rare Items in Natural Language Generation

procedure needed to correctly match a rare input item (e.g., Barack Obama) with the corre-
sponding part in the output text (e.g., the former President of the United States) may be quite
complex which may result in incorrect or incomplete delexicalisations. In contrast, the copy
mechanisms standardly used in neural approaches to summarisation (See et al., 2017; Gu et al.,
2016; Cheng and Lapata, 2016), paraphrasing (Cao et al., 2017), answer generation (He et al.,
2017) and generation (Gehrmann et al., 2018; Chen et al., 2018) is a generic technique which
is easy to integrate in the encoder-decoder framework and can be used independently of the
particular domain and application.

In this chapter, we investigate the impact of copying and delexicalisation on the quality of
generated texts using two sequence-to-sequence models with attention: one using the copy and
coverage mechanism of See et al. (2017), the other using delexicalisation. We evaluate their
respective output on two datasets, namely the E2E (Novikova et al., 2017b) and the WebNLG
(Gardent et al., 2017a) datasets. We also compare the two methods in two different settings:
the original train/dev/test partition produced by the E2E and by the WebNLG challenge vs. a
more constrained train/dev/test split which aims to further minimise the amount of redundancy
between train, dev and test data. This latter experimental setting is inspired by a recent paper
by Aharoni and Goldberg (2018), which shows that the train/dev/test split may have a strong
impact on how much the model learns to generalise and how much it memorises.

This chapter is based on the following publication:
Shimorina, A. and Gardent, C. (2018). Handling rare items in data-to-text generation. In

Proceedings of the 11th International Conference on Natural Language Generation, pages 360–
370, Tilburg University, The Netherlands. Association for Computational Linguistics

All the data, scripts and evaluation results reported in this study can be found at https:
//gitlab.com/shimorina/inlg-2018.

4.2 Related Work

Delexicalisation remains one of the most popular techniques for handling rare named entities.
We analysed the submissions participating in the E2E and WebNLG challenges, which used a
neural approach. Among them, six teams applied delexicalisation (Chen et al., 2018; Davoodi
et al., 2018; Juraska et al., 2018; Puzikov and Gurevych, 2018b; Trisedya et al., 2018; van der Lee
et al., 2017), three resorted to the copy mechanism (Chen, 2018; Elder et al., 2018; Gehrmann
et al., 2018), two developed character-based systems (Agarwal and Dymetman, 2017; Deriu and
Cieliebak, 2018a), and another two made use of byte pair encodings (Elder, 2017; Zhang et al.,
2018).

A copy mechanism allows to detect a word in an input sequence and to copy it to an output
sequence (see Section 2.2.3). The copy mechanism is widely used in text production approaches
where it is relevant for handling rare input but also, for instance in text summarisation, for
copying input into the output. See et al. (2017), Gu et al. (2016), Cheng and Lapata (2016)
introduced pointer networks (Vinyals et al., 2015) extended with a copy mechanism for text
summarisation. Similarly, Cao et al. (2017) use a copy mechanism to generate paraphrases,
and He et al. (2017) to generate answers. The copy mechanism is often paired with coverage,
which aims at overcoming a common problem of repeated or omitted content in neural network
outputs. It was used for instance in NMT (Tu et al., 2016) and summarisation (See et al., 2017).

Finally, some approaches apply neither copying nor delexicalisation. In particular, Nayak
et al. (2017), working in the restaurant domain for dialogue systems, investigated ways of in-
cluding slot values directly into the input representation of sequence-to-sequence models.

32

https://gitlab.com/shimorina/inlg-2018
https://gitlab.com/shimorina/inlg-2018

4.3. Experiments

The most related research to ours in terms of methodology is Jagfeld et al. (2018)6. They
compared word-based and character-based models on WebNLG and E2E datasets and concluded
that both methods yielded comparable results, with character-based methods producing more
diverse outputs. Other NLG-centered studies compared rule-based, statistical and neural models
(van der Lee et al., 2018) and end-to-end vs. pipeline architectures (Castro Ferreira et al., 2019).

Our study suggests the following.

• Rare items strongly impact the performance of generation.

• Combining delexicalisation and copying yields the strongest improvements.

• Copying underperforms for items not, or rarely, seen in the training data.

• The content (e.g., distribution and number of named entities) and the partitioning (con-
straints on the test set) of the data strongly affect the impact of both copying and delexi-
calisation.

It should also be noted that copying and delexicalisation are methods that work for languages
with no or few inflection changes of nouns; that is why this chapter is focused on English NLG
corpora and research studies done on English. We point out as well that referring expression
generation also lies beyond the scope of the current study, however it would be particularly
interesting to see how named entities can be differently realised, rather than simply copied
verbatim, in generation systems.

4.3 Experiments

4.3.1 Datasets

Two recently released corpora for generation served as experimental datasets for our study: the
E2E (Novikova et al., 2017b) and the WebNLG (Gardent et al., 2017a) datasets.

In the E2E dataset, as introduced in Section 2.1.2, the input to generation is a dialogue
act consisting of three to eight slot-value pairs describing a restaurant, while the output is a
restaurant recommendation verbalising this input. Table 4.1 shows an example with an input
consisting of six slot-value pairs. On average, each input is associated with 8.1 references, and
there are 5.43 slot-value pairs per input. The number of possible values for each slot ranges
from two (binary slots) to 34 (restaurant name). Tables 4.2 and 4.3 summarise the statistics of
the E2E dataset.

In WebNLG, as introduced in Section 2.1.2, the aim is to verbalise a set of RDF triples
describing entities of different categories. An RDF triple is of the form (subject, predicate,
object) where subject and object denotes entities or values and predicate denotes a binary relation
holding between subject and object. The inputs consist of sets of (one to seven) triples and the
entities belong to fifteen distinct DBpedia categories7. Table 4.1 shows an example with an
input consisting of five RDF triples, and Tables 4.2 and 4.3 summarise the data statistics.

Both dataset releases gave rise to a shared task in NLG in 20178. Note though that for
WebNLG, the present study relies on the version 2.09, which is larger than the one used for the

6Ironically, it was presented at the same INLG conference as our study.
7http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10
8http://www.macs.hw.ac.uk/InteractionLab/E2E/, https://webnlg-challenge.loria.fr/challenge_

2017/
9https://gitlab.com/shimorina/webnlg-dataset

33

http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10
http://www.macs.hw.ac.uk/InteractionLab/E2E/
https://webnlg-challenge.loria.fr/challenge_2017/
https://webnlg-challenge.loria.fr/challenge_2017/
https://gitlab.com/shimorina/webnlg-dataset

Chapter 4. Handling Rare Items in Natural Language Generation

MR / RDF triples Reference

Original:
name[The Cricketers],
eatType[coffee shop],
food[Chinese],
customer rating[average],
familyFriendly[no],
near[The Portland Arms]

Original:
The Cricketers is a coffee shop that also
has Chinese food, located near The Portland
Arms. It is not family friendly, and has an
average customer rating.

Delexicalised:
name[NAME],
eatType[coffee shop],
food[Chinese],
customer rating[average],
familyFriendly[no],
near[NEAR]

Delexicalised:
NAME is a coffee shop that also has Chinese
food, located near NEAR. It is not family
friendly, and has an average customer rating.

Original:
(Bakewell pudding, region, Derbyshire
Dales),
(Bakewell pudding, dishVariation, Bakewell
tart),
(Bakewell pudding, servingTemperature,
Warm or cold),
(Bakewell pudding, course, Dessert),
(Bakewell pudding, mainIngredients, Ground
almond, jam, butter, eggs)

Original:
Bakewell pudding, also called bakewell tart,
originates from the Derbyshire Dales. Clas-
sified as a dessert which can be served warm
from the oven or cold, its main ingredients are
ground almond, jam, butter and eggs.

Delexicalised:
(FOOD, region, REGION),
(FOOD, dishVariation, DISHVARIATION),
(FOOD, servingTemperature, Warm or cold),
(FOOD, course, DESSERT),
(FOOD, mainIngredients, MAININGREDI-
ENTS)

Delexicalised:
FOOD, also called DISHVARIATION, orig-
inates from the REGION. Classified as a
COURSE which can be served warm from the
oven or cold, its main ingredients are MAIN-
INGREDIENTS.

Table 4.1: Entry examples of the E2E (top) and WebNLG (bottom) datasets with and without
delexicalisation.

34

4.3. Experiments

Attribute Value Range Example

area 2 city centre, riverside
customer rating 6 3 out of 5, low, high
eatType 3 restaurant, coffee shop, pub
familyFriendly 2 no, yes
food 7 English, Chinese, Fast food
name 34 The Plough, Alimentum, Zizzi
near 19 Café Sicilia, Crowne Plaza Hotel
priceRange 6 more than £30, cheap, moderate

Count Example

Predicates 373 dateOfBirth, genre
Subjects 732 Buzz Aldrin
Objects 2,916 1932-03-15, jazz

Table 4.2: Statistics on attribute values in E2E (above) and on RDF-triple constituents in
WebNLG (below).

E2E Dataset
Unconstrained Constrained

Instances MRs Instances MRs

train 40,868 4,862 40,826 4,877
dev 4,521 547 3,946 547
test 4,577 630 5,194 615

WebNLG Dataset
Unconstrained Constrained

Instances MRs Instances MRs

train 34,352 12,876 34,536 12,895
dev 4,316 1,619 4,217 1,594
test 4,224 1,600 4,148 1,606

Table 4.3: Training/development/test sets statistics in E2E and WebNLG in original (uncon-
strained) and constrained splits. Instances count is a number of (data, text) pairs; MRs count
is a number of unique data inputs.

35

Chapter 4. Handling Rare Items in Natural Language Generation

WebNLG Challenge 2017. Even if both datasets were created for different purposes (verbalis-
ing dialogue acts vs. verbalising knowledge bases), their inputs can be viewed as a semantic
representation, so in the following we sometimes refer to both inputs as meaning representation
(MR) for convenience.

Delexicalising Datasets

We derive delexicalised datasets from the original E2E and WebNLG datasets as follows.
For each dataset, we replicated the delexicalisation procedure which was applied to the

baseline systems developed for the E2E (Novikova et al., 2017b) and for the WebNLG challenge
(Gardent et al., 2017b) respectively. Delexicalisation for both datasets is based on exact string
matching and does not deal with pronouns and other referring expressions.

As shown in Table 4.1, both input data and output text were delexicalised. In E2E, only the
name and near slots were delexicalised (because contrary to the other slots, they have a large
number of distinct values). In WebNLG, delexicalisation was done on the subjects and objects
of RDF triples.

Delexicalisation was flawless in E2E as slot values for name and near attributes were always
found in corresponding texts. WebNLG data poses additional challenges as the subject and
object values in the input do not necessarily match the corresponding text fragment in the
output. As a result, not all subjects and objects were delexicalised: around 25% of subjects
and objects were not replaced with placeholders in texts. For instance, the object warm or
cold from the WebNLG example in Table 4.1 was not delexicalised, because it was realised
differently, namely warm from the oven or cold. Another limitation of delexicalisation is that
it does not cover referring expressions, and it may produce incorrect delexicalisations. Given a
set of two triples (The Statue of Liberty, location, New York City), (New York City, isPartOf,
New York), the corresponding reference text The Statue of Liberty is located in New York City,
New York may be wrongly delexicalised as The Statue of Liberty is located in ISPARTOF City,
ISPARTOF. instead of the correct The Statue of Liberty is located in LOCATION, ISPARTOF.

In the delexicalised E2E corpus, placeholders constitute 5.7% of all tokens in target texts,
while they reach 15.7% in the WebNLG data.

The Copy Mechanism

The copy mechanism is widely used in text production approaches where it is relevant for
handling rare input but also, for instance, in text summarisation, for copying input into the
output. Thus, Cao et al. (2017) uses a copy mechanism to generate paraphrases, Gu et al. (2016),
Cheng and Lapata (2016) for text summarisation and He et al. (2017) for answer generation.

Here we make use of the copy mechanism as defined in Section 2.2.3.

Constraining Datasets

The NLP community is well aware of importance of challenging adversarial scenarios while
testing developed models (Jia and Liang, 2017; Naik et al., 2018, inter alia). One of the basic
requirements for train/dev/test split is to ensure that there is no overlap in terms of input
between the training, the development and the test set. As Aharoni and Goldberg (2018)
recently showed however, this may result in a setup where certain input fragments (in that case,
subject and object entities present in the input set of RDF triples) are present so often in the
training set that models built on this standard split, overfit and memorise rather than learn.
Thus, in the split-and-rephrase application they studied, Aharoni and Goldberg (2018) observed

36

4.3. Experiments

that, given some input containing the entity e and some set of facts T (e) about this entity, the
model will regularly output a text which mentions e but is unrelated to the set of facts T (e).
That is, instead of learning to generate text from data, the model learns to associate a text with
an entity.

To better assess the impact of delexicalisation and copying on the output of generation
models, we therefore consider two ways of partitioning the corpus into train, dev and test:
the traditional way (Unconstrained) where the overlapping constraint applies to entire inputs
(i.e., sets of RDF triples in WebNLG and dialogue moves in E2E) and a more challenging split
(Constrained) where the no-overlap constraint applies to input fragments (i.e., RDF triples in
WebNLG and slot-values in E2E). Table 4.3 shows the statistics for both splits for each dataset.

Unconstrained. The unconstrained split is the original split provided by dataset creators.
The E2E dataset was split into training, validation and test sets following a 76.5/8.5/15 ratio.

It was ensured that the input were distinct for all three sets and that a similar distribution of
input and reference text lengths was kept. We found 1,430 identical (MR, text) pairs in the
original E2E data. They were deleted for the subsequent experiments.

In WebNLG, the original split follows an 80/10/10 ratio. As with the E2E dataset, there is
a null intersection in terms of input between train, dev and test. In addition, sets of triples of
different sizes and sets of triples of different categories were proportionally distributed between
training, dev and test sets.

Constrained. We consider a second partitioning where we aim to minimise the overlap be-
tween train, dev and test in terms of input fragments.

As shown in Table 4.2, in the E2E dataset, most of the slots have under eight possible
values. As these few values appear with a large number of distinct slot-value combinations
(49,966 input-text instances), they are unlikely to trigger fact memorisation. We therefore focus
on those slots which have a higher number of values and restrict the test set using restaurant
names, a slot with 34 possible values. Four restaurant names were selected to occur only in the
test data and to support a distribution of inputs types and text length similar to that of the
original train/dev/test (see Table 4.3).

Nonetheless, it is worth noting that the E2E dataset was constructed in such a way that a
specific restaurant name may have mutually exclusive values in different inputs, such as low cus-
tomer rating and high customer rating. This might result in weak association between restaurant
names and specific inputs and therefore, in little risk of memorising facts related to a specific
restaurant name. As we shall see in Section 4.4, this intuition is confirmed by the results which
show little differences, for the E2E data, in terms of both automatic and human-based metrics
between the Constrained and the Unconstrained setting. Note also that since the E2E Con-
strained split is defined with respect to a slot value (restaurant names) which is delexicalised,
the constrained vs. unconstrained split distinction loses its impact in the delexicalised setting.

For the WebNLG dataset, the constraint on the train/dev/test partition is in terms of triples.
In addition to the exclusion from the test set all inputs (set of RDF triples) which occur in
either the dev or the train set, we require that no RDF triple occurs in two of these sets. Let
t = (s, p, o) be an RDF-triple, with p a predicate and s, o subject and object RDF resources. In
the constrained dataset, if, t is in the test set, then t may not be in either the dev or the training
set but variants such as (s′, p, o), (s, p, o′), (s′, p, o′) or (s, p′, o) with s 6= s′, p 6= p′ and o 6= o′

may. In this way, models can be trained which must learn to verbalise predicates independently
of their arguments. Again, care was taken to keep the distribution in terms of input length

37

Chapter 4. Handling Rare Items in Natural Language Generation

similar to that of the original split (see Table 4.3).

Rare Items

By rare items we mean n-grams in input MRs, such as slot values in E2E for name and near
and subjects and objects in WebNLG. These n-grams occur sparsely in the training data (un-
constrained case) or they are not seen there at all (constrained case). The main motivation
behind identifying and handling them separately is to learn verbalisations independently of pos-
sible entities. The majority of rare items in the considered datasets are proper names: names of
restaurants in E2E and subjects of triples in WebNLG. However, since some objects in WebNLG
can be dates, measurements, and string literals (such as warm or cold in Table 4.1), we call them
rare items here.

4.3.2 Model Parameters

We trained two types of models: a standard sequence-to-sequence model and the same model
augmented with a copy and coverage mechanism (denoted as C in the tables). For the standard
sequence-to-sequence model, we made use of an LSTM encoder-decoder model with attention
(Luong et al., 2015) from the OpenNMT-py toolkit10, a PyTorch port of OpenNMT (Klein
et al., 2017). The default parameters of OpenNMT-py were used for training and decoding.
The encoder and decoder both have two layers. Models were trained for 13 epochs, with a mini-
batch size of 64, a dropout rate of 0.3, and a word embedding size of 500. They were optimised
with stochastic gradient descent with a starting learning rate of 1.0. We built the vocabulary
using all the tokens in the training set.

As the size of the vocabulary is relatively small for both datasets, data was not lowercased,
nor was it truncated (the maximal sequence length was used in the source and target).

Special options available in OpenNMT-py were used to augment the standard model with the
copy and the coverage mechanisms. The OpenNMT-py implementation of training additional
copy and coverage attention layers follows See et al. (2017).

4.3.3 Evaluation

Automatic Evaluation. Systems were evaluated using four automatic corpus-based metrics:
BLEU (Papineni et al., 2002), NIST (Doddington, 2002), METEOR (Denkowski and Lavie,
2014), ROUGEL (Lin, 2004). We made use of the scripts used for the E2E Challenge evalua-
tion11. The first three metrics were originally developed for machine translation, the last one
for summarisation. Roughly speaking, BLEU calculates the n-gram precision; NIST is based
on BLEU, but adds more weight to rarer n-grams; METEOR computes the harmonic mean of
precision and recall, featuring also stem and synonymy matching; ROUGEL calculates recall
for common longest subsequences in a reference and candidate text. Given our task—handling
rare items (or mostly named entities in the corpora in question)—we also applied the slot-error
rate (SER) to evaluate outputs which seems to be more suitable for evaluating the presence of
named entities. SER was calculated by exact matching slot values in the candidate texts,

SER = S +D + I

N
,

10https://github.com/OpenNMT/OpenNMT-py
11https://github.com/tuetschek/e2e-metrics

38

https://github.com/OpenNMT/OpenNMT-py
https://github.com/tuetschek/e2e-metrics

4.3. Experiments

where S is a number of substitutions, D is a number of deletions, I is a number of insertions, and
N is a total number of slots in the reference. The resulting SER is an average of SER for each
prediction. While computing SER for the dialogue slot-based E2E corpus is straightforward (the
binary slot familyFriendly was excluded), it results in some noise for WebNLG where subjects
and objects are numerous (3,648 vs. 79 values in E2E) and where they were rephrased in
references (cf. also Section 4.3.1).

Manual Annotation. To allow comparisons between constrained and unconstrained settings,
we intersected inputs of constrained and unconstrained test sets and gathered corresponding
predictions from them for all the models. The intersection between the two test sets has 40
inputs in the E2E corpus and 153 in WebNLG. For E2E, we manually evaluated all 40 predictions
available for each system (constrained and unconstrained); for WebNLG, we chose 44 predictions
ensuring the presence of different sizes and categories. By manually assessing outputs for the
same inputs for all the systems, contrasts between constrained and unconstrained settings are
better highlighted.

Manual inspection of outputs revealed that most of generated predictions did not encounter
issues with grammar or fluency. For this reason, we chose to focus on semantic adequacy of
predicted texts. The evaluation was done by one human judge. After the evaluation was finished,
the human annotator confirmed that, except for one system (see Section 4.4), all system outputs
demonstrated fluent and grammatical English sentences.

Once presented with an input and a corresponding prediction text, a human judge was asked
to evaluate semantic information present in the prediction. A minimal unit of analysis was a
slot-value pair in E2E and an RDF triple element (subject, object, or predicate) in WebNLG. For
each semantic unit, the judge indicated if it was rendered correctly (right) or incorrectly (wrong)
in the text. If the unit was missing, it was noted as missed; new semantic content, not present
in the source input, was labelled as added. Then, the number of each type of annotations was
calculated for each input and converted to percentage with respect to the number of slot-value
pairs (E2E) or number of triple constituents (WebNLG). Given the E2E example in Table 4.4,
statistics about the example is the following: right: 2, wrong: 1, added: 1, missed: 1 (near[Burger
King] was omitted). Total number of slots being 4, the performance in the percentage is then
right: 50%, wrong: 25%, added: 25%, missed: 25%.

E2E MR name[Cocum], eatType[pub], customer rating[high], near[Burger King]
prediction Cotto is a family-friendly pub with a high customer rating.
annotation Cotto {wrong}, family-friendly {added}, pub {right}, high customer rating {right},

near Burger King {missed}

WebNLG triple (A Wizard of Mars, author, Diane Duane)
prediction A Wizard of Mars was written in the United States in 1995.
annotation A Wizard of Mars {right}, was written {right}, in the United States {wrong}, in

1995 {added}

Table 4.4: Manual annotation of text predictions for E2E and WebNLG data. Annotations are
between curly braces.

WebNLG example annotations were done taking into account the three parts of a triple. If a
predicate was not translated correctly, we considered that a model missed out that information.
While a subject or object was not rendered correctly, they were annotated as wrong. All the
semantic information beyond the size of initial set of triples was evaluated as added. The

39

Chapter 4. Handling Rare Items in Natural Language Generation

WebNLG example in Table 4.4 received the following scores, the total number of constituents
being three: right: 2 (66%), wrong: 1 (33%), missed: 0 (0%), added: 1 (33%). If semantic
information was repeated, it was rated as added.

The human evaluation analysis presented above is modest due to the lack of resources. To
justify it, we argue that our focus is solely on semantic adequacy which is a more objective pa-
rameter in evaluations than, say, fluency or grammaticality. Furthermore, human scores showed
strong correlations with most of automatic metrics. For example, right exhibits statistically sig-
nificant correlations of 0.9, 0.55, 0.89, 0.85, −0.87 with BLEU, NIST, METEOR, ROUGEL, SER
respectively (Spearman’s ρ; p < 0.05). Wrong has −0.91, −0.71, −0.88, −0.96, 0.78 correlation
coefficients respectively.

With no intent to question the documented unreliability of automatic metrics in NLG, we
attribute such high correlations to the design of our configurations which cover some extreme
cases where models are supposed to show a drastic drop in performance.

4.4 Results and Discussion

We compared the output of the sequence-to-sequence model with attention described in Sec-
tion 4.3.2 on two datasets (WebNLG and E2E) and considering eight different configurations
depending on how rare words are handled (without delexicalisation, with delexicalisation, with
a copy-and-coverage mechanism and with both delexicalisation and a copy-and-coverage mech-
anism) and on how the train/dev/test partition is constructed (unconstrained vs. constrained).

As pointed out in Section 4.3.3, automatic scores are reported using the whole test sets
whereas human evaluation is based on shared MR instances between the non-constrained and
constrained test sets (40 instances for E2E and 44 for WebNLG).

The results are summarised in Table 4.5 (E2E) and 4.6 (WebNLG). Some example predictions
are shown in Tables 4.7 and 4.8.

Unconstrained Constrained

NIL C D D+C NIL C D D+C

BLEU 0.56 0.68 0.67 0.68 0.52 0.57 0.72 0.72
NIST 7.54 8.67 8.60 8.74 7.12 7.67 8.93 8.90
METEOR 0.38 0.46 0.45 0.46 0.39 0.41 0.47 0.47
ROUGEL 0.62 0.71 0.70 0.70 0.58 0.62 0.74 0.74
SER 26.07% 7.25% 4.08% 4.56% 29.6% 17.09% 5.18% 4.2%
right 81.72% 95.7% 96.24% 96.77% 72.04% 82.8% 95.7% 94.09%
wrong 16.13% 0% 0% 0% 27.96% 16.13% 0% 0%
missed 2.15% 4.3% 3.76% 3.23% 0% 1.08% 4.3% 5.91%
added 6.45% 0% 5.38% 2.15% 0% 4.84% 2.15% 0%

Table 4.5: E2E dataset (D: Delexicalisation, D+C: delexicalisation and copying, C: copy and
coverage, NIL: Neither copy nor delexicalisation). The upper half of the table presents automatic
evaluation results; the lower half—human evaluation results. Best scores are in bold.

40

4.4. Results and Discussion

Unconstrained Constrained

NIL C D D+C NIL C D D+C

BLEU 0.54 0.61 0.56 0.56 0.09 0.34 0.44 0.48
NIST 9.70 10.90 10.19 10.11 2.37 6.81 7.37 8.09
METEOR 0.37 0.42 0.39 0.39 0.10 0.29 0.33 0.36
ROUGEL 0.64 0.71 0.67 0.68 0.26 0.54 0.61 0.65
SER 43.66% 34.76% 34.93% 31.83% 92.5% 66.91% 50.48% 45.45%
right 69.26% 83.33% 83.70% 87.04% 10% 41.11%* 70.00% 76.67%
wrong 9.63% 5.56% 9.26% 7.78% 49.26% 32.59% 17.78% 15.93%
missed 21.11% 11.11% 7.04% 5.19% 40.74% 26.30% 12.22% 7.41%
added 0.37% 0% 0% 0% 1.11% 1.11% 0% 0%

Table 4.6: WebNLG dataset (D: Delexicalisation, D+C: delexicalisation and copying, C: copy
and coverage, NIL: Neither copy nor delexicalisation). The upper half of the table presents
automatic evaluation results; the lower half—human evaluation results. Best scores are in bold.
* – word repetitions present in predictions.

Delexicalisation and Copying vs. Standard Encoding-Decoding. A first observation
is that, when neither delexicalisation nor copying is used, there is a strong drop in semantic
adequacy. In the worst case, the SER increases by 25.4 for the E2E dataset (constrained setting,
NIL vs. D+C) and by 47.05 points (constrained setting, NIL vs. D+C) in the WebNLG dataset.
Similarly, the proportion of correcly predicted items (right) decreases by up to 23.66 points for
the E2E dataset (constrained setting, NIL vs. D) and 60 points for the WebNLG dataset
(constrained setting, NIL vs. D).

A similar, though weaker, trend can be observed for the other automatic metrics (e.g.,
∆BLEU E2E, NIL vs. D+C, unconstrained: −0.12 points).

Delexicalisation, Copying or Both. The results show two trends. First, combining copy-
ing and delexicalisation yields the best results across the board. Second, while in the uncon-
strained setting, there is not much difference in terms of results between copying and delexical-
isation, in the constrained setting, copying yields lower results (∆BLEU E2E: −0.15, ∆BLEU
WebNLG: −0.10, ∆right E2E: −12.9%, ∆right WebNLG: −28.89%, ∆SER E2E: +11.91, ∆SER
WebNLG: +16.43; constrained setting, C vs. D). This suggests that copying only partially cap-
tures rare items. Looking at the outputs, copying seems to work better when the item to be
copied has been seen in the training data. When an entity was not seen, the network often
chooses to generate a frequent entity seen in the source, rather than copying. For instance, for
the E2E data, restaurant names (which had not been seen in the training data) were not copied
over in the constrained setting. In most cases, the input restaurant name was replaced by a
restaurant name that is frequent in the training data. For example, given the MR name[Cocum],
eatType[coffee shop], near[The Rice Boat], the text Near The Rice Boat there is a coffee shop
called Fitzbillies was generated, where Fitzbillies, a frequently occurring restaurant name in the
training data (2,371 instances), was generated instead of the input restaurant name Cocum.

41

Chapter 4. Handling Rare Items in Natural Language Generation

Constrained vs. Unconstrained Setting. There is a clear difference in terms of relative
performance in the constrained vs. the unconstrained setting between the two datasets.

For the E2E dataset, since the constrained dataset is defined with respect to slot values
(name and near) which are delexicalised, the constrained setting is in fact similar to the uncon-
strained setting. And indeed the scores are similar (e.g., unconstrained vs. constrained, D, E2E:
∆BLEU: −0.05, ∆SER: −1.1 and ∆right: +0.54%). When using copying however, the results
are lower in the constrained setting again suggesting that copying underperforms for items that
have not been seen at training time (e.g., unconstrained vs. constrained, C, E2E: ∆BLEU: 0.11,
∆SER: −9.84 and ∆right: 12.9%).

For the WebNLG data, the difference between constrained and unconstrained setting is
much stronger for both delexicalisation and copying. For instance, for copying the BLEU score
in the unconstrained setting is 0.61 vs. 0.34 in the constrained setting. Semantic adequacy also
drops noticeably (unconstrained: 83%, constrained: 41%). This is in line with Aharoni and
Goldberg (2018)’s observation that in the unconstrained setting, the model learns to memorise
association between facts and entities and thereby fails to generate text that adequately captures
the meaning of the input data. The low scores for the copying mechanism also confirm the
observation made above that copying underperforms for rare data fragments.

This difference between datasets is further discussed in the next paragraph.

MR name[Wildwood], eatType[pub], food[Italian], area[city centre], fami-
lyFriendly[no], near[Raja Indian Cuisine]

reference Wildwood is an Italian pub situated in the city centre, near the Raja Indian
Cuisine. It is not family-friendly.

unconstr., NIL Wildwood is an Italian pub located in the city centre near the Ranch. It is not
family-friendly.

unconstr., C Wildwood is an Italian pub located in the city centre near Raja Indian Cuisine.
It is not family-friendly.

unconstr., D Wildwood is an Italian pub located in the city centre near Raja Indian Cuisine.
It is not family-friendly.

unconstr., D+C Wildwood is an Italian pub located near the Raja Indian Cuisine in the city centre.
It is not family-friendly.

constr., NIL In the city centre near Raja Indian Cuisine there is an Italian pub called the
Aromi. It is not family-friendly.

constr., C There is a pub near Raja Indian Cuisine in the city centre called Aromi. It serves
Italian food and is not family-friendly.

constr., D Wildwood is an Italian pub near Raja Indian Cuisine in the city centre. It is not
family-friendly.

constr., D+C Wildwood is an Italian pub located near the Raja Indian Cuisine in the city centre.
It is not family-friendly.

Table 4.7: Example predictions for E2E. Mistakes are in bold.

Semantic Adequacy. As mentioned above, the manual and automatic evaluation metrics we
used to assess semantic adequacy strongly correlate. They both show that semantic adequacy is
much lower for the WebNLG data (higher SER, higher proportion of wrong and missed items).
This is not surprising, since the WebNLG dataset contains a much higher number of distinct
values (3,648 against 79 in the E2E dataset) and exhibits a greater mismatch between input and

42

4.5. Conclusion

MR (108 St Georges Terrace, floorCount, 50), (108 St Georges Terrace, completion-
Date, 1988)

reference 108 St Georges Terrace has a floor count of 50 and was completed in 1988.

unconstr., NIL 108 St Georges Terrace cost 120 million Australian dollars.
unconstr., C 108 St Georges Terrace was completed in 1988 and has 50 floors.
unconstr., D 108 St Georges Terrace has 50 floors and was completed in 1988.
unconstr., D+C 108 St Georges Terrace has 50 floors and was completed in 1988.
constr., NIL The coach of the Democratic Party in the United States is the Conser-

vative Party (UK).
constr., C 108 Georges Terrace completionDate were created by 108 Georges.
constr., D 108 St Georges Terrace has 50 floors and was completed in 1988.
constr., D+C 108 St Georges Terrace has 50 floors and was completed in 1988.

Table 4.8: Example predictions for WebNLG. Mistakes are in bold.

output value names12. That is, the delta shows that the efficiency of copying and delexicalisation
varies depending on the variety and content of the dataset.

The two datasets also differ with respect to the proportion of added slots which is higher
for the E2E dataset and suggests an overfitting effect due to a skewed distribution in favour of
inputs containing more than 3 attributes. Thus, the human evaluation shows that the majority
of cases with added slots are cases where the input consists of three slots (the minimal number
of attributes in E2E). The overgeneration can be explained by the restricted number of three-
slot inputs in the E2E dataset (only 2.5% MRs out of the whole corpus). That claim is also
supported by predictions produced by adversarial examples. While inputting dialogue moves
consisting of 2 slots (the non-existent number of attributes in E2E), all eight E2E models tend
to overgenerate by predicting texts with 3 or 4 slot-value pairs.

Fluency. As mentioned in Section 4.3.3, while annotating the data for semantic adequacy, we
found that almost all systems outputs were well-formed English sentences. The only exception
was the WebNLG model with copy mechanism where stutterings were spotted in half of the
examined instances. Despite those repetitions, it was always possible to detect the subject-
predicate-object structure (e.g., 1001 kelvins is an escape velocity of 1001 kelvins; Asterix was
created by R. Goscinny and was created by R. Goscinny), so the annotation was not hampered.

4.5 Conclusion

We investigated the impact of copying and delexicalisation on two datasets and using two dif-
ferent ways of splitting the data into train, dev and test. The results show some regularities and
highlight some interesting differences.

Overall, results indicate that delexicalisation outperforms copying. Furthermore, they show
that copying underperforms on unseen items. Delexicalisation is a somewhat ad hoc process: it
should be devised for a particular task in question, and sometimes it works only partially, e.g.,
in case of data where entities can be replaced with synonyms in text. So an interesting direction
for future research would be to devise copying methods that are more accurate and that can
better handle rare data items.

12In the E2E dataset, the value name in the input is usually realised by the same string in the corresponding
text while in WebNLG, they often differ, e.g., USA/the United States of America (see Section 4.3.1).

43

Chapter 4. Handling Rare Items in Natural Language Generation

Another direction for future research would be to further investigate how the content and
train/dev/test split of a dataset impact learning. Our results suggest two ways in which these
may induce overfitting.

In the WebNLG dataset, strong associations between entities and facts seem to result in
generation models that memorise facts with entities rather than generate a text that adequately
verbalises the input. This is highlighted in the manual evaluation by the high number of wrong
and missed data items observed both in the constrained and in the unconstrained setting.

In the E2E dataset, on the other hand, we saw that added facts are frequent and manual
evaluation suggests that this is due to an overfitting effect whereby, because most inputs consist
of more than three slot-value pairs, the models tend to overgenerate by predicting texts that
verbalise four or more slot-value pairs.

In both cases, the copy-and-coverage mechanism does not suffice to ensure correct output
and the results further decrease in the constrained setting. It would therefore be interesting to
see to what extent better methods can be devised both for creating datasets and for devising
train/dev/test splits that adequately test the ability of models to generalise.

Another perspective for future work is to investigate the capability of subword- and character-
based representations to handle rare input tokens in generation (Jagfeld et al., 2018). As pointed
out in Section 4.2, copying and delexicalisation are restricted for languages with no or few in-
flection processes, so those representations would be particularly interesting for morphologically
rich languages.

This chapter also leaves out how to generate referring expressions for proper names, which
were the majority of the rare items considered. Generation of referring expressions for proper
nouns has been studied in the literature (Siddharthan et al., 2011; van Deemter, 2016; Cas-
tro Ferreira et al., 2018a; Cao and Cheung, 2019), and it is worth exploring the ability of those
proposed methods to refer to entities not seen in the training data.

44

5

Training Models for Surface
Realisation

Contents
5.1 Introduction . 45
5.2 Motivation and Related Work . 46

5.2.1 Motivation . 46
5.2.2 Related Work . 47

5.3 Data . 48
5.3.1 SR’18 . 48
5.3.2 SR’19 . 48

5.4 Model . 49
5.4.1 Word Ordering . 49
5.4.2 Morphological Realisation . 51
5.4.3 Contraction Generation . 51

5.5 Evaluation on SR’18 . 52
5.5.1 Word Ordering . 52
5.5.2 Morphological Realisation . 55
5.5.3 Contraction Generation . 56
5.5.4 Global Evaluation . 56

5.6 Participation in SR’19 . 57
5.6.1 Model Adaptation . 57
5.6.2 Results and Discussion . 58

5.7 Conclusion . 63

5.1 Introduction
In the previous chapters 3 and 4, we focused on named entities and discussed how to handle them
when creating training data for NLG or when generating from data rich in named entities. The
input we considered was RDF triples and dialogue acts. In this chapter, we deal with another
type of input—unordered dependency trees—and explore multilingual generation, focusing on
the surface realisation task. In Chapter 4, the limitation of the discussed NLG systems consisted

45

Chapter 5. Training Models for Surface Realisation

in treating only English, a language with relatively poor morphology, and applying methods
that were specific to this language. In this chapter, we aim to show how to process a variety of
languages, paying attention to their morphology.

Surface realisation (SR) maps a meaning representation to a sentence. In data-to-text gen-
eration, it is part of a complex process aiming to select, compress and structure the input data
into a text (Reiter and Dale, 2000). In text-to-text generation, it can be used as a mean to
rephrase part or all of the input content. For instance, Liao et al. (2018) used surface realisation
to generate a summary based on the meaning representations of multiple input documents and
Takase et al. (2016) to improve neural headline generation.

By providing parallel data of sentences and their meaning representation, the Surface Real-
isation shared tasks (Belz et al., 2011; Mille et al., 2018a, 2019) allow for a detailed evaluation
and comparison of surface realisation models. Moreover, as recent SR tasks provide training and
test data for multiple languages, it also allows for an analysis of how well these models handle
languages with different morphological and topological properties.

As mentioned in Section 2.1.2, the SR shared tasks include two tracks: a shallow track where
the input is an unordered, lemmatised dependency tree and a deep track where function words
are removed and syntactic relations are replaced with semantic ones. In this chapter, we focus on
the shallow track of the SR’18 and SR’19 shared tasks, and we propose a neural approach which
decomposes surface realisation into three subtasks: word ordering, morphological inflection and
contraction generation (e.g., clitic attachment in Portuguese or elision in French). We provide
a detailed analysis of how each of these phenomena (word order, morphological realisation and
contraction) is handled by the model, and we discuss the differences between languages.

This chapter is based on the following publications:

• Shimorina, A. and Gardent, C. (2019b). Surface realisation using full delexicalisation. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3086–3096, Hong Kong, China. Association for Computational Linguistics

• Shimorina, A. and Gardent, C. (2019a). LORIA / Lorraine University at multilingual
surface realisation 2019. In Proceedings of the 2nd Workshop on Multilingual Surface
Realisation (MSR 2019), pages 88–93, Hong Kong, China. Association for Computational
Linguistics

The first publication introduced the model and tested it on the SR’18 data. The second
publication is our system description for the SR’19 shared task: we reused our model with
minor modifications and reported the results on the SR’19 data.

For reproducibility, all our experiments including data and scripts are available at https:
//gitlab.com/shimorina/emnlp-2019 for SR’18 experiments and at https://gitlab.com/
shimorina/msr-2019 for SR’19 experiments.

5.2 Motivation and Related Work

5.2.1 Motivation

Surface realisation is a natural language generation task which consists in converting a linguistic
representation into a well-formed sentence. SR is a key module in pipeline generation models
where it is usually the last item in a pipeline of modules designed to convert the input (knowledge
graph, tabular data, numerical data) into a text. While end-to-end generation models have

46

https://gitlab.com/shimorina/emnlp-2019
https://gitlab.com/shimorina/emnlp-2019
https://gitlab.com/shimorina/msr-2019
https://gitlab.com/shimorina/msr-2019

5.2. Motivation and Related Work

been proposed which do away with such pipeline architecture and therefore with SR, pipeline
generation models (Dušek and Jurčíček, 2016; Castro Ferreira et al., 2019; Elder et al., 2019;
Moryossef et al., 2019) have been shown to perform on a par with these end-to-end models
while providing increased controllability and interpretability (each step of the pipeline provides
explicit intermediate representations which can be examined and evaluated).

As illustrated in, e.g., (Dušek and Jurčíček, 2016; Elder et al., 2019; Li, 2015), SR also has
potential applications in tasks such as summarisation and dialogue response generation. In such
approaches, shallow dependency trees are viewed as intermediate structures used to mediate
between input and output, and SR permits regenerating a summary or a dialogue turn from
these intermediate structures.

Finally, multilingual SR is an important task in its own right in that it permits a detailed
evaluation of how neural models handle the varying word order and morphology of the different
natural languages. While neural language models are powerful at producing high quality text,
the results of the multilingual SR tasks (Mille et al., 2018a, 2019) clearly show that the gener-
ation, from shallow dependency trees, of morphologically and syntactically correct sentences in
multiple languages remains an open problem.

5.2.2 Related Work

Early approaches for surface realisation adopted grammar-based (Callaway, 2003; White et al.,
2007) and statistical methods (Marciniak and Strube, 2004), or a mixture of symbolic and
probabilistic techniques (Langkilde-Geary, 2002; Nakanishi et al., 2005b). Statistical methods
included both pipeline (Bohnet et al., 2010) and joint (Song et al., 2014; Puduppully et al.,
2017) architecture for word ordering and morphological generation.

Multilingual SR’18 and SR’19 were preceded by the SR’11 surface realisation task for the
English language only (Belz et al., 2011). The submitted systems in 2011 had grammar-based
and statistical nature, mostly relying on pipelined architecture (Guo et al., 2011; Rajkumar
et al., 2011; Gervás, 2011; Stent, 2011; Bohnet et al., 2011). Recently, Marcheggiani and Perez-
Beltrachini (2018) proposed a neural end-to-end approach based on graph convolutional encoders
for the SR’11 deep track.

The SR’18 shallow track received submissions from eight teams with seven of them dividing
the task into two subtasks: word ordering and inflection. Only Elder and Hokamp (2018)
developed a joint approach, however, they participated only in the English track.

For word ordering, five teams chose an approach based on neural networks, two used a classi-
fier, and one team resorted to a language model. As for the inflection subtask, five teams applied
neural techniques, two used lexicon-based approaches, and one used an SMT system (Basile and
Mazzei, 2018; Castro Ferreira et al., 2018c; Elder and Hokamp, 2018; King and White, 2018;
Madsack et al., 2018; Puzikov and Gurevych, 2018a; Singh et al., 2018; Sobrevilla Cabezudo and
Pardo, 2018). Overall, neural components were dominant across all the participants. However,
official scores of the teams that went neural greatly differ. Furthermore, two teams (Elder and
Hokamp, 2018; Sobrevilla Cabezudo and Pardo, 2018) applied data augmentation, which makes
their results not strictly comparable to others.

One of the interesting findings of the shared task is reported by Elder and Hokamp (2018) who
showed that applying standard neural encoder-decoder models to jointly learn word ordering and
inflection is highly challenging; their sequence-to-sequence baseline without data augmentation
got 43.11 BLEU points on English (a relatively moderate result).

While SR’18 shared task results showed quite a low performance of systems with respect to
human-written texts, SR’19 shallow track has almost closed this gap, where the best systems

47

Chapter 5. Training Models for Surface Realisation

showed readability scores on a par with references for English. However, for other languages
and the deep track, there is still room for improvement. As in SR’18, most participating teams
split surface realisation into two subtasks: most of their components were neural with two
teams employing symbolic ones for word ordering and one team—for morphological realisation
(Mille et al., 2019). The best performing system in SR’19 (Yu et al., 2019a) used a Tree-LSTM
(Zhou et al., 2016) to represent a tree structure where each node was encoded using its lemma,
morphological features, and dependency label. Their linearisation, however neural, is based on
Bohnet et al. (2010), and their neural inflection module predicts a sequence of edit operations.
They also developed a separate module for contraction generation, which is a character-based
sequence-to-sequence model.

Our model differs from previous work in several ways. First, it performs word ordering on
fully delexicalised data. Delexicalisation has been used previously but mostly to handle rare
words, e.g. named entities. Here we argue that surface realisation and, in particular, word
ordering works better when delexicalising all input tokens. This captures the intuition that
word ordering is mainly determined by the syntactic structure of the input. Second, we provide
a detailed evaluation of how our model handles the three subtasks underlying surface realisation.
While all SR participants provided descriptions of their models, not all of them performed an
in-depth analysis of model performance. It is also not clear how each of those modules affects
the global performance when merged in the full pipeline. In contrast, we propose a detailed
incremental evaluation of each component of the full pipeline and show how each component
impacts the final scores. Third, we introduce a linguistic analysis, based on the dependency
relations, of the word ordering component, allowing for deeper error analysis of the developed
systems. Furthermore, our model explicitly integrates a module for contraction handling, as
done also by Basile and Mazzei (2018); Yu et al. (2019a). We also address all the languages
proposed by the shared tasks and outline the importance of handling contractions.

Our work appeared concurrently with models of Puzikov et al. (2019); Yu et al. (2019b) on
SR’18 data, that is why we do not make comparison with their models.

5.3 Data

5.3.1 SR’18

The SR’18 data (shallow track) is derived from the ten Universal Dependencies (UD) v2.0
treebanks (Nivre et al., 2017) and consists of (T, S) pairs where S is a sentence, and T is the
UD dependency tree of S after word order information has been removed and tokens have been
lemmatised. The languages are those shown in Table 5.1 and the size of the datasets (training,
dev and test) varies between 7,586 (Arabic) and 85,377 (Czech) instances with most languages
having around 12K training instances (tree/sentence pairs). For more details about the data see
Mille et al. (2018a).

5.3.2 SR’19

SR’19 dataset includes 20 UD treebanks in the shallow track; for some languages several tree-
banks were available (see Table 5.6 for covered languages and Mille et al. (2019) for a detailed
description). Like in SR’18, the size of the training set greatly differs depending on a language:
from 803 trees for french_partut to 48,814 for russian_syntagrus. During the test phase,
additional out-of-domain treebanks and automatically parsed data were used. Another new fea-
ture of SR’19 data was the introduction of relative order for some words, such as components

48

5.4. Model

of named entities, multiple coordinations and punctuation signs.
For both shared tasks, we used only the data provided by the organisers. If several corpora

were available for a language, they were merged to have one training and development dataset
(that was the case for SR’19). We used original UD files for creating target files for training the
word ordering component, i.e. we extracted a sequence of tokens (the field token in the CoNLL
format) instead of using a reference sentence.

5.4 Model
As illustrated by Example 4, surface realisation from SR shallow meaning representations can be
viewed as consisting of three main steps: word ordering, morphological inflection and contraction
generation. For instance, given an unordered dependency tree whose nodes are labelled with
lemmas and morphological features (4a)13, the lemmas must be assigned the appropriate order
(4b), they must be inflected (4c) and contractions may take place (4d).

(4) a. the find be not meaning of life it about
b. it be not about find the meaning of life
c. It is n’t about finding the meaning of life
d. It isn’t about finding the meaning of life

We propose a neural architecture which explicitly integrates these three subtasks as three
separate modules into a pipeline: word ordering (WO) is applied first, then morphological
realisation (WO+MR) and finally, contractions (WO+MR+C) are handled.

5.4.1 Word Ordering

Input Output

(a) Unordered Source Tree (b) Output Lemmas with Gold Parse Tree

apple the John eat
noun det pnoun verb
2 3 4 1

root

nsubj

obj

det
John eat the apple
John eats the apple
pnoun verb det noun

4 1 3 2

root

nsubj det

obj

2:noun:obj:1 3:det:DET:2 4:pnoun:nsubj:1 1:verb:root:0 4 1 3 2

Figure 5.1: Delexicalising and linearising (in the parse tree of the output sentence the first
row shows the lemmas, the second–the word forms, the third–the POS tags and the fourth–the
identifiers). Identifiers are assigned to the source tree nodes in the order given by depth-first
search.

For word ordering, we combine a factored sequence-to-sequence model with an “extreme
delexicalisation” step which replaces matching source and target tokens with an identifier.

13Features and tree structures have been omitted.

49

Chapter 5. Training Models for Surface Realisation

Delexicalisation. Delexicalisation has frequently been used in neural NLG to help handle
unknown or rare items (Wen et al., 2015; Dušek and Jurčíček, 2015; Chen et al., 2018). Rare
items are replaced by placeholders both in the input and in the output; models are trained on
the delexicalised data; and a post-processing step ensures that the generated text is relexicalised
using the placeholders’ original value. In these approaches, delexicalisation is restricted to rare
items (named entities). In contrast, we apply delexicalisation to all input lemmas. Abstracting
away from specific lemmas reduces data sparsity, allows for the generation of rare or unknown
words and last but not least, it captures the linguistic intuition that word ordering mainly
depends on syntactic information (e.g., in English, the subject generally precedes the verb).

To create the delexicalised data, we need to identify matching input and output elements and
to replace them with the same identifier. We also store a mapping (id, L, F) specifying which
identifier id refers to which (L, F) pair, where L is a lemma and F is its set of morpho-syntactic
features.

We identify matching input and output elements by comparing the unordered input tree
provided by the SR task with the parse tree of the output sentence provided by the UD tree-
banks (see Figure 5.1). Source and target nodes which share the same path to the root are then
mapped to the same identifier. For instance, in Figure 5.1, the lemma “apple” has the same
path to the root (obj:eat:root) in both the input and the output tree. Hence the same identifier
is assigned to the nodes. More generally, after linearisation through depth-first, left-to-right
traversal of the input tree, each training instance captures the mapping between lemmas in the
input tree and the same lemmas in the output sequence. For instance, given the example shown
in Figure 5.1, delexicalisation will yield the training instance:

Input: tkn2 tkn3 tkn4 tkn1
Output: tkn4 tkn1 tkn3 tkn2

where tkni is the factored representation (see below) of each delexicalised input node.

Factored Sequence-to-Sequence Model. Following Elder and Hokamp (2018), we use a
factored model (Alexandrescu and Kirchhoff, 2006; Sennrich and Haddow, 2016) as a means of
enriching the node representations input to the neural model (see Section 2.2.4). Each delex-
icalised tree node is modelled by a sequence of features. Separate embeddings are learned for
each feature type and the feature embeddings of each input node are concatenated to create
its dense representation. As exemplified in Figure 5.1, we model each input placeholder as a
concatenation of four features: the node identifier, its POS tag, its dependency relation to the
parent node and its parent identifier (the parent identifier of a root node is represented as 0).

Sequence-to-sequence model. We use the OpenNMT-py framework (Klein et al., 2017)14

to train factored sequence-to-sequence models with attention (Luong et al., 2015) and the copy
and coverage mechanisms described in See et al. (2017). A single-layer LSTM is used for both
encoder and decoder. We train using full vocabulary and the maximal length in the source
and target for both baseline and the proposed model. Models were trained for 20 epochs, with
a mini-batch size of 64, a word embedding size of 300, and a hidden unit size of 450. They
were optimised with stochastic gradient descent (SGD) with a starting learning rate of 1.0. A
learning rate is halved when perplexity does not decrease on the development set. Preliminary
experiments showed that the lowest perplexity was reached on average at epoch 17, so this model
was kept for decoding. Decoding is done using beam search with a beam size of 5. For each

14commit e61589d, https://github.com/OpenNMT/OpenNMT-py

50

https://github.com/OpenNMT/OpenNMT-py

5.4. Model

language, we train three models with different random seeds, and report the average performance
and standard deviation.

The model is trained on delexicalised data. At test time, the token/identifier mapping is
used to relexicalise the model output.

5.4.2 Morphological Realisation

The morphological realisation (MR) module consists in producing inflected word forms based
on lemmas coupled with morphological features. For that module, we used a model recently
proposed by Aharoni and Goldberg (2017), which achieves state-of-the-art results on several
morphological inflection datasets: the CELEX dataset (Baayen et al., 1993; Dreyer et al., 2008),
the Wiktionary dataset (Durrett and DeNero, 2013) and the SIGMORPHON2016 dataset (Cot-
terell et al., 2016). Their model is based on a neural encoder-decoder architecture with hard
monotonic attention and performs out-of-context morphologic realisation: given a lemma and a
set of morpho-syntactic features, it produces a corresponding word form. As the model of Aha-
roni and Goldberg (2017) was trained on other tagsets, we adapted and trained it on (lemma
+ POS + morphological features, form) pairs extracted from the SR training data. We trained
the model for 20 epochs with the default parameters provided in the implementation15.

In our pipeline architecture, morphological realisation is applied to the output of our word
ordering model using the (id, L, F) mapping mentioned above. For each delexicalised token
produced by the word ordering component, we retrieve the corresponding lemma and morpho-
syntactic features (L, F) and apply our MR model to it so as to produce the corresponding word
form.

While associating a lemma and its features to a corresponding form, the MR module operates
without taking context into account, so it cannot perform some finer grained operations, such
as contraction, elision, and clitic attachment. We address that issue in the following section.

5.4.3 Contraction Generation

Contraction handling is the last step of our surface realisation pipeline. Example 5 shows some
types of contractions.

(5) French: “Le chat dort.” / “L’alouette chante.” (Elision for the definite article le before a
vowel: Le → L’)
Italian: “*In il mare.” → “Nel mare.” (Contraction of the preposition in and the article
il: In il → Nel)
Portuguese: “*Eis lo.” → “Ei-lo.” (Clitic pronoun attachment: Eis lo → Ei-lo)

We developed two modules for the contraction generation: one based on regular expressions
(Creg) and another based on a sequence-to-sequence model (Cs2s).

The sequence-to-sequence model is trained on pairs of sentences without and with contrac-
tions. The sentence with contraction (S+c) is the final sentence, i.e., the reference sentence in
the SR data. The sentence without contraction (S−c) is the corresponding sequence of word
forms extracted from the UD CoNLL data.

The regular expression module is inspired by the decomposition of multi-word expressions,
such as contractions, which is applied during the tokenisation step in parsing (Martins et al.,
2009). We reversed the regular expressions given in the TurboParser16 for the surface realisation

15https://github.com/roeeaharoni/morphological-reinflection/blob/master/src/hard_attention.py
16https://github.com/andre-martins/TurboParser/tree/master/python/tokenizer

51

https://github.com/roeeaharoni/morphological-reinflection/blob/master/src/hard_attention.py
https://github.com/andre-martins/TurboParser/tree/master/python/tokenizer

Chapter 5. Training Models for Surface Realisation

task, and also added our own to tackle, for example, elision in French. Cs2s and Creg modules
were created for three languages: French, Italian, and Portuguese17.

5.5 Evaluation on SR’18

In this section, we evaluate our model on SR’18 data. We did not participate in the task itself
because we started our model development after the task had finished. In the next section, we
will discuss our system participation in the SR’19 shared task.

We evaluate each component of our approach separately. We start by providing a detailed
evaluation of how the model handles word ordering (Section 5.5.1). We then go on to analyse the
respective contributions of morphological realisation (Section 5.5.2) and contraction generation
(Section 5.5.3). Finally, we discuss the performance of the overall surface realisation model
(Section 5.5.4). Throughout the evaluation, we used the SR’18 evaluation protocol and scripts18

to compute automatic metrics: BLEU, DIST (see Section 4.3.3), and NIST (inverse normalised
character-based string-edit distance).

5.5.1 Word Ordering

BLEU scores

We evaluate our word ordering component by computing the BLEU-4 score (Papineni et al.,
2002) between the sequence of lemmas it produces and the lemmatized reference sentence ex-
tracted from the UD files. The baseline is the same model without delexicalisation. As Table 5.1
shows, there is a marked, statistically significant, difference between the baseline and our ap-
proach which indicates that delexicalisation does improve word ordering.

ar cs en es fi fr it nl pt ru
BL 29.6±1.39 48±0.7 53.57±0.15 46.5±0.78 27.2±0.4 46.4±0.5 49.07±0.9 36.6±0.7 44.3±0.26 58.1±0.46
WO 34.9±0.2 57.97±0.06 59.1±0.36 52.33±0.31 43.1±0.53 50.0±0.0 53.17±0.5 47.03±0.59 51.77±0.32 64.73±0.23
∆ +5.3 +9.97 +5.53 +5.83 +15.9 +3.6 +4.1 +10.43 +7.47 +6.63

Table 5.1: Word Ordering: BLEU scores on lemmatised data. Mean and standard deviation
across three random seeds. BL: Baseline. All pairwise comparisons of BL and our model showed a
statistically significant difference in BLEU via the bootstrap resampling (1000 samples, p < .05).

Word Ordering Constraints

We also investigate the degree to which our results conform with the word ordering constraints
of the various languages focusing on the following dependency relations: det (determiner),
nsubj (nominal subject), obj (object), amod (adjectival modifier) and acl (nominal clausal
modifier). We chose them because they are more frequent and present in almost all treebanks
(other dependency relation results can be found in Appendix A). For each of these dependency
relations, we compare the relative ordering of the corresponding (head, dependent) pairs in the
reference data and in our system predictions.

17Although contractions are also present in Spanish, we did not develop a module for it, since the UD Spanish
AnCora treebank does not split them on the token level in contrast to other UD treebanks.

18http://taln.upf.edu/pages/msr2018-ws/SRST.html#evaluation

52

http://taln.upf.edu/pages/msr2018-ws/SRST.html#evaluation

5.5. Evaluation on SR’18

To determine whether the dependent should precede or follow its head, we use the gold
standard dependency tree of the UD treebanks. Since for the system predictions we do not have
a parse tree, we additionally record the distance between head and dependent (in the reference
data) and we compare it with the distance between the same two items in the system output.
For instance, for the det relation, given the gold sentence (6a) and the generated sentence (6b),
we extract (6c) from the UD parse tree and (6d) from the predicted sentence where each triple
is of the form either (dep, head, distance) or (head, dep, distance) and distance is the distance
between head and dependent.

(6) a. GOLD: The yogi tried the advanced asana
b. PRED: The yogi tried the asana advanced
c. G-triples: (thedep, yogihead, 1), (thedep, asanahead, 2)
d. P-triples: (the, yogi, 1), (the, asana, 1)
Exact match: 1; Approximate match: 2

We then compute exact matches (the order and the distance to the head is exactly the same)
and approximate matches (the order is preserved but the distance differs by 1 token19). We call
this exact match metric the dependency edge accuracy and reuse it in chapter 6. Table 5.2 shows
the results and compares them with a non-delexicalised approach.

Global Score. The all deprels column summarises the scores for all dependency relations
present in the treebanks (not just det, nsubj, obj, amod and acl). For the exact match,
most languages score above average (from 0.51 to 0.71). That is the relative word order and the
position of the dependent with respect to the head is correctly predicted in more than half of
the cases. Approximate match yields higher scores with most languages scoring between 0.65
and 0.80 suggesting that a higher proportion of correct relative orderings is achieved (modulo
mispositioning and false positives).

Long Range Dependencies. It is noticeable that for all languages, accuracy drops for the
acl relation. We conjecture that two factors makes it difficult for the model to make the
correct prediction: heterogeneity and long range dependencies. As the acl relation captures
different types of clausal modifiers (finite and non-finite), it is harder for the model to learn the
corresponding patterns. As the modifier is a clause, the distance between head (the nominal
being modified) and dependent (the verb of the clause modifier) can be long which again is likely
to impede learning.

Irregular Order. For cases where the head/dependent order is irregular, the scores are lower.
For instance, in Dutch the object may occur either before (46.9% of the cases in the test data) or
after the verb depending on whether it occurs in a subordinate or a main clause. Relatedly, the
obj exact match score is the lowest (0.38) for this language. Similarly, in Romance languages
where the adjective (amod relation) can either be pre- (head-final construction, HF) or post-
posed (head-initial construction, HI), exact match scores are lower for this relation than for the
others. For instance, the Portuguese test data contains 71% HF and 29% HI occurrences of
the amod relation and correspondingly, the scores for that relation are much lower than for the
det, nsubj and obj relations for that language. A similar pattern can be observed for Spanish,
French and Italian.

19We could of course consider further approximates matches differing by, say 2, 3 or 5 tokens. But we refrain
from this as this would increase the number of false positives.

53

Chapter 5. Training Models for Surface Realisation

det nsubj obj amod acl all deprels
+1 +2 +1 +2 +1 +2 +1 +2 +1 +2 +1 +2

ar 0.36 0.37 0.45 0.52 0.35 0.48 0.52 0.59 0.32 0.41 0.38 0.47
∆ +0.036 +0.047 -0.036 -0.067 -0.069 -0.113 -0.088 -0.106 -0.063 -0.061 -0.044 -0.071
cs 0.86 0.9 0.49 0.63 0.51 0.64 0.83 0.87 0.47 0.62 0.63 0.74
∆ -0.077 -0.071 -0.041 -0.054 -0.048 -0.053 -0.134 -0.126 -0.071 -0.073 -0.068 -0.074
en 0.76 0.85 0.71 0.85 0.76 0.84 0.71 0.76 0.53 0.65 0.63 0.74
∆ -0.10 -0.086 -0.002 -0.053 -0.074 -0.064 -0.15 -0.138 -0.058 -0.104 -0.06 -0.08
es 0.73 0.83 0.55 0.71 0.54 0.70 0.43 0.49 0.39 0.58 0.55 0.68
∆ -0.02 -0.074 -0.012 -0.073 +0.004 -0.057 +0.059 +0.036 -0.056 -0.12 -0.038 -0.088
fi 0.71 0.81 0.64 0.75 0.46 0.60 0.70 0.76 0.50 0.61 0.51 0.65
∆ -0.241 -0.244 -0.194 -0.189 -0.118 -0.137 -0.303 -0.296 -0.261 -0.312 -0.154 -0.16
fr 0.76 0.86 0.60 0.78 0.60 0.75 0.46 0.51 0.51 0.68 0.58 0.71
∆ -0.016 -0.235 +0.014 -0.037 +0.031 -0.029 +0.117 +0.104 -0.1 0.17 -0.038 -0.093
it 0.73 0.82 0.59 0.70 0.58 0.73 0.40 0.46 0.52 0.65 0.56 0.69
∆ -0.022 -0.058 -0.021 -0.07 -0.044 -0.101 +0.058 +0.017 -0.054 -0.072 -0.04 -0.088
nl 0.71 0.79 0.46 0.56 0.38 0.49 0.74 0.77 0.41 0.53 0.49 0.60
∆ -0.121 -0.115 -0.068 -0.07 -0.068 -0.087 -0.278 -0.29 -0.22 -0.277 -0.118 -0.13
pt 0.74 0.80 0.56 0.72 0.57 0.73 0.42 0.44 0.48 0.63 0.54 0.67
∆ -0.032 -0.051 -0.072 -0.114 -0.041 -0.094 +0.034 +0.043 -0.122 -0.204 -0.068 -0.103
ru NA NA 0.65 0.79 0.65 0.74 0.79 0.85 0.45 0.67 0.71 0.80
∆ — — -0.033 -0.057 -0.037 -0.033 -0.095 -0.1 +0.022 -0.027 -0.05 -0.059

Table 5.2: Proportion of correct head/dependent positioning for the five selected dependency
relations: det, nsubj, obj, amod, acl, and overall performance across all dependency relations.
+1: exact match; +2: approximate match, i.e. head and dependent are in the correct order but
there is a one-token difference between gold and prediction. NA: no dependency relation found
in a treebank. ∆ indicates the difference between our delexicalised model and the baseline.

54

5.5. Evaluation on SR’18

More detailed statistics, including other relations and performance with respect to head-
directionality, can be found in Appendix A.

Non-delexicalised Baseline. We also compare our delexicalised model with the non-delexicalised
baseline: ∆ in Table 5.2 shows the difference in performance between the two models.

Overall, the scores favour the delexicalised approach (negative delta in the all deprels
column for all languages) supporting the results given by the automatic metric. However, for
some dependency relations, the lexicalised baseline shows usefulness of word information, for
example, while predicting amod relations for Romance languages (positive delta for French,
Italian, Spanish, and Portuguese). Indeed, preposed adjectives in those languages constitute a
limited lexical group.

Comparison across Languages. Overall scores vary between languages but given the differ-
ences in annotation consistency in UD, number of dependency relations (the number of distinct
dependency relations present in the treebank ranges between 29 (ar, es) and 44 (en)), and fre-
quency counts for each dependency relations, it is difficult to conclude anything from these
differences.

5.5.2 Morphological Realisation

Table 5.3 shows the results for the WO+MR model.

ar cs en es fi fr it nl pt ru
MR Accuracy 91.05 98.89 98.3 99.07 92.66 96.77 96.85 87.6 98.80 98.23
WO 34.9±0.2 57.97±0.06 59.1±0.36 52.33±0.31 43.1±0.53 50.0±0.0 53.17±0.5 47.03±0.59 51.77±0.32 64.73±0.23
WO+MR (S−c) 28.6±0.26 56.1±0.1 54.3±0.3 51.4±0.3 38.63±0.59 44.97±0.25 47.3±0.6 42.3±0.53 50.7±0.26 60.93±0.23
∆ -6.3 -1.87 -4.8 -0.93 -4.47 -5.03 -5.87 -4.73 -1.07 -3.8

Table 5.3: Morphological Realisation Results. MR Accuracy: accuracy of the MR module. WO:
BLEU scores on lemmas. WO+MR: BLEU scores on inflected tokens without contraction (S−c).

The top line (MR Accuracy) indicates the accuracy of the MR model on the SR’18 test data
which is computed by comparing its output with gold word forms. As the table shows, the
accuracy is very high overall ranging from 87.6 to 99.07, with 9 of the 10 languages having an
accuracy above 90. This confirms the high accuracy of the model when performing morphological
inflection out of context.

The third line (WO+MR (S−c)) shows the BLEU scores for our WO+MR model, i.e., when
the MR model is applied to the output of the WO model. Here we use an oracle setting which
ignores contractions. That is, we compare the WO+MR output not with the final sentence but
with the sentence before contraction applies (the ability to handle contractions is investigated
in the next section).

As the table shows, the delta in BLEU scores between the model with (WO+MR) and
without (WO) morphological realisation mirrors the accuracy of the morphological realisation
model: as the accuracy of the morphological inflection model decreases, the delta increases. For
instance, for Arabic, the MR accuracy is among the lowest (91.05) and, correspondingly, the
decrease in BLEU score when going from word ordering to word ordering with morphological
realisation is the largest (-6.3).

55

Chapter 5. Training Models for Surface Realisation

5.5.3 Contraction Generation

ar cs en es fi fr it nl pt ru
S−c/S+c 47.1 96.1 90.9 98.4 98.5 70.8 65.1 99.5 66.3 96.9
WO+MR (S−c) 28.6±0.26 56.1±0.1 54.3±0.3 51.4±0.3 38.63±0.59 44.97±0.25 47.3±0.6 42.3±0.53 50.7±0.26 60.93±0.23
WO+MR (S+c) 15.8±0.1 54.83±0.21 53.3±0.53 51.03±0.31 38.37±0.55 36.23±0.42 31.5±0.4 42.27±0.55 34.0±0.62 60.43±0.15
∆ -12.8 -1.27 -1.0 -0.37 -0.26 -8.74 -15.8 -0.03 -16.7 -0.5
WO+MR+Creg (S+c) 41.8±0.26 40.0±0.66 46.13±0.29
WO+MR+Cs2s (S+c) 40.33±0.36 39.93±0.17 44.57±0.64

Table 5.4: Contraction Generation Results (BLEU scores). S−c/S+c: a sentence without con-
tractions vs. a reference sentence including contractions; S−c: BLEU with respect to sentences
before contractions; S+c: BLEU with respect to a reference sentence. The scores were computed
on detokenised sequences.

To assess the degree to which contractions are used, we compute BLEU-4 between the gold
sequence of word forms from UD treebanks and the reference sentence (Table 5.4, Line S−c/S+c).
As the table shows, this BLEU score is very low for some languages (Arabic, French, Italian,
Portuguese) indicating a high level of contractions.

These differences are reflected in the results of our WO+MR model: the higher the level of
contractions, the stronger the delta between the BLEU score on the reference sentence without
contractions (WO+MR, S−c) and the reference sentence with contractions (WO+MR, S+c).

This shows the limits of out-of-context morphological realisation. While the model is good
at producing a word form given its lemma and a set of morpho-syntactic features, the lack of
contextual information means that contractions cannot be handled.

Adding a contraction module permits improving results for those languages where contraction
is frequent (Table 5.4, Lines WO+MR+Creg, WO+MR+Cs2s). Gains range from +5 points for
French to +12 for Portuguese when comparing to WO+MR. We achieved better results with
contraction module based on regular expressions (Creg), rather than a neural module (Cs2s). In
a relatively simple task, such as contraction generation, rule-based methods are more reliable,
and, overall, are preferable due to their robustness and easy repair comparing to neural models,
which may, for instance, hallucinate incorrect content.

5.5.4 Global Evaluation

Finally, we compare our approach with the best results obtained by the SR’18 participants and
with OSU’s results (King and White, 2018) using BLEU-4, DIST and NIST scores. OSU results
are treated separately, since some of their scores were published after the shared task had ended.
Table 5.5 shows the results. They are mixed. Our model yields the best results for Czech (BLEU:
+1.63), Finnish (BLEU: +0.87), Dutch (BLEU: +9.99) and Russian (BLEU: +2.53). However it
underperforms on Arabic (BLEU: -9.8), English (BLEU: -13), Spanish (BLEU: -14.27), French
(BLEU: -10.23), Italian (BLEU: -4.46) and Portuguese (BLEU: -1.47). Based on the evaluation
of each of our modules, these results can be explained as follows.

The languages for which our model outperforms the state of the art are languages for which
the WO model performs best, the accuracy of the morphological realiser is high and the level
of contractions is low. For those languages, improving the accuracy of the word ordering model
would further improve results.

For four of the languages where the model underperforms (namely, Arabic, French, Por-
tuguese and Italian), the level of contraction is high. This indicates that improvements can be

56

5.6. Participation in SR’19

ar cs en es fi fr it nl pt ru
BLEU
SR’18 16.2 25.05 55.29 49.47 23.26 52.03 44.46 32.28 30.82 34.34
OSU 25.6 53.2 66.30 65.30 37.5 38.2 42.1 25.5 47.6 57.9
Ours 15.8±0.1 54.83±0.21 53.3±0.53 51.03±0.31 38.37±0.55 41.8±0.26 40.0±0.66 42.27±0.55 46.13±0.29 60.43±0.15

DIST
SR’18 44.37 36.48 79.29 51.73 41.21 55.54 58.61 57.81 60.7 34.56
OSU 46.7 58.1 70.2 61.5 58.7 53.7 59.7 57.8 66.0 59.9
Ours 27.63±0.06 63.53±0.15 62.77±0.15 61.33±0.15 51.83±0.55 55.23±0.72 53.73±0.21 54.13±0.15 57.0±0.4 71.23±0.12

NIST
SR’18 7.15 10.74 10.86 11.12 9.36 9.85 9.11 8.64 7.55 13.06
OSU 7.15 13.5 12.0 12.7 9.56 8.00 8.70 7.33 9.13 14.2
Ours 6.04±0.02 13.6±0.05 10.95±0.09 11.63±0.02 10.41±0.03 8.93±0.08 8.99±0.01 9.51±0.03 9.44±0.04 13.96±0.03

Table 5.5: BLEU, DIST and NIST scores on the SR’18 test data (shallow track). SR’18 is the
official results of the shared task but do not include OSU scores, since they are given in the
line below. We also excluded the ADAPT and NILC scores as they were obtained using data
augmentation. OSU is the submission of King and White (2018).

gained by improving the handling of contractions, e.g., by learning a joint model that would
take into account both morphological inflection and contraction.

5.6 Participation in SR’19

5.6.1 Model Adaptation

Data in SR’19 has different languages and some additional features comparing to SR’18, so
below we describe some system amendments that were done.

Word ordering is modelled as a sequence-to-sequence task, where an input tree is linearised.
Linearisation differs from our previous approach in that it was augmented with information
about the relative order of some elements, a feature that was introduced for the 2019 edition of
the shared task. So nodes were linearised using the depth-first search, and then elements with
the relative order feature were reordered to match the added information.

Morphological paradigms were learned from pairs of (lemma, POS+features) extracted from
the training data (the upos and features fields from CoNLL) using Aharoni and Goldberg
(2017)’s model. Lemmas with no morphological features were not used for training. Since
features are not provided for Chinese, Japanese, and Korean treebanks, the morphological real-
isation module was not trained for those languages. Instead, during the inflection phase:

• for Chinese, analytic language, lemmas were copied verbatim to the output;

• for Korean, agglutinative language, morphemes in a lemma were glued together, and then
the lemma was copied;

• for Japanese, synthetic language, a dictionary of the form (lemma+POS: wordform) was
constructed from the training data and looked up.

If a key ‘lemma+POS’ was not present in the dictionary, the lemma was copied to the output
verbatim. The same rule applies for any other lemma with no morphological features in any
treebank (e.g., URLs, foreign words, numbers, punctuation signs, etc.)20.

20We deleted features for foreign words in ru_gsd_ud for it to be consistent with ru_syntagrus_ud.

57

Chapter 5. Training Models for Surface Realisation

In the following, we will refer to the MR component as including the contraction generation
module (CG) as well.

Eventually, one may also include detokenisation, a task of glueing tokens together, in this
last step, as each language requires specific detokenisation rules to produce a final well-formed
sentence, which can be shown to an end user. We used the sacremoses21 library to perform
detokenisation. Besides, it was also used to tokenise reference sentences; we need that for the
automatic scoring.

5.6.2 Results and Discussion

We evaluate each module separately. For WO, we compared a generated sequence of lemmas
with a gold sequence of lemmas extracted from UD. For MR, we calculated wordform prediction
accuracy, and also applied MR to a gold sequence of lemmas instead of predicted sequence
of lemmas. Finally, we performed the overall evaluation, where our system predictions were
compared to reference sentences22.

WO Evaluation

Table 5.8 shows the results of WO. BLEU scores vary from 30 to 66 depending on the language
and corpus (mean = 56.98,median = 60.01).

We surmised that low scores for Arabic, Chinese, Indonesian are due to small sizes of training
corpora (6K, 4K, 4.5K training instances, respectively), which are not enough for neural systems.
Other languages’ scores show a smaller variation, ranging from 51 to 66; we conjecture that
the variations between languages are due to different syntactic phenomena occurring in each
language and the variations between corpora are due to different annotation guidelines.

MR+CG Evaluation

The inflection module was initially measured by accuracy of producing a correct word form
given a lemma and its POS together with morphological features (see Table 5.7, second column).
The average accuracy is 96.14 across 8 languages, which corresponds to the state-of-the-art
results in inflection tasks (Cotterell et al., 2016).

We also calculated a number of lemmas, which can have different word forms, given the same
set of POS and morphological features (Table 5.7, third column). For example, the lemma people
with pos=NOUN, Number=Plur as features have two word forms in the training data: people and
peoples. Those ambiguous forms may stem from different sources: language variation (as in
the example above) including spelling, non-standard forms and typos; annotation mistakes;
underspecified morphological features. The example of the latter is an adjective in Russian,
which can have different forms in the accusative case depending on animacy of the noun it
modifies (animacy in that case is an underspecified feature).

To measure the effect on scores, when converting a sequence of lemmas into a sentence, we
applied MR+CG to gold sequences of lemmas (they have the same word order as the reference).
Results are shown in Table 5.6. In general, high accuracies of MR alone (word level, Table 5.7) do
not guarantee good performance while evaluating on the sentence level. That type of evaluation
enabled us to have more insight into the data used. Some of our findings are listed below.

21https://github.com/alvations/sacremoses
22After the official submission to the shared task, we fixed a bug in MR for Japanese and Korean. In this

chapter we are reporting improved results.

58

https://github.com/alvations/sacremoses

5.6. Participation in SR’19

Id Corpus BLEU DIST NIST

ar ar_padt-ud 40.07 47.23 8.25
en1 en_ewt-ud 80.88 80.22 12.90
en2 en_gum-ud 90.73 98.74 12.80
en3 en_lines-ud 86.78 97.03 12.74
en4 en_partut-ud 86.31 96.46 10.23
es1 es_ancora-ud 93.82 98.47 14.88
es2 es_gsd-ud 89.31 99.23 13.93
fr1 fr_gsd-ud 90.53 98.12 14.04
fr2 fr_partut-ud 87.07 96.61 9.82
fr3 fr_sequoia-ud 91.00 96.38 12.38
hi hi_hdtb-ud 91.88 96.89 13.67
id id_gsd-ud 94.46 98.91 12.90
ja ja_gsd-ud 77.85 99.70 11.40
ko1 ko_gsd-ud 60.38 94.38 9.45
ko2 ko_kaist-ud 97.13 99.67 13.44
pt1 pt_bosque-ud 94.09 99.10 12.68
pt2 pt_gsd-ud 57.04 91.12 10.54
ru1 ru_gsd-ud 86.87 96.89 12.18
ru2 ru_syntagrus-ud 91.25 98.15 15.53
zh zh_gsd-ud 99.16 99.81 13.33

Table 5.6: The MR module applied to the gold word ordering input. Predictions and reference
sentences are both tokenised. Results on the development set.

lang Acc. Amb. % Amb. count

ar 90.87 7.29 1,815
en 96.35 0.84 226
es 98.85 0.85 418
fr 98.40 1.48 430
hi 89.95 6.46 569
id 98.52 0.55 47
ja NA 3.62 800
ko NA 0.86 945
pt 98.95 0.85 233
ru 97.25 0.72 933
zh NA 0 0

Table 5.7: Accuracy of the morphological realisation component. NA: no MR component was
developed. Percentage and count of lemmas with ambiguous forms found in the training data.

59

Chapter 5. Training Models for Surface Realisation

• English: a discrepancy in performance across datasets. The sources of the en_ewt-ud
corpus are blogs, social networks, reviews, emails, where the use of contractions (isn’t,
ain’t, etc) is dominant comparing to formal style. Since the contraction generation was
not applied for English, scores for this particular dataset are lower than for others.

• Arabic. We conjecture low scores for the high variability of forms (see Table 5.7) and
contractions (we did not develop a module for handling contractions in Arabic). For
instance, some diacritics are optional (e.g., hamza with alif), so a word form can be written
with or without them, being a valid word form in both cases.

• Japanese. MR module was not developed for Japanese, so a look-up dictionary based on
training data was not sufficient to handle the morphology. The high number of ambiguous
forms also impacted the scores, as in the case of Arabic.

• Portuguese. The pt_gsd-ud corpus is not annotated with morphological features, hence
57.04 score in BLEU compared to 94.09 in pt_bosque-ud.

• Korean. We do not read Korean, so we were not able to explain the difference between
the two Korean corpora (97.13 vs. 60.38 BLEU). Some annotation disparity may well be
the explanation.

Surface Realisation Evaluation

The performance of the overall surface realisation model is shown in Table 5.9. Automatic scores
show a drop compared to the WO component performance (Table 5.8), which is consistent with
the errors of the MR+CG module, described above.

Figure 5.2 aggregates the BLEU scores, shown in Tables 5.6, 5.8, 5.9. For each corpus, BLEU
for each module (X-axis) is mapped to the final BLEU score (Y -axis). The scatterplots show a
strong, positive association between the two variables: Pearson’s r = 0.83 and r = 0.86 for WO
and MR on gold lemmas respectively. The plots render the impact of both modules more visible:
in the bottom left corner are languages with low scores, and in the top there are languages with
higher scores. Going from the X-axis to the Y -axis allows to see the drop in scores from a single
module to the final pipeline. For instance, the Japanese treebank (ja, blue point) loses around
10 points (from 56 to 46) when going from the WO evaluation to the final evaluation. On the
es1 corpus, the model shows good results on MR (orange point, 93 on the abscissa) and the MR
part does not almost influence the total performance: BLEU drops from 59 to 57 (blue point).

Finally, we briefly summarise our results in the SR’19 shared task based on the organisers’
report (see Mille et al. (2019) for detailed results). Out of 11 teams participating in the shal-
low track, only four submitted for all treebanks (including our submission), which makes the
comparison not based on the equal terms. A system of Yu et al. (2019a), one of those teams
covering all languages, outperformed all other approaches by a large margin in automatic evalu-
ation. Our submission performed on a par with the other two systems that developed for all the
languages. As for human evaluation (carried out for several languages), we ranked fourth and
second for the Meaning similarity criterion for English and Russian respectively, and sixth for
Spanish and Chinese. For Readability, our submission for Chinese showed better results being
on the third place, while other languages kept their ratings. Low human scores for Chinese
and Spanish in our case correspond to what we have seen in the automatic evaluation on the
development set outlined above. During test time, we also ran our system on out-of-domain and
machine-generated data. For all languages concerned, automatic scores remained stable, which
demonstrates the portability of our approach.

60

5.6. Participation in SR’19

Corpus BLEU DIST NIST

ar_padt-ud 30.45 54.72 8.86
en_ewt-ud 66.71 84.18 12.57
en_gum-ud 62.92 80.61 11.53
en_lines-ud 61.89 75.76 11.67
en_partut-ud 62.38 75.87 9.82
es_ancora-ud 59.43 75.03 12.69
es_gsd-ud 61.83 74.94 12.80
fr_gsd-ud 60.58 78.66 12.74
fr_partut-ud 61.24 82.37 9.35
fr_sequoia-ud 55.22 74.18 10.86
hi_hdtb-ud 63.07 59.87 11.74
id_gsd-ud 46.09 76.07 9.99
ja_gsd-ud 56.53 62.41 10.33
ko_gsd-ud 53.73 53.01 11.69
ko_kaist-ud 66.43 63.19 12.85
pt_bosque-ud 52.88 81.98 11.13
pt_gsd-ud 51.01 72.59 11.82
ru_gsd-ud 59.11 62.30 11.72
ru_syntagrus-ud 62.37 67.88 14.03
zh_gsd-ud 45.67 56.01 10.23

Table 5.8: WO component performance on the
development set. Predictions and references
(sequences of lemmas) are both tokenised.

Corpus BLEU DIST NIST

ar_padt-ud 18.06 43.86 6.49
en_ewt-ud 54.45 65.45 11.32
en_gum-ud 58.17 79.68 11.16
en_lines-ud 52.53 73.48 10.79
en_partut-ud 54.79 73.98 9.10
es_ancora-ud 56.99 73.78 12.53
es_gsd-ud 59.63 74.07 12.32
fr_gsd-ud 51.94 70.43 11.63
fr_partut-ud 51.72 74.74 8.47
fr_sequoia-ud 49.08 70.27 10.13
hi_hdtb-ud 58.48 61.13 11.42
id_gsd-ud 45.28 75.50 9.88
ja_gsd-ud 46.30 62.31 9.37
ko_gsd-ud 32.21 49.43 8.73
ko_kaist-ud 64.58 61.21 12.69
pt_bosque-ud 59.35 83.84 11.20
pt_gsd-ud 35.44 69.47 9.17
ru_gsd-ud 52.90 60.59 11.13
ru_syntagrus-ud 57.97 66.87 13.70
zh_gsd-ud 45.48 55.91 10.21

Table 5.9: Automatic metrics on the develop-
ment set (WO + MR). Predictions and refer-
ence sentences are both tokenised.

61

Chapter 5. Training Models for Surface Realisation

Figure 5.2: Linear regression between BLEU scores for each module and final BLEU scores.
Data points are treebanks (ids are from Table 5.6). In orange: MR on gold lemma vs. final
BLEU (WO + MR); in blue: WO vs. final BLEU (WO + MR).

62

5.7. Conclusion

5.7 Conclusion

While surface realisation is a key component of the NLG pipeline, most work in this domain
has focused on the development of language specific models. By providing multilingual training
and test set, the SR shared tasks opens up the possibility to investigate how language specific
properties such as word order and morphological variation impact performance.

In this chapter, we presented a modular approach to surface realisation and applied it to all
the languages of the SR shallow track in 2018 and 2019.

For word ordering, we proposed a simple approach where the data is delexicalised, the
input tree is linearised using depth-first search and the mapping between input tree and output
lemma sequence is learned using a factored sequence-to-sequence model. Experimental results
show that full delexicalisation markedly improves performance. Linguistically, this confirms the
intuition that the mapping between shallow dependency structure and word order can be learned
independently of the specific words involved.

We further carried out a detailed evaluation of how our word ordering model performs on the
ten languages of the SR’18 shallow track. While differences in annotation consistency, number of
dependency relations and frequency counts for each dependency relations in each dataset make
it difficult to conclude anything from the differences in overall scores between languages, the
evaluation of head/dependent word ordering constraints highlighted the fact that long-distance
relations, such as acl, and irregular word ordering constraints (e.g., the position of the verb in
Dutch main and subordinate clauses) negatively impact results.

For morphological realisation and contractions, we showed that applying morphological re-
alisation out of context, as done by most of the SR participating systems, yields poor results
for those languages (Portuguese, French, Arabic, Italian) where contractions are frequent. We
explored two ways of handling contractions (a neural sequence-to-sequence model and a rule-
based model) and showed that adding contraction handling strongly improves performance (from
+5.57 to 12.13 increase in BLEU score for the rule-based model depending on the language).
More generally, our work on contractions points to the need for SR models to better take into
account the fine-grained structure of words.

By participating in SR’19, we were able to see how much effort is needed to adapt our
approach to new data. The WO component is easily transferrable between languages, and it
does not require much effort for applying it to unseen languages. In contrast, the MR component
requires a lot of attention, and needs to be tuned for each language separately. That is mainly
due to the different approaches for language annotation across UD treebanks, and, what is
more unexpected, across UD treebanks for the same language, not to speak of the contraction
generation and detokenisation, which are different for each language, and which should also be
implemented separately.

We also would like to highlight the importance of modular evaluation. If a system design
allows it, system outputs may be tested against a sequence of lemmas, not only a reference
sentence, thanks to the UD annotations. We encourage future researchers not to neglect this
type of evaluation to gain deeper insight into their system and data.

Given that most current models for SR split the task into two or more steps, for future work
it would be interesting to explore the development of a joint model that simultaneously handles
morphological realisation and word ordering while using finer grained word representations,
such as fastText embeddings (Bojanowski et al., 2017) or byte pair encoding (BPE; Gage, 1994;
Sennrich et al., 2016).

Speaking of the components separately, we believe that MR (including contraction genera-
tion and possibly detokenisation) would benefit from including context information, i.e. doing

63

Chapter 5. Training Models for Surface Realisation

inflection and necessary character transformations on a whole sentence, rather than word by
word. As for word ordering, it remains a tough problem for sequence-to-sequence architectures,
and it is worth exploring direct ways of encoding tree structure, as in tree- or graph-based
approaches (Marcheggiani and Perez-Beltrachini, 2018; Song et al., 2018b; Beck et al., 2018;
Ribeiro et al., 2019; Yu et al., 2019a). Another perspective for future development is to learn
several models for word ordering: one delexicalised and another lexicalised to profit from both
types of information and then use a combination of the models.

64

6

Evaluating Surface Realisers

Contents
6.1 Introduction . 65
6.2 Related Work . 66
6.3 Framework for Error Analysis . 67

6.3.1 Syntactic Complexity Metrics . 67
6.3.2 Performance Metrics . 69
6.3.3 Correlation Tests . 70
6.3.4 Error Mining . 70

6.4 Data and Experimental Setting . 70
6.5 Error Analysis . 72

6.5.1 Tree-Based Syntactic Complexity . 72
6.5.2 Projectivity . 74
6.5.3 Entropy . 75
6.5.4 Which Syntactic Constructions Are Harder to Handle? 78

6.6 Using Error Analysis for Improving Models or Datasets 81
6.7 Conclusion . 83

6.1 Introduction

In Chapter 5, we introduced surface realisation evaluation by means of dependency relations,
without which we would have had to realise that we had barely scratched the surface. In this
chapter, we aim to deepen our evaluation approach and extend it to a full evaluation framework
by considering all system outputs submitted to two multilingual surface realisation tasks.

As discussed in Sections 5.1 and 5.2, surface realisation (SR) is a natural language generation
task which consists in converting a linguistic representation into a well-formed sentence. As the
use of multiple input formats made the comparison and evaluation of existing surface realisers
difficult, Belz et al. (2011); Mille et al. (2018a, 2019) organised the SR shared tasks which provide
two standardised input formats for surface realisers: deep and shallow dependency trees.

While the SR tasks provide a common benchmark on which to evaluate and compare SR
systems, the evaluation protocol they use (automatic metrics and human evaluation) does not
support a detailed error analysis. Metrics (BLEU, DIST, NIST, METEOR, TER) and human

65

Chapter 6. Evaluating Surface Realisers

assessments are reported on the system level, and so do not provide a detailed feedback for
each participant. Neither do they give information about which syntactic phenomena impact
performance.

In this chapter, we discuss a framework for error analysis which allows for an interpretable,
linguistically informed analysis of SR results. While shallow surface realisation involves both
determining word order (linearisation) and inflecting lemmas (morphological realisation), since
inflection error detection is already covered in morphological shared tasks (Cotterell et al., 2017;
Gorman et al., 2019), we focus on error analysis for word order.

Error analysis is key to understanding the performance of NLP models and to improve them.
While doing error analysis, two principles are crucial: (i) analysing a large set of instances,
rather than a sample (elsewise error analysis may lead to biased conclusions about the model
performance); (ii) classifying errors by groups to account for a model general weaknesses and
strengths. For SR models, a natural basis for error grouping is characteristics of dependency
trees. Motivated by extensive linguistic studies which deal with syntactic dependencies and their
relation to cognitive language processing (Liu, 2008; Futrell et al., 2015; Kahane et al., 2017),
we investigate word ordering performance in SR models given various tree-based metrics.

The proposed error analysis framework consists of two main components: (i) correlation
analyses between an extensive range of tree-based metrics designed to measure syntactic com-
plexity and standard performance metrics and (ii) techniques (dependency edge accuracy, error
mining) which permit automatically identifying which syntactic constructions often co-occur
with low performance scores.

We apply our framework to the outputs of 174 systems submitted to the SR shared tasks
and demonstrate how it can be used to highlight some global results about the state of the art.

We also indicate various ways in which our error analysis framework could be used to improve
a model or a dataset thereby arguing for approaches to model and dataset improvement that
are more linguistically guided.

This chapter is based on the following publication:
Shimorina, A., Parmentier, Y., and Gardent, C. (2021). An Error Analysis Framework for

Shallow Surface Realization. Transactions of the Association for Computational Linguistics,
9:429–446

Our framework is available23 in the form of a toolkit which can be used both by campaign
organisers to provide a detailed feedback on the state of the art for surface realisation and by
researchers to better analyse, interpret and improve their models.

6.2 Related Work

There has been a long tradition in NLP exploring syntactic and semantic evaluation measures
based on linguistic structures (Liu and Gildea, 2005; Mehay and Brew, 2007; Giménez and
Màrquez, 2009; Tratz and Hovy, 2009; Lo et al., 2012). In particular, dependency-based au-
tomatic metrics have been developed for summarisation (Hovy et al., 2005; Katragadda, 2009;
Owczarzak, 2009) and machine translation (Owczarzak et al., 2007; Yu et al., 2014). Relations
between metrics were also studied: Dang and Owczarzak (2008) found that automatic metrics
perform on a par with the dependency-based metric of Hovy et al. (2005) while evaluating
summaries. The closest research to ours, which focused on evaluating how dependency-based
metrics correlate with human ratings, is Cahill (2009) who showed that syntactic-based metrics

23https://gitlab.com/shimorina/tacl-2021

66

https://gitlab.com/shimorina/tacl-2021

6.3. Framework for Error Analysis

perform equally well as compared to automatic metrics in terms of their correlation with human
judgements for a German surface realiser.

Researchers, working on SR and word ordering, have been resorting to different metrics
to report their models’ performance. Zhang et al. (2012); Zhang (2013); Zhang and Clark
(2015); Puduppully et al. (2016); Song et al. (2018a) used BLEU; Schmaltz et al. (2016) parsed
their outputs and calculated the UAS parsing metric; Filippova and Strube (2009) used Kendall
correlation together with edit-distance to account for English word order. Similarly, Dyer (2019)
used Spearman correlation between produced and gold word order for a dozen of languages.
White and Rajkumar (2012), in their CCG-based realisation, calculated average dependency
lengths between grammar-generated sentences and gold standard. Gardent and Narayan (2012);
Narayan and Gardent (2012) proposed an error mining algorithm for generation grammars to
identify the most likely sources of failures, when generating from dependency trees. Their
algorithm mines suspicious subtrees in a dependency tree, which are likely to cause errors.
King and White (2018) drew attention to their model performance for non-projective sentences.
Puzikov et al. (2019) assessed their binary classifier for word ordering using the accuracy of
predicting the position of a dependent with respect to its head, and a sibling. Yu et al. (2019a)
showed that, for their system, error rates correlate with word order freedom, and reported
linearisation error rates for some frequent dependency types. In a similar manner, in chapter 5
we looked at our system performance in terms of dependency relations, which shed light on the
differences between the non-delexicalised and delexicalised models.

In sum, multiple metrics and tools have been developed by individual researchers to evaluate
and interpret their model results: dependency-based metrics, correlation between these metrics
and human ratings, performance on projective vs. non-projective input, linearisation error rate,
etc. At a more global level, however, automatic metrics and human evaluation continue to be
massively used.

Here, we gather a set of linguistically informed, interpretable metrics and tools within a
unified framework, apply this framework to the results of two evaluation campaigns (174 partic-
ipant submissions) and generally argue for a more interpretable evaluation approach for surface
realisers.

6.3 Framework for Error Analysis

Our error analysis framework gathers a set of performance metrics together with a wide range of
tree-based metrics designed to measure the syntactic complexity of the sentence to be generated.
We apply correlation tests between these two types of metrics and mine a model output to
automatically identify the syntactic constructs which often co-occur with low performance scores.

6.3.1 Syntactic Complexity Metrics

To measure syntactic complexity, we use several metrics commonly used for dependency trees
(tree depth and length, mean dependency distance) as well as the ratio, in a test set, of
sentences with non-projective structures.

We also consider the entropy of the dependency relations and a set of metrics based on “flux”
recently proposed by Kahane et al. (2017).

Flux. The flux is defined for each inter-word position (e.g., 5-6 in Figure 6.1). Given the
inter-word position (i, j), the flux of (i, j) is the set of edges (d, k, l) such that d is a dependency

67

Chapter 6. Evaluating Surface Realisers

I enjoy my time at Franklin High School
pron verb pron noun adp propn propn propn
1 2 3 4 5 6 7 8

root

nsubj
obj
nmod:pass

nmod
case

compound

compound

System output (lemmatised): I enjoy my time at High Franklin School
BLEU= 0.65; dep edge accuracy = 0.71

System output (final): I enjoyed my time at High Franklin School
Fluency= 1; Adequacy = 0.7

Figure 6.1: A reference UD dependency tree (nodes are lemmas) and a possible SR model output.
The final output is used to compute human judgments and the lemmatised output to compute
BLEU and dependency edge accuracy (both are given without punctuation).

relation, k ≤ i and j ≤ l. For example, in Figure 6.1 the flux for the inter-word position between
the nodes 5 and 6 is {(nmod, 4, 8), (case, 5, 8)} and {(nmod, 4, 8), (case, 5, 8), (compound,
6, 8), (compound, 7, 8)} for the position between the nodes 7 and 8.

The flux size is its cardinality, i.e. the number of edges it contains: 2 for 5-6 and 4 for 7-8.
The flux weight is the size of the largest disjoint subset of edges in the flux (Kahane et al.,

2017, p. 74). A set of edges is disjoint if the edges it contains do not share any node. For instance,
in the inter-word position 5-6, nmod and case share a common node 8, so the flux weight is 1
(i.e., it was impossible to find two disjoint edges). The idea behind the flux-based metrics was to
try accounting for cognitive complexity of syntactic structures, in the same fashion as in Miller
(1956) who showed a processing limitation of syntactic constituents in a spoken language.

For each reference dependency tree, we calculate the metrics listed in Table 6.1. These can
then be averaged over different dimensions (e.g., all runs, all runs of a given participant, runs
on a given corpus, language etc.). Table 6.2 shows the statistics obtained for each corpus used
in the SR shared tasks. We refer the reader to the Universal Dependencies project24 to know
more about differences between specific treebanks.

Dependency Relation Entropy. Entropy has been used in typological studies to quantify
word order freedom across languages (Liu, 2010; Futrell et al., 2015; Gulordava and Merlo, 2016).
It gives an estimate of how regular or irregular a dependency relation is with respect to word
order. A relation d with high entropy indicates that d-dependents sometimes occur to the left
and sometimes to the right of their head, i.e. their order is not fixed.

The entropy H of a dependency relation d is calculated as

H(d) = −p(L)× log2(p(L))− p(R)× log2(p(R))

where p(L) is the probability for a dependent to be on the left from the head, and p(R) is the
probability for a dependent to be on the right from the head. For instance, if the dependency

24https://universaldependencies.org/

68

https://universaldependencies.org/

6.3. Framework for Error Analysis

Syntactic Complexity Explanation

tree depth the depth of the deepest node {3}
tree length number of nodes {8}
mean dependency distance average distance between a head and a dependent. For a

dependency linking two adjacent nodes, the distance is equal
to one (e.g., nsubj in Figure 6.1).

{
(1+2+1+4+1+2+3)/7 =

2
}

mean flux size average flux size of each inter-word position{
(1 + 1 + 2 + 1 + 2 + 3 + 4)/7 = 2

}
mean flux weight average flux weight of each inter-word position{

(1 + 1 + 1 + 1 + 1 + 1 + 1)/7 = 1
}

mean arity average number of direct dependents of a node{
(0 + 2 + 0 + 2 + 0 + 0 + 0 + 3)/8 = 0.875

}
projectivity True if the sentence has a projective parse tree (there are no

crossing dependency edges and/or projection lines). {True}

Table 6.1: Metrics for Syntactic Complexity of a sentence (the values in braces indicate the
corresponding value for the tree in Figure 6.1).

relation amod is found to be head-final 20 times in a treebank, and head-initial 80 times, its
entropy is equal to 0.72. Entropy ranges from 0 to 1: values close to zero indicate low word
order freedom; values close to one mark high variation in head directionality.

6.3.2 Performance Metrics

Performance is assessed using sentence-level BLEU-4, dependency edge accuracy (DEA) and
human evaluation scores.

Dependency edge accuracy (DEA). Introduced in Section 5.5.1, DEA measures how many
edges from a reference tree can be found in a system output, given the gold lemmas and depen-
dency distance as markers. An edge is represented as a triple (head lemma, dependent lemma,
distance), e.g., (I, enjoy, -1) or (time, school, +4) in Figure 6.125. In the output, the same triples
can be found based on the lemmas, the direction (after or before the head), and the dependency
distance. In our example, two out of the seven dependency relations cannot be found in the
output: (school, high, -1) and (school, franklin, -2). Thus, dependency edge accuracy is 0.71
(5/7).

Human evaluation scores. The framework includes sentence-level z-scores for Adequacy
and Fluency26 reported in the SR’18 and SR’19 shared tasks. The z-scores were calculated
on the set of all raw scores by the given annotator using each annotator’s mean and standard
deviation. Note that those were available for a sample of test instances for some languages only
and were calculated using the final system outputs, rather than the lemmatised ones.

25We report signed values for dependency distance, rather than absolute ones, to account for the dependent
position—after or before the head.

26In the original papers called Meaning Similarity and Readibility respectively (Mille et al., 2018a, 2019).

69

Chapter 6. Evaluating Surface Realisers

6.3.3 Correlation Tests

The majority of our metrics are numerical, which allows us to measure dependence between them
using correlation. One of the metrics—projectivity—is nominal, so we apply a non-parametric
test to measure whether two independent samples (“projective sentences” and “non-projective
sentences”) have the same distribution of scores.

6.3.4 Error Mining

Tree error mining of Narayan and Gardent (2012) was initially developped to explain errors in
grammar-based generators. The algorithm takes as input two groups of dependency trees: those
whose derivation was covered (P for Pass) and those whose derivation was not covered (F for
Fail) by the generator. Based on these two groups, the algorithm computes a suspicion score S
for each subtree f in the input data as follows:

S(f) = 1
2

(
c(f |F)
c(f) ln c(f) + c(¬f |P)

c(f) ln c(¬f)
)

c(f) is the number of sentences containing a subtree f , c(¬f) is the number of sentences where
f is not present, c(f |F) is the number of sentences containing f for which generation failed, and
c(¬f |P) is the number of sentences not containing f for which generation succeeded. Intuitively,
a high suspicion score indicates a subtree (a syntactic construct) in the input data which often
co-occurs with failure and seldom with success.

To imitate those two groups of successful and unsuccessful generation, we adapted a threshold
based on BLEU. All the instances in a model output are divided into two parts: the first quartile
(25% of instances)27 with a low sentence-level BLEU was considered as failure, the rest—as
success. Error mining can then be used to automatically identify subtrees of the input tree that
often co-occur with failure and rarely with success. Moreover, mining can be applied to trees
decorated with any combination of lemmas, dependency relations and/or POS tags.

6.4 Data and Experimental Setting

We apply our error analysis methods to 174 system outputs (runs) submitted to the shallow
track of SR’18 and SR’19 shared tasks (Mille et al., 2018a, 2019). For each generated sentence
in the submissions, we compute the metrics described in the preceding Section as follows.

Computing Syntactic Complexity Metrics. Tree-based metrics, dependency relation en-
tropy and projectivity are computed on the gold parse trees from Universal Dependencies v2.0
and v2.3 (Nivre et al., 2017). Following common practice in dependency linguistics compu-
tational studies, punctuation marks were stripped from the reference trees (based on punct
dependency relation). If a node to be removed had children, these were assigned to the parent
of the node.

Computing Performance Metrics. We compute sentence-level BLEU-4 with the smoothing
method 2 from Chen and Cherry (2014), implemented in NLTK. We do not include other
automatic n-gram-based metrics used in the SR shared tasks because they usually correlate
with each other.

27It is our empirical choice. Any other threshold can also be chosen.

70

6.4. Data and Experimental Setting

S count depth length MDD MFS MFW MA NP

SR
’1

8

ar 3 676 7.37±3.29 38.5±30.38 2.61±0.93 2.61±0.93 1.44±0.26 0.94±0.08 1.48
cs 2 9,876 3.95±1.99 14.49±9.43 2.12±0.74 2.12±0.74 1.19±0.29 0.86±0.18 9.91
es 6 1,719 5.21±2.2 26.88±15.7 2.47±0.66 2.47±0.66 1.33±0.25 0.93±0.09 2.39
en 8 2,061 2.71±1.88 10.57±9.55 1.86±0.95 1.86±0.95 1.02±0.42 0.75±0.3 1.65
fi 3 1,525 3.48±1.81 11.42±7.22 2.02±0.62 2.02±0.62 1.16±0.23 0.86±0.12 5.57
fr 5 416 4.33±1.75 21.21±12.57 2.44±0.59 2.44±0.59 1.28±0.25 0.93±0.07 2.16
it 4 480 4.38±2.23 19.14±14.07 2.19±0.61 2.19±0.61 1.23±0.23 0.91±0.06 2.29
nl 4 685 3.74±1.86 15.03±9.11 2.48±1.05 2.48±1.05 1.21±0.39 0.85±0.22 20.15
pt 4 476 4.32±2.12 18.58±12.11 2.25±0.63 2.25±0.63 1.23±0.27 0.9±0.13 4.20
ru 2 6,366 4.1±1.96 14.65±9.14 2.12±0.66 2.12±0.66 1.23±0.27 0.88±0.13 8.37

SR
’1

9

ar_padt 4 680 7.38±3.28 38.54±30.34 2.6±0.93 2.6±0.93 1.45±0.26 0.94±0.08 1.76
en_ewt 5 2,077 2.72±1.88 10.6±9.62 1.87±0.95 1.87±0.95 1.02±0.42 0.75±0.3 1.54
en_gum 11 778 3.69±1.91 15.0±10.63 2.14±0.75 2.14±0.75 1.16±0.31 0.85±0.2 3.08
en_lines 11 914 3.55±1.6 14.97±9.56 2.27±0.62 2.27±0.62 1.2±0.23 0.89±0.11 4.60
en_partut 11 153 4.52±2.01 20.06±9.77 2.48±0.51 2.48±0.51 1.26±0.21 0.93±0.05 0.65
es_ancora 6 1,721 5.2±2.2 26.87±15.7 2.47±0.66 2.47±0.66 1.33±0.25 0.93±0.09 2.38
es_gsd 6 426 5.06±2.25 25.18±16.43 2.41±0.57 2.41±0.57 1.31±0.23 0.94±0.05 4.69
fr_gsd 7 416 4.41±1.78 21.22±12.58 2.41±0.58 2.41±0.58 1.28±0.25 0.93±0.07 1.20
fr_partut 7 110 4.85±1.82 21.84±10.01 2.44±0.46 2.44±0.46 1.29±0.21 0.94±0.03 0.91
fr_sequoia 7 456 4.01±2.21 19.66±15.61 2.13±0.84 2.13±0.84 1.16±0.37 0.84±0.25 0.88
hi_hdtb 5 1,684 4.19±1.48 19.6±8.99 2.96±0.82 2.96±0.82 1.48±0.23 0.94±0.03 8.91
id_gsd 5 557 4.57±1.85 18.02±12.39 2.04±0.54 2.04±0.54 1.22±0.2 0.92±0.07 0.72
ja_gsd 6 551 4.36±1.97 20.25±13.35 2.43±0.66 2.43±0.66 1.4±0.32 0.92±0.09 0.00
ko_gsd 5 989 3.59±1.78 10.29±6.77 2.21±0.79 2.21±0.79 1.33±0.36 0.86±0.1 9.20
ko_kaist 4 2,287 3.86±1.54 11.0±4.56 2.27±0.67 2.27±0.67 1.44±0.32 0.89±0.07 19.15
pt_bosque 5 477 4.32±2.11 18.57±12.09 2.25±0.63 2.25±0.63 1.23±0.27 0.9±0.13 4.40
pt_gsd 5 1,204 4.85±1.87 22.74±12.2 2.39±0.55 2.39±0.55 1.31±0.23 0.94±0.05 1.66
ru_gsd 5 601 4.11±1.69 15.83±10.24 2.12±0.69 2.12±0.69 1.24±0.21 0.91±0.06 4.49
ru_syntagrus 4 6,491 4.08±1.94 14.78±9.24 2.13±0.65 2.13±0.65 1.23±0.26 0.88±0.13 6.49
zh_gsd 7 500 4.22±1.08 20.64±10.17 2.98±0.84 2.98±0.84 1.46±0.27 0.94±0.03 0.40

Table 6.2: Descriptive statistics (mean and stdev apart from the first two and the last column)
for the UD treebanks used in SR’18 and SR’19. S: number of submissions, count: number of
sentences in a test set, MDD: mean dependency distance, MFS: mean flux size, MFW: mean
flux weight, MA: mean arity, NP: percentage of non-projective sentences. For the tree-based
metrics (MDD, MFS, MFW, MA), macro-average values are reported.

71

Chapter 6. Evaluating Surface Realisers

To compute dependency edge accuracy, we process systems’ outputs to allow for comparison
with the lemmatised dependency tree of the reference sentence. Systems’ outputs were tokenised
and lemmatised; contractions were also split to match lemmas in the UD treebanks. Finally,
to be consistent with punctuation-less references, punctuation was also removed from systems’
outputs. The preprocessing was done with the stanfordnlp library (Qi et al., 2018).

For human judgments, we collect those provided by the shared tasks for a sample of test data
and for some languages (en, es, fr for SR’18 and es_ancora, en_ewt, ru_syntagrus, zh_gsd for
SR’19). Table 6.2 shows how many submissions each language received.

Computing Correlation. For all numerical variables, we assess the relationship between
rankings of two variables using Spearman’s ρ correlation. When calculating correlation coef-
ficients, missing values were ignored (that was the case for human evaluations). Correlations
were calculated separately for each submission (one system run for one corpus). Since up to
45 comparisons can be made for one submission, we controlled for the multiple testing problem
using the Holm-Bonferroni method while doing a significance test. We also calculated means
and medians of the correlations for each corpus (all submissions mixed), for each team (a team
has multiple submissions), and average correlations through all the 174 submissions.

For projectivity (nominal variable) we use a Mann–Whitney U test to determine whether
there is a difference in performance between projective and non-projective sentences. We ran
three tests where performance was defined in terms of BLEU, Fluency, and Adequacy. As
for some corpora, the count of non-projective sentences in their test set is low (e.g., 1.56% in
en_ewt), we ran the test on the corpora that have more than 5% of non-projective sentences, that
is cs (10%), fi (6%), nl (20%), ru (8%) for SR’18, and hi_hdtb (9%), ko_gsd (9%), ko_kaist
(19%), ru_syntagrus (6%) for SR’19. For the calculation of the Mann–Whitney U test, we
used scipy-1.4.1. Similar to the correlation analysis, the test was calculated separately for each
submission and for each corpus.

Mining the Input Trees. The error mining algorithm was run for each submission separately
and with three different settings: (i) dependency relations (dep); (ii) POS tags (pos); (iii)
dependency relations and POS tags (pos-dep).

6.5 Error Analysis

We analyse results focusing successively on: tree-based syntactic complexity (are sentences with
more complex syntactic trees harder to generate?), projectivity (how much does non-projectivity
impact results?), entropy (how much do word order variations affect performance?), dependency
edge accuracy and error mining (which syntactic constructions lead to decreased scores?).

6.5.1 Tree-Based Syntactic Complexity

We examine correlation tests results for all metrics on the system level (all submissions together)
and for a single model, the BME-UW system (Kovács et al., 2019) on a single corpus/language
(zh_gsd, Chinese). Figure 6.2a shows median Spearman ρ coefficients across all the 174 submis-
sions, and Figure 6.2b shows the coefficients for the BME-UW system on the zh_gsd corpus.

We investigate both correlations between syntactic complexity and performance metrics and
within each category. Similar observations can be made for both settings.

72

6.5. Error Analysis

(a) Median Spearman ρ coefficients between
metrics (all submissions considered).

(b) Spearman ρ coefficients between metrics for
BME-UW for zh_gsd.

Figure 6.2: Spearman ρ coefficients between metrics. Ad: Adequacy z-score, Fl: Fluency z-score,
DEA: dependency edge accuracy, MFS: mean flux size, MFW: mean flux weight, MA: mean
arity, TD: tree depth, TL: tree length, MDD: mean dependency distance. * – non-significant
coefficients at α = 0.05 corrected with the Holm-Bonferroni method for multiple hypotheses
testing.

Correlation between Performance Metrics. As often remarked in the NLG context (Stent
et al., 2005; Novikova et al., 2017a; Reiter, 2018), BLEU shows a weak correlation with Flu-
ency and Adequacy on the sentence level. Similarly, dependency edge accuracy shows weak
correlations with human judgments (ρad = 0.2 and ρfl = 0.24 for the median; ρad = 0.14 and
ρfl = 0.23 for BME-UW). Bear in mind though that using human assessments for word ordering
evaluation has one downside because the assessments were collected for final sentences, and were
not specifically created for word ordering evaluation. A more detailed human evaluation focused
on word ordering might be needed to confirm the findings including human judgments.

In contrast, BLEU shows a strong correlation with dependency edge accuracy (median:
ρ = 0.68; BME-UW: ρ = 0.88). Contrary to BLEU however, DEA has a direct linguistic inter-
pretation (it indicates which dependency relations are harder to handle) and can be exploited
to analyse and improve a model. We therefore advocate for a more informative evaluation that
incorporates DEA in addition to the standard metrics. We believe this will lead to more easily
interpretable results and possibly the development of better, linguistically informed SR models.

Correlation between Syntactic Complexity Metrics. Unsurprisingly, tree-based metrics
have positive correlations between each other (the redish area on the right) ranging from weak
to strong. Due to calculation technique overlap, some of them can show strong correlation (e.g.,
mean dependency distance and mean flux size).

Correlation between Syntactic Complexity and Performance Metrics. Tree-based
metrics do not correlate with human assessments (ρ fluctuates around zero for median and from
−0.06 to −0.29 for BME-UW).

73

Chapter 6. Evaluating Surface Realisers

In general no correlation between tree-based metrics and system performance was found
globally, i.e. for all models and all testsets. We can use the framework to analyse results on
specific corpora or languages however. For instance, zooming in on the fr corpus, we can observe
a weak negative correlation at the system level (correlation with the median) between tree-
based metrics (e.g., ρ = −0.38 for mean arity and tree length) and DEA. Thus, on this corpus,
performance decreases as syntactic complexity (as measured by DEA) increases. Similarly, for
ar, cs, fi, it, nl, tree-based metrics show some negative correlation with BLEU28 whereby ρ
median values between dependency metrics and BLEU for those corpora vary from −0.21 to
−0.38 for ar, from −0.43 to −0.57 for cs, from −0.2 to −0.46 for fi, from −0.17 to −0.34 for it,
and from −0.29 to −0.42 for nl.

Such increase in correlations were observed mainly for corpora, for which performance was
not high across submissions (see Mille et al. (2018a)). We hypothesize that BLEU correlates
more with the tree-based metrics if system performance is bad.

Significance testing. Overall, across submissions, coefficients were found non-significant only
when they were close to zero (see Figure 6.2b).

6.5.2 Projectivity

Table 6.3 shows performance results with respect to the projectivity parameter.
Zooming in on the ru_syntagrus corpus and two models, one which can produce non-

projective trees, BME-UW (Kovács et al., 2019), and one which cannot, the IMS system (Yu
et al., 2019a), we observe two opposite trends.

For the BME-UW model, the median values for Fluency and Adequacy are higher for non-
projective sentences. Fluency medians (proj/non-proj) are 0.15/0.19 (Mann–Whitney U =
4109131.0, n1 = 6070, n2 = 421, p < 0.001 two-tailed); Adequacy medians (proj/non-proj)
are 0.31/0.48 (U = 2564235.0, n1 = 6070, n2 = 421, p < 0.001). In other words, while the
model can handle non-projective structures, a key drawback revealed by our error analysis, is
that for sentences with projective structures (which incidentally, are much more frequent in the
data), the model output is in fact judged less fluent and less adequate by human annotators
than for non-projective sentences.

Conversely, for the IMS system, median values for Fluency is higher for projective sentences
(0.42 vs. 0.18 for non-projective sentences), and the distributions in the two groups differed
significantly (U = 4038434.0, p < 0.001 two-tailed). For Adequacy, the median value for pro-
jective sentences (0.58) is also significantly higher than that for non-projective sentences (0.37,
U = 2583463.0, p < 0.001 two-tailed). This in turn confirms the need for models that can handle
non-projective structures.

Another interesting point highlighted by the results on the ru_syntagrus corpus in Table 6.3
is that similar BLEU scores for projective and non-projective structures do not necessarily mean
similar human evaluation scores.

In terms of BLEU only, i.e. taking all other corpora with no human evaluations, and modulo
the caveat just made about the relation between BLEU and human evaluation, we find that
non-projective median values were always lower than projectives ones, and distributions showed
significant differences, throughout all the 25 comparisons made. This underlines the need for
models that can handle both projective and non-projective structures.

28Unfortunately no human evaluations were available for those corpora.

74

6.5. Error Analysis

team corpus BLEU Proj/Non-Proj Fl_z Ad_z Sample sizes

AX cs 0.25/0.19 -/- -/- 8897/979
BinLin cs 0.49/0.38 -/- -/- 8897/979
AX fi 0.25/0.2 -/- -/- 1440/85
BinLin fi 0.44/0.33 -/- -/- 1440/85
OSU fi 0.47/0.38 -/- -/- 1440/85
AX nl 0.28/0.2 -/- -/- 547/138
BinLin nl 0.39/0.3 -/- -/- 547/138
OSU nl 0.38/0.28 -/- -/- 547/138
Tilburg nl 0.43/0.36 -/- -/- 547/138
AX ru 0.27/0.22 -/- -/- 5833/533
BinLin ru 0.44/0.36 -/- -/- 5833/533
BME-UW hi_hdtb 0.66/0.6 -/- -/- 1534/150
DepDist hi_hdtb 0.66/0.62 -/- -/- 1534/150
IMS hi_hdtb 0.82/0.73 -/- -/- 1534/150
LORIA hi_hdtb 0.29/0.22 -/- -/- 1534/150
Tilburg hi_hdtb 0.68/0.64 -/- -/- 1534/150
BME-UW ko_gsd 0.54/0.38 -/- -/- 898/91
DepDist ko_gsd 0.51/0.37 -/- -/- 898/91
IMS ko_gsd 0.84/0.56 -/- -/- 898/91
LORIA ko_gsd 0.43/0.4 -/- -/- 898/91
Tilburg ko_gsd 0.08/0.06 -/- -/- 898/91
BME-UW ko_kaist 0.51/0.39 -/- -/- 1849/438
IMS ko_kaist 0.82/0.6 -/- -/- 1849/438
LORIA ko_kaist 0.43/0.37 -/- -/- 1849/438
Tilburg ko_kaist 0.14/0.11 -/- -/- 1849/438
BME-UW ru_syntagrus 0.58/0.59 0.15/0.19 0.31/0.48 6070/421
IMS ru_syntagrus 0.76/0.77 0.42/0.18 0.58/0.37 6070/421
LORIA ru_syntagrus 0.61/0.62 0.33/0.3 0.39/0.55 6070/421
Tilburg ru_syntagrus 0.46/0.47 -0.2/-0.37 -0.01/-0.2 6070/421

Table 6.3: Median values for BLEU, Fluency, and Adequacy for projective/non-projective sen-
tences for each submission. Medians for non-projective sentences which are higher than for
the projective sentences are in bold. All comparisons were significant with p < 0.001. Human
judgments were available for ru_syntagrus only.

6.5.3 Entropy

Correlation between dependency relation entropy and dependency edge accuracy permits identi-
fying which model, language or corpus is particularly affected by word order freedom. The mean-
ing of dependency relations can be consulted on this page: https://universaldependencies.
org/u/dep/index.html; originally the relations were described in de Marneffe et al. (2014).

Figure 6.3 illustrates which entropy dependency relations have in the considered treebanks.
For example, the advcl relation has a high entropy for Finnish, Indonesian, and for the lan-
guages from the Indo-European family (redish squares), and a moderate to low entropy for
other languages.

Given a DEA and an entropy for each dependency relation, we computed correlation scores

75

https://universaldependencies.org/u/dep/index.html
https://universaldependencies.org/u/dep/index.html

Chapter 6. Evaluating Surface Realisers

Figure 6.3: Entropy of dependency relations in the treebanks used in the SR shared tasks. A
cross indicates the absence of a dependency relation in a treebank. Treebanks are grouped by
language families.

76

6.5. Error Analysis

Figure 6.4: Spearman correlation coefficient heatmap between dependency edge accuracy and
entropy. A cross indicates that a team did not make a submission for the treebank. Treebanks
are grouped by language families. The same correlation matrix but annotated with coefficient
numbers is available in the Appendix B.

77

Chapter 6. Evaluating Surface Realisers

between them for all systems and all corpora (Figure 6.4). Negative scores indicate the following
relation between two variables: the higher the entropy, the lower the accuracy.

For instance, for the id_gsd corpus, three teams have a Spearman’s ρ in the range from
−0.62 to −0.67, indicating that their models have a tendency to underperform for dependency
relations with high entropy. Conversely, two other teams showed weak correlation (ρ = −0.31
and ρ = −0.36) for the same id_gsd corpus.

The impact of entropy also varies depending on the language, the corpus and more generally,
the entropy of the data. For instance, for Japanese (ja_gsd corpus), dependency relations have
low entropy (the mean entropy averaged on all relations is 0.02), and so we observe no correlation
between entropy and performance. Conversely, for Czech (the treebank with the highest mean
entropy, H = 0.52), two teams show non-trivial negative correlations (ρ = −0.54 and ρ = −0.6)
between entropy and dependency edge accuracy.

6.5.4 Which Syntactic Constructions Are Harder to Handle?

Dependency Edge Accuracy (DEA). For a given dependency relation, dependency edge
accuracy assesses how well a model succeeds in realising that relation. To identify which syntactic
constructs are problematic for surface realisation models, we therefore compute dependency edge
accuracy per relation, averaging over all submissions. Table 6.4 shows the results.

Unsurprisingly, relations with low counts (first five relations in the table) have low accuracy.
Because they are rare (in fact they are often absent from most corpora), SR models struggle to
realise these.

Other relations with low accuracy are either relations with free word order (i.e., advcl,
discourse, obl, advmod) or whose semantics is vague (dep—unspecified dependency). Clearly, in
case of the latter, systems cannot make a good prediction; as for the former, the low DEA score
may be an artefact of the fact that it is computed with respect to a single reference. As the
construct may occur in different positions in a sentence, several equally correct sentences may
match the input but only one will not be penalised by the comparison with the reference. This
underlines once again the need for an evaluation setup with multiple references.

Relations with the highest accuracy are those for function words (case—case-marking el-
ements, det—determiners, clf—classifiers), fixed multiword expressions (fixed), and nominal
dependents (amod, nmod, nummod). Those dependencies on average have higher stability with
respect to their head in terms of distance, more often demonstrate a fixed word order, and do
not exhibit a certain degree of probable shifting as the relations described above. Due to those
factors, their realisation performance is higher.

Interestingly, when computing DEA per dependency relation and per corpus, we found sim-
ilar DEA scores for all corpora. That is, dependency relations have consistently low/high DEA
score across all corpora therefore indicating that improvement on a given relation will improve
performance on all corpora/languages.

Finally, we note that, at the model level, dependency edge accuracy scores are useful metrics
for researchers as it brings interpretability and separation into error type subcases.

Error mining for syntactic trees. We can also obtain a more detailed picture of which
syntactic constructs degrade performance using error mining. After running error mining on all
submissions, we examine the subtrees in the input which have highest coverage, i.e. for which
the percentage of submissions tagging these forms as suspicious29 is highest. Tables 6.5, 6.6 and

29A form is suspicious if its suspicion score is not null.

78

6.5. Error Analysis

deprel count Accuracy

list 4,914 17.75
vocative 974 21.91
dislocated 7,832 23.11
reparandum 33 27.27
goeswith 1,453 27.98
parataxis 27,484 28.76
dep 14,496 29.80
advcl 60,719 32.52
csubj 8,229 36.60
discourse 3,862 37.45
ccomp 33,513 41.74
obl 232,097 42.39
appos 35,781 43.59
advmod 180,678 44.84
iobj 16,240 44.96
conj 149,299 45.77
orphan 843 48.49
expl 10,137 50.90
acl 79,168 51.24
cop 45,187 51.78
nsubj 268,686 51.80
xcomp 36,633 56.12
obj 190,140 57.87
nummod 61,459 58.46
aux 95,748 58.47
mark 105,993 59.77
compound 82,314 59.99
nmod 357,367 60.94
flat 62,686 61.28
amod 246,733 61.68
cc 123,866 61.94
clf 1,668 67.47
fixed 27,978 73.08
det 280,978 73.51
case 465,583 74.15

Table 6.4: Macro-average dependency edge accuracy over all submissions sorted from the lowest
accuracy to the highest. Count is a number of times a relation was found in all treebanks.

6.7 shows the results when using different views of the data (i.e. focusing only on dependency
information, only on POS tags or on both).

Table 6.5 highlights coordination (conj, 13 subtrees out of 20) and adverbial clause modifiers
(advcl, 5 cases) as a main source of low BLEU scores. This mirrors the results shown for single
dependency relations (cf. Section 6.5.4) but additionally indicates specific configurations in
which these relations are most problematic such as for instance, the combination of an adverbial

79

Chapter 6. Evaluating Surface Realisers

rank subtree cov. MSS

1-2 (conj (X)) 70-73 1.17
3 (advcl (nsubj)) 62 0.91
4 (advcl (advmod)) 62 0.95
5 (advmod (advmod)) 59 0.77
6 (conj (advcl)) 57 0.75
7 (nsubj (conj)) 56 0.68
8-11 (conj (X)) 52-56 0.87
12 (nmod (advmod)) 52 0.56
13 (nsubj (amod)) 52 0.75
14-15 (conj (X)) 49-50 0.73
16 (parataxis (nsubj)) 49 0.75
17 (conj (advmod advmod)) 48 0.65
18 (advcl (cop)) 48 0.60
19 (advcl (aux)) 47 0.59
20 (ccomp (advmod)) 47 0.68

Table 6.5: Top-20 of the most frequent suspicious trees (dep-based) across all submissions. In
case of conj, when tree patterns were similar, they were merged, X serving as a placeholder.
Coverage: percentage of submissions where a subtree was mined as suspicious. MSS: mean
suspicion score for a subtree.

tree coverage MSS

(ADJ (PRON)) 70 0.90
(VERB (VERB)) 69 1.21
(ADJ (ADJ)) 68 0.89
(NOUN (ADV)) 67 1.03
(ADJ (ADP)) 66 0.77
(VERB (ADJ)) 65 0.98
(ADV (ADV)) 63 0.87
(NOUN (AUX)) 62 0.90
(ADJ (VERB)) 60 0.80
(VERB (CCONJ)) 60 1.02
(PRON (ADP)) 56 0.81
(VERB (VERB VERB)) 55 0.89
(NUM (NUM)) 55 0.72
(PROPN (NOUN)) 53 0.79
(PRON (VERB)) 53 0.63
(ADJ (CCONJ)) 52 0.65
(VERB (ADV)) 52 0.96
(ADJ (SCONJ)) 52 0.62
(VERB (ADP)) 51 0.76
(VERB (PROPN)) 51 0.83

Table 6.6: Most frequent suspicious trees (pos-based) across all submissions.

80

6.6. Using Error Analysis for Improving Models or Datasets

subtree cov. MSS

(VERB~conj (ADV~advmod)) 60 0.90
(VERB~conj (PRON~nsubj)) 60 0.78
(NOUN~nsubj (ADJ~amod)) 55 0.77
(ADV~advmod (ADV~advmod)) 54 0.69
(VERB~advcl (ADV~advmod)) 53 0.76
(VERB~advcl (NOUN~nsubj)) 53 0.70
(VERB~conj (VERB~advcl)) 50 0.60
(VERB~advcl (PRON~obj)) 48 0.53
(VERB~ccomp (ADV~advmod)) 47 0.57
(NOUN~nsubj (NOUN~conj)) 46 0.46
(VERB~advcl (NOUN~obl)) 46 0.68
(VERB~conj (PRON~obj)) 45 0.57
(VERB~advcl (AUX~aux)) 44 0.56
(VERB~conj (AUX~aux)) 41 0.59
(NOUN~obl (ADJ~amod)) 40 0.62
(NOUN~nsubj (VERB~acl)) 40 0.46
(VERB~acl (ADV~advmod)) 40 0.47
(NOUN~obl (ADV~advmod)) 38 0.43
(NOUN~conj (VERB~acl)) 38 0.38
(VERB~ccomp (AUX~aux)) 38 0.48

Table 6.7: Most frequent suspicious trees (dep-pos-based) across all submissions.

clause modifier with a nominal subject (nsubj, 62% coverage) or an adverbial modifier (advmod,
62% coverage) or the combination of two adverbial modifiers together (e.g., down there, far
away, very seriously).

Table 6.6 shows the results for the POS setting. Differently from the dep-based view, it high-
lights head-dependent constructs with identical POS tags, e.g., (ADV (ADV)), (ADJ (ADJ)),
(NUM (NUM)), (VERB (VERB)) and (VERB (VERB VERB)), as a frequent source of errors.
For instance, the relative order of two adjectives (ADJ (ADJ)) is sometimes lexically driven and
therefore difficult to predict (Malouf, 2000).

Table 6.7 shows a hybrid POS-dep view of the most suspicious forms on a system level,
detailing the POS tags most commonly associated with the dependency relations shown in
Table 6.5 to raise problem, i.e. coordination, adverbial modifiers and adverbial clauses.

6.6 Using Error Analysis for Improving Models or Datasets

As shown in the preceding section, the error analysis framework introduced in Section 6.3 can
be used by evaluation campaign organisers to provide a linguistically informed interpretation of
campaign results aggregated over multiple system runs, languages or corpora.

For individual researchers and model developers, our framework also provides a means to
have a fine-grained interpretation of their model results which they can then use to guide model
improvement, to develop new models or to improve training data. We illustrate this point by
giving some examples of how the toolkit could be used to help improve a model or a dataset.

81

Chapter 6. Evaluating Surface Realisers

Data Augmentation. Augmenting the training set with silver data has repeatedly been
shown to increase performance (Konstas et al., 2017; Elder and Hokamp, 2018). In those ap-
proaches, performance is improved by simply augmenting the size of the training data. In
contrast, information from the error analysis toolkit could be used to support error-focused
data augmentation, i.e., to specifically augment the training data with instances of those cases
for which the model underperforms (e.g., for dependency relations with low dependency edge
accuracy, for constructions with low suspicion score or for input trees with large depth, length
or mean dependency distance). This could be done either manually (by annotating sentences
containing the relevant constructions) or automatically by parsing text and then filtering for
those parse trees which contain the dependency relations and subtrees for which the model un-
derperforms. For those cases where the problematic construction is frequent, we conjecture that
this might lead to a better overall score increase than “blind” global data augmentation.

Language Specific Adaptation. Languages exhibit different word order schemas and have
different ways of constraining word order. Error analysis can help identify which language-
specific constructs impact performance and how to improve a language-specific model with
respect to these constructs.

For instance, a dependency relation with high entropy and low accuracy indicates that the
model has difficulty learning the word order freedom of that relation. Model improvement can
then target a better modelling of those factors which determine word order for that relation.
As it was discussed in Section 5.5.1, in Romance languages, for example, adjectives mostly
occur after the noun they modify. However some adjectives are pre-posed. As the pre-posed
adjectives rather form a finite set, a plausible way to improve the model would be to enrich the
input representation by indicating for each adjective whether it belongs to the class of pre- or
post-posed adjectives.

Global Model Improvement. Error analysis can suggest direction for model improvement.
For instance, a high proportion of non-projective sentences in the language reference treebank
together with lower performance metrics for those sentences suggests improving the ability of the
model to handle non-projective structures. Indeed, Yu et al. (2020) showed that the performance
of the model of (Yu et al., 2019a) could be greatly improved by extending it to handle non-
projective structures.

Treebank Specific Improvement. Previous research has shown that treebanks contain in-
consistencies thereby impacting both learning and evaluation (Zeman, 2016). The tree-based
metrics and the error mining techniques provided in our toolkit can help identify those depen-
dency relations and constructions which have consistently low scores across different models or
diverging scores across different treebanks for the same language. For instance, a case of strong
inconsistencies in the annotation of multi-word expressions (MWE) may be highlighted by a
low DEA for the fixed dependency relation (which should be used to annotate MWE). Such
annotation errors could also be detected using lemma-based error mining, i.e., error mining for
forms decorated with lemmas. Such mining would then show that the most suspicious forms are
decorated with multi-word expressions (e.g., “in order to”).

Ensemble Model. Given a model M and a test set T , our toolkit can be used to compute
for each dependency relation d present in the test set, the average dependency edge accuracy of
that model for that relation (DEAd

M , the sum of the model’s DEA for all d-edge in T normalised

82

6.7. Conclusion

by the number of these edges). This could be used to learn an ensemble model which, for each
input, outputs the sentence generated by the model whose score according to this metric is
highest. Given an input tree t consisting of a set of edges D, the score of a model M could
for instance be the sum of the model’s average DEA for the edges contained in the input tree
normalised by the number of edges in that tree, i.e., 1

|D| ×
∑
d∈D

DEAd
M .

6.7 Conclusion
We presented a framework for error analysis which supports a detailed assessment of which
syntactic factors impact the performance of surface realisation models. We applied it to the
results of two SR shared task campaigns and suggested ways in which it could be used to
improve models and datasets for shallow surface realisation. We showed that dependency edge
accuracy correlates with BLEU which suggests that DEA could be used as an alternative, more
interpretable, automatic evaluation metric for surface realisers. We also showed that other
tree-based metrics do not correlate with system performance.

More generally, we believe that scores such as BLEU and, to some extent, human ratings
do not provide a clear picture of the extent to which SR models can capture the complex
constraints governing word order in the world natural languages. We hope that the metrics and
tools gathered in this evaluation toolkit can help address this issue.

One of the limitations of the current study was that human evaluation scores were collected
while assessing the final sentence in terms of Fluency and Adequacy. For instance, a final
sentence may have low human scores due to errors in morphological inflection only. For future
research, it is worth collecting human judgments focusing on word order evaluation only and
then correlating them with metrics presented in this chapter. Moreover, languages for which
human scores were made available, were also limited, and future work should definitely explore
to collect judgments for those languages with missing human scores.

83

Chapter 6. Evaluating Surface Realisers

84

7

Evaluating Natural Language
Generation Systems

Contents
7.1 Introduction . 85
7.2 Context and Motivation . 86
7.3 Experimental Setup . 87

7.3.1 Data . 87
7.3.2 Design . 87
7.3.3 Ensuring Quality . 88
7.3.4 Correlations . 88

7.4 Correlation Analysis Results . 88
7.5 Conclusion . 89

7.1 Introduction
In the previous chapter, we presented an evaluation framework which was specifically tailored
to sentence-level evaluation. In this chapter, we focus on the relationship between sentence-level
and system-level evaluation as a means to meta-evaluate automatic metrics.

Validity of developed automated methods to assess texts is traditionally measured by their
correlations with human ratings. Metrics can be calculated for individual texts as well as for
system outputs as a whole. Depending on the setup, one can carry out a meta-evaluation study
either at the sentence level by correlating automatic and human scores for each sentence, or at
the system level, by correlating ratings (based on automatic metrics and on human judgments)
of all systems participating in a task.

This chapter discusses two existing approaches to the correlation analysis between automatic
evaluation metrics and human scores in the area of NLG. Our experiments show that depending
on the usage of a system- or sentence-level correlation analysis, correlation results between
automatic scores and human judgments are inconsistent.

This chapter is based on the following reports:

• Shimorina, A. (2018). Human vs automatic metrics: on the importance of correlation
design. Peer-reviewed, non-archival, presented at the Widening NLP Workshop 2018 at
NAACL, arXiv: 1805.11474

85

Chapter 7. Evaluating Natural Language Generation Systems

• Shimorina, A., Gardent, C., Narayan, S., and Perez-Beltrachini, L. (2018). WebNLG
Challenge: Human Evaluation Results. Technical report, Loria & Inria Grand Est

For reproducibility, the scripts and data are available in this repository: https://gitlab.
com/webnlg/webnlg-human-evaluation.

7.2 Context and Motivation
In the machine translation community, the practice to compare system- and sentence-level cor-
relations between automatic and human metrics is well established. From 2008 on, yearly
shared tasks have included analyses of metric consistency both on the system- and sentence-
level (Callison-Burch et al., 2008, 2009). System-level analysis is motivated by the fact that
automatic evaluation metrics such as bleu (Papineni et al., 2002), meteor (Denkowski and
Lavie, 2014), ter (Snover et al., 2006) were initially created to account for the evaluation of
whole systems (i.e. they are corpus-based metrics). For example, while computing bleu, the
brevity penalty is calculated over the whole corpus rather than sentence by sentence; thus out-
puts are less punished at the sentence level. On the other hand, correlation analysis at the
sentence level is motivated by the need to gauge the quality of individual sentences and more
generally by the need to have a more fine-grained analysis of the results produced (Kulesza and
Shieber, 2004). The common finding in MT is that automatic metrics correlate well with human
judgments at the system level but much less so at the sentence level. This in turn prompted the
search for alternative automatic metrics which would correlate well with human judgments at
the sentence level.

In NLG, there is a lack of such comparative studies. Traditional NLG evaluations and
challenges (Reiter and Belz (2009); Gatt and Belz (2010), among others) used only system-
level comparisons and reported low to strong correlations depending on the automatic metric
used. Reiter and Belz (2009, p. 546) explicitly wrote that they did not compute correlations on
individual texts because bleu-type metrics “are not intended to be meaningful for individual
sentences”.

Nonetheless, when researchers have one or few systems to evaluate, they resort to sentence-
level correlation analysis: e.g., reports of Stent et al. (2005) for paraphrasing, Cahill (2009) for
surface realisation, Elliott and Keller (2014) for image caption generation. They usually report
low to moderate correlations. In the recent survey on the state of the art in NLG, Gatt and
Krahmer (2018) made a comparison of various validation studies, concluding that these studies
yielded inconsistent results. However, their survey does not mention that the underlying design
of those studies can be different (some of the mentioned studies were system-based, others were
sentence-based).

Some observations of the difference between results depending on the correlation evaluation
design were made by Novikova et al. (2017a) but they only reported sentence-level correlation
results because they also have few systems in their study. Focusing on bleu only, Reiter (2018)
surveyed several NLG validation studies and concluded that bleu gives poor correlations with
human judgments both on the system and sentence level in NLG. Judging from the supple-
mentary material, the structured review of bleu is based on 6 NLG papers, which reported 19
correlation coefficients, all human evaluations mixed: 6 of them were calculated on the sentence
level and 13 on the system level. However, no paper in the survey reported both system- and
sentence-level correlations.

In sum, in NLG, researchers tend to report a single type of correlation analysis rather than
two. For instance, in recent NLG shared tasks, organisers either reported weak sentence-level

86

https://gitlab.com/webnlg/webnlg-human-evaluation
https://gitlab.com/webnlg/webnlg-human-evaluation

7.3. Experimental Setup

correlations (Dušek et al., 2020) or strong system-level correlations (Mille et al., 2018a, 2019).
In this study, we hope to raise awareness of different design in correlation analysis for NLG

evaluation. We present both a system- and a sentence-level correlation analysis on the same
NLG data. We show that the results are similar to those obtained for MT systems and we
conclude with some recommendations concerning the evaluation of NLG systems.

Terminology note. Strictly speaking, sentence-level analysis should be called text-level anal-
ysis in some NLG contexts, since references in NLG corpora can consist of several sentences,
as in WebNLG discussed below. Despite that, we stick to the MT tradition and use the term
sentence-level correlation in this chapter.

7.3 Experimental Setup

7.3.1 Data

We used the data issued from the WebNLG Challenge (Gardent et al., 2017b) for our experi-
ments. The WebNLG dataset maps data to text, where a data input is a set of triples extracted
from DBpedia, and a text is a verbalisation of those triples (Chapters 3 and 4). We sampled
223 data inputs from WebNLG and used the outputs of nine different NLG systems which
participated in the WebNLG Challenge30.

The data inputs were chosen based on different characteristics of the WebNLG corpus: how
many RDF triples were in data units (size from 1 to 5), and what the DBpedia category (Build-
ing, City, Artist, etc.) was. A sample for each system comprised texts from each category (15
texts); in each category all triple set sizes were covered (5 sizes), and finally we extracted 3
texts per category and size. One should note though that, in such a way, our sample should
have had 225 (i.e. 15 ∗ 5 ∗ 3) texts; however, the count was reduced to 223, as one category
(ComicsCharacter) had few data units for a particular size.

Automatic evaluation results (i.e., meteor, ter, bleu-4 scores) were calculated for each
NLG system both at the system and at the sentence level, and each generated sentence was
compared against three references on average.

7.3.2 Design

In total, we evaluated 2230 texts (9 system outputs and gold references) by collecting three
judgments per text. Our participants came from English-speaking countries. They were shown
data (a set of RDF triples) and a system output (a text), and were asked to answer three
questions:

• Does the text correctly represent the meaning in the data? (1 - Incorrectly, 2 - Medium, 3
- Correctly)

• Rate the grammar and the spelling of the text: Is the text grammatical (no spelling or
grammatical errors)? (1 - Ungrammatical, 2 - Medium, 3 - Grammatical)

• Rate the fluency of the text: Does the text sound fluent and natural? (1 - Not fluent, 2 -
Medium, 3 - Fluent)

30https://webnlg-challenge.loria.fr/challenge_2017#participant-submissions

87

https://webnlg-challenge.loria.fr/challenge_2017#participant-submissions

Chapter 7. Evaluating Natural Language Generation Systems

The three questions with a three-point Likert scale rate Semantic adequacy, Grammaticality,
and Fluency respectively. One text with its corresponding data entry was shown per page. Each
participant had a restriction to give only 30 answers per task. Texts were distributed by five
separate tasks, which included outputs produced for the same size of data. We also ensured that
each participant evaluated an equal number of texts per team, if possible.

Some rule-based system outputs were empty for a particular data unit, so they were not
presented for human evaluation. The lowest score “1” was attributed to those outputs for all
assessed parameters.

We collected three judgments per text, and then they were averaged.

7.3.3 Ensuring Quality

We use CrowdFlower31 to collect human judgments. Apart from using obvious controlling tech-
niques such as the time a contributor spends on a page, restricting a crowdworker to give a
limited number of answers per task, we applied several checks to identify if there are untrust-
worthy workers (“spammers”) or not. First, given a sufficient number of answers (say, more than
ten), we eliminated contributors whose judgments have always the same pattern for all texts,
for instance, “2-3-3” scores. Secondly, we made use of the mace tool (Hovy et al., 2013) to iden-
tify unreliable crowdworkers. mace allows to detect less trusted annotators in an unsupervised
fashion by comparing the probability distributions of answers across annotators. Annotator
reliability was calculated independently in three variables (Semantic adequacy, Grammaticality,
and Fluency). Based on low ratings, we manually evaluated and eliminated spammers, and
afterwards launched another round of collecting judgments to cover missing values. We did not
trust mace blindly, rather it was used as an indicator for examining a potentially bad worker.
There were cases when a participant demonstrated a high reliability while assessed in one vari-
able (Fluency), whereas in another variable (Grammaticality) the participant’s reliability was
low. Those participants were usually kept after examination. In such a way, we did not create
a uniform distribution of answers, and tried to preserve a variety in human judgments.

7.3.4 Correlations

To perform correlation analysis both at system and sentence levels, we used Spearman’s corre-
lation coefficient. To prevent a possible bias, we excluded human references from the analysis as
their automatic scores are equal to 1.0 (bleu, meteor) and 0.0 (ter). Thus, for system-level
analysis, we have nine data points to build a regression line.

7.4 Correlation Analysis Results

Figure 7.1 shows the results. We are focusing here mostly on the correlation between human and
automatic metrics as delineated by the black square in Figure 7.1. At the system level (Figure
7.1a), the only statistically significant correlation (p < .001) is between meteor and semantic
adequacy. Similar findings for meteor were reported in the MT community (Callison-Burch
et al., 2009) and in the image caption generation domain (Bernardi et al., 2017). We also found a
strong correlation between ter and bleu, and between grammaticality and fluency judgments.

At the sentence level, on the other hand (Figure 7.1b), all correlations are statistically
significant (p < .001). The highest correlation between human and automatic metrics is between

31https://www.crowdflower.com/, now the company is called Appen, and before it was called FigureEight

88

https://www.crowdflower.com/

7.5. Conclusion

(a) Spearman’s ρ at the system level. Crossed
squares indicate that statistical significance was
not reached (α = .05). Human vs. automatic met-
rics are in the black square.

(b) Spearman’s ρ at the sentence level. All corre-
lations are statistically significant (α = .001). Hu-
man vs. automatic metrics are in the black square.

Figure 7.1: System- and sentence-level correlation analysis.

meteor and semantic adequacy (ρ = 0.73). For other human/automatic correlation results,
the correlation is moderate, ranging from ρ = 0.43 to ρ = 0.59 in absolute numbers. Automatic
metrics show strong correlations with each other (ρ ≥ 0.78).

In sum, there is a strong discrepancy between system- and sentence-level correlation results.
Significance was not reached for most of the system-level correlations. At the sentence level, all
correlations are significant, however the correlation between automatic metrics and human scores
remains relatively low thereby confirming the findings of the MT community. At the sentence
level, statistical significance is easier to achieve, since there are more data points than for the
system-level analysis. One possibility to have statistically significant results at the system-level
would be to use one-tailed test (instead of two-tailed), as it was done by Reiter and Belz (2009).
However, that test is considered less statistically robust.

7.5 Conclusion

We argued that in NLG, as in MT, the specific type (system- vs. sentence-level) of correlation
analysis chosen to compare human and automatic metrics strongly impacts the outcome. While
system-level correlation analyses have repeatedly been used in NLG challenges, sentence-level
correlation is more relevant as it better supports error analysis. Based on our experiment, we
showed that, in NLG as in MT, the sentence-level correlation between human and automatic
metrics is low which in turn suggests the need for new automatic evaluation metrics for NLG
that would better correlate with human scores at the sentence level. We hope that our findings
may be helpful to shed more light on the relationship between automatic and human judgments
in NLG and to facilitate further comparisons of validation studies with different correlation
design.

Our analysis was limited to three automatic metrics, all of them based on word overlap.
Recently, a lot of new automatic learned metrics have appeared, mainly based on contextual
embeddings such as BERT: MoverScore (Zhao et al., 2019), BERTScore (Zhang et al.,

89

Chapter 7. Evaluating Natural Language Generation Systems

2020), Bleurt (Sellam et al., 2020), among others. Those may be equally integrated in future
NLG validation studies.

Further research on new automatic evaluation metrics for NLG may focus on developing
metrics targeted for a specific criterion of human evaluation rather than trying accounting for
all aspects at once. I.e., a specific metric measuring fluency (using pretrained language models,
for instance) or specific metrics for semantic adequacy, etc. The new metrics can also be tailored
to a particular NLG input. As we have seen in Chapter 6, dependency trees may benefit from
direct exploration of tree parameters. For RDF triples, it would be interesting to see, for
example, if a subject and an object of the relation are correctly verbalised as agent and patient
respectively, that is they were not swapped. Identifying such cues and also cases with worst
performance would enable more meaningful feedback for system developers.

90

8

Conclusion

The research presented in this thesis has been concerned with some challenges posed in the field
of natural language generation. Several areas have drawn our attention: how to perform data
collection, how to model NLG systems, and how to evaluate them.

Regarding data collection, we considered how to derive a Russian version of the existing
English dataset for data-to-text generation. We showed that translation methods yield signifi-
cant errors in rendering named entities. Several post-editing techniques were studied to correct
falsely translated named entities. This methodology enables to identify the most prominent
obstacles in creating new data for generation via machine translation.

As for NLG system development, first we dealt with the issue of handling rare items in data-
driven models. We investigated the impact of copying and delexicalisation on standard splits
into training, development, and test and on more challenging splits where rare items are never
seen during training. Our experiments show that delexicalisation performs better than copying
and that copying underperforms for words not seen in the training data. The data partitioning
also strongly impacts how rare items are handled by models.

Next, we concentrated on surface realisation, a specific component of NLG systems. We
proposed a modular approach for generating sentences from dependency trees, validating it
on more than a dozen of different languages. We showed experimentally that word order can
be learned without taking into account lexical information. Our model evaluation, based on
dependency relations, highlighted cases where the non-consistent head-directionality patterns
negatively impact results.

As far as evaluation is concerned, we presented a task-specific framework for error analysis,
focused on word order for shallow surface realisation. The framework was applied to the outputs
of 174 systems, what permitted us to demonstrate some global results about the state of the
art. Our analysis also shows that system performance does not depend on tree characteristics
despite being a natural basis for error classification.

Finally, we validated automatic metrics for generation against human judgments. We empha-
sized that differences in evaluation design—using system-level or sentence-level comparisons—
strongly affect results.

Future Directions

As with every research work, there are a lot of open questions and perspectives to explore.
While translating datasets for data-to-text generation in Chapter 3, we witnessed that most

errors were related to named entities. A special mechanism, focused on their translation, may

91

Chapter 8. Conclusion

be helpful to ensure better quality. One may think of the use of cross-lingual word embeddings
or the extraction of entity mapping from multilingual knowledge bases. In these cases, a neural
MT model would be enhanced with an additional representation of entities in two languages.
Such setup would also allow to translate datasets not only to one target language, but also to
multiple languages, hopefully, with better accuracy.

The methods for treating rare items, presented in Chapter 4, have a restriction that they
work for languages with no or few inflection changes. The extension of these methods to other
languages would need to explore other strategies, such as using subword representations. More-
over, it would be particularly interesting to see how named entities can be differently realised
in generation systems. To this end, a specific module targeted referring expression generation
would be useful. Overall, we should strive for methods and approaches beyond English in order
to test them in a multilingual setting.

The surface realiser, discussed in Chapter 5, was developed as a stand-alone component. It
would be interesting to integrate it into NLG systems which follow the traditional NLG pipeline
and to test if an explicit integration of the surface realisation step makes the generation process
more robust for NLG applications. Intuitively, using dependency trees as an intermediate rep-
resentation might allow for better decisions on the microplanning level and for more accurate
generation of data. Moreover, as discussed in Section 2.1.2, there is a multitude of other for-
malisms representing syntax and/or semantics. An explicit incorporation of such representations
in modern models may be beneficial to increase models’ awareness of language properties.

Regarding NLG evaluation, many issues remain to be solved, for example, the need for better
automatic evaluation on the sentence level; more interpretable approaches to evaluation; evalu-
ation methods targeting a particular application; applying evaluation results to drive decisions
for creation of better models.

92

A

Appendix A

Word Order Evaluation
Definitions

• A dependency relation is head-initial (HI) if its head precedes the dependent in the linear
order of a sentence. E.g., walkhead slowlydep.

• A dependency relation is head-final (HF) if its head follows the dependent. E.g., andep

applehead.

Column Name Explanation

• count: number of deprel occurrences in the test data;

• found-m: number of found deprels in the model prediction;

• %: found-m in percentage;

• HI: a count of how many relations are head-initial in the test data;

• HI%: HI in percentage;

• HI-m: a count of matches between the model prediction and HI;

• HI-m%: HI-m in percentage w.r.t. HI=100%;

• HF: a count of how many relations are head-final in the test data;

• HF%: HF in percentage;

• HF-m: a count of matches between the model prediction and HF;

• HF-m%: HF-m in percentage w.r.t. HF=100%.

For each language, two tables are supplied: with exact match (head and dependent are
in the correct order, and the distance between them is the same in gold and prediction) and
approximate match (head and dependent are in the correct order but there is a one-token
difference between gold and prediction).

93

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

nmod 6184 2629 42.5 5866 94.9 2501 42.6 318 5.1 128 40.3
case 4320 1718 39.8 31 0.7 3 9.7 4289 99.3 1715 40
amod 2427 1272 52.4 2425 99.9 1272 52.5 2 0.1 0 0
punct 2046 539 26.3 1621 79.2 450 27.8 425 20.8 89 20.9
cc 1938 797 41.1 477 24.6 105 22 1461 75.4 692 47.4
obj 1923 667 34.7 1919 99.8 667 34.8 4 0.2 0 0
nsubj 1568 704 44.9 1021 65.1 544 53.3 547 34.9 160 29.3
obl 1389 329 23.7 1300 93.6 310 23.8 89 6.4 19 21.3
conj 1219 273 22.4 1219 100 273 22.4 0 0 0 0
mark 764 256 33.5 17 2.2 0 0 747 97.8 256 34.3
acl 555 175 31.5 551 99.3 175 31.8 4 0.7 0 0
parataxis 518 320 61.8 517 99.8 320 61.9 1 0.2 0 0
nummod 378 184 48.7 378 100 184 48.7 0 0 0 0
advmod 319 94 29.5 144 45.1 26 18.1 175 54.9 68 38.9
ccomp 318 93 29.2 318 100 93 29.2 0 0 0 0
advcl 196 24 12.2 165 84.2 23 13.9 31 15.8 1 3.2
det 195 70 35.9 43 22.1 1 2.3 152 77.9 69 45.4
iobj 186 51 27.4 183 98.4 51 27.9 3 1.6 0 0
xcomp 167 40 24 166 99.4 40 24.1 1 0.6 0 0
aux 143 82 57.3 7 4.9 0 0 136 95.1 82 60.3
advmod:emph 127 14 11 34 26.8 4 11.8 93 73.2 10 10.8
dep 101 48 47.5 101 100 48 47.5 0 0 0 0
cop 96 16 16.7 1 1 0 0 95 99 16 16.8
fixed 84 39 46.4 84 100 39 46.4 0 0 0 0
appos 81 16 19.8 68 84 15 22.1 13 16 1 7.7
nsubj:pass 73 38 52.1 52 71.2 33 63.5 21 28.8 5 23.8
csubj 39 7 17.9 39 100 7 17.9 0 0 0 0
flat:foreign 29 12 41.4 2 6.9 0 0 27 93.1 12 44.4
aux:pass 13 7 53.8 0 0 0 0 13 100 7 53.8
total 27396 10514 38.4 18749 68.4 7184 38.3 8647 31.6 3330 38.5

Table A.1: Arabic. Exact match.

94

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

nmod 6184 3278 53 5866 94.9 3133 53.4 318 5.1 145 45.6
case 4320 1972 45.6 31 0.7 8 25.8 4289 99.3 1964 45.8
amod 2427 1422 58.6 2425 99.9 1422 58.6 2 0.1 0 0
punct 2046 726 35.5 1621 79.2 613 37.8 425 20.8 113 26.6
cc 1938 943 48.7 477 24.6 135 28.3 1461 75.4 808 55.3
obj 1923 920 47.8 1919 99.8 920 47.9 4 0.2 0 0
nsubj 1568 820 52.3 1021 65.1 606 59.4 547 34.9 214 39.1
obl 1389 494 35.6 1300 93.6 472 36.3 89 6.4 22 24.7
conj 1219 408 33.5 1219 100 408 33.5 0 0 0 0
mark 764 330 43.2 17 2.2 0 0 747 97.8 330 44.2
acl 555 226 40.7 551 99.3 226 41 4 0.7 0 0
parataxis 518 339 65.4 517 99.8 339 65.6 1 0.2 0 0
nummod 378 224 59.3 378 100 224 59.3 0 0 0 0
advmod 319 104 32.6 144 45.1 36 25 175 54.9 68 38.9
ccomp 318 133 41.8 318 100 133 41.8 0 0 0 0
advcl 196 46 23.5 165 84.2 45 27.3 31 15.8 1 3.2
det 195 73 37.4 43 22.1 2 4.7 152 77.9 71 46.7
iobj 186 73 39.2 183 98.4 73 39.9 3 1.6 0 0
xcomp 167 55 32.9 166 99.4 55 33.1 1 0.6 0 0
aux 143 82 57.3 7 4.9 0 0 136 95.1 82 60.3
advmod:emph 127 18 14.2 34 26.8 7 20.6 93 73.2 11 11.8
dep 101 51 50.5 101 100 51 50.5 0 0 0 0
cop 96 22 22.9 1 1 0 0 95 99 22 23.2
fixed 84 41 48.8 84 100 41 48.8 0 0 0 0
appos 81 24 29.6 68 84 23 33.8 13 16 1 7.7
nsubj:pass 73 41 56.2 52 71.2 33 63.5 21 28.8 8 38.1
csubj 39 15 38.5 39 100 15 38.5 0 0 0 0
flat:foreign 29 13 44.8 2 6.9 0 0 27 93.1 13 48.1
aux:pass 13 7 53.8 0 0 0 0 13 100 7 53.8
total 27396 12900 47.1 18749 68.4 9020 48.1 8647 31.6 3880 44.9

Table A.2: Arabic. Approximate match.

95

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 24445 13324 54.5 13959 57.1 7541 54 10486 42.9 5783 55.1
nmod 17279 12938 74.9 15995 92.6 12228 76.4 1284 7.4 710 55.3
amod 17271 14351 83.1 1251 7.2 403 32.2 16020 92.8 13948 87.1
case 15839 13705 86.5 6 0 0 0 15833 100 13705 86.6
nsubj 9820 4822 49.1 3072 31.3 1306 42.5 6748 68.7 3516 52.1
obl 9728 3925 40.3 5194 53.4 2242 43.2 4534 46.6 1683 37.1
obj 9139 4673 51.1 6343 69.4 3704 58.4 2796 30.6 969 34.7
advmod 7117 3439 48.3 1587 22.3 346 21.8 5530 77.7 3093 55.9
conj 7099 3806 53.6 7099 100 3806 53.6 0 0 0 0
cc 5854 3755 64.1 190 3.2 52 27.4 5664 96.8 3703 65.4
det 3328 2859 85.9 81 2.4 20 24.7 3247 97.6 2839 87.4
mark 3318 1835 55.3 84 2.5 66 78.6 3234 97.5 1769 54.7
advmod:emph 2544 1832 72 28 1.1 2 7.1 2516 98.9 1830 72.7
cop 2508 1427 56.9 394 15.7 201 51 2114 84.3 1226 58
acl 2492 1168 46.9 2470 99.1 1166 47.2 22 0.9 2 9.1
xcomp 2132 1053 49.4 1971 92.4 1019 51.7 161 7.6 34 21.1
nummod 2051 1125 54.9 889 43.3 399 44.9 1162 56.7 726 62.5
expl:pv 1901 1051 55.3 357 18.8 232 65 1544 81.2 819 53
aux 1749 925 52.9 219 12.5 137 62.6 1530 87.5 788 51.5
dep 1515 784 51.7 1368 90.3 762 55.7 147 9.7 22 15
flat 1468 1234 84.1 1468 100 1234 84.1 0 0 0 0
advcl 1274 365 28.6 790 62 240 30.4 484 38 125 25.8
ccomp 1152 464 40.3 940 81.6 393 41.8 212 18.4 71 33.5
iobj 961 406 42.2 576 59.9 263 45.7 385 40.1 143 37.1
nsubj:pass 856 388 45.3 347 40.5 157 45.2 509 59.5 231 45.4
appos 807 385 47.7 805 99.8 385 47.8 2 0.2 0 0
nummod:gov 767 640 83.4 17 2.2 2 11.8 750 97.8 638 85.1
aux:pass 668 362 54.2 12 1.8 0 0 656 98.2 362 55.2
csubj 607 276 45.5 548 90.3 264 48.2 59 9.7 12 20.3
expl:pass 535 289 54 83 15.5 44 53 452 84.5 245 54.2
fixed 494 460 93.1 494 100 460 93.1 0 0 0 0
flat:foreign 315 127 40.3 63 20 19 30.2 252 80 108 42.9
parataxis 216 48 22.2 154 71.3 35 22.7 62 28.7 13 21
compound 201 133 66.2 153 76.1 99 64.7 48 23.9 34 70.8
det:numgov 116 102 87.9 4 3.4 0 0 112 96.6 102 91.1
det:nummod 70 50 71.4 5 7.1 2 40 65 92.9 48 73.8
csubj:pass 49 26 53.1 45 91.8 26 57.8 4 8.2 0 0
discourse 45 14 31.1 9 20 3 33.3 36 80 11 30.6
vocative 10 4 40 4 40 1 25 6 60 3 50
total 157740 98570 62.5 69074 43.8 39259 56.8 88666 56.2 59311 66.9

Table A.3: Czech. Exact match.

96

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 24445 16909 69.2 13959 57.1 9688 69.4 10486 42.9 7221 68.9
nmod 17279 14874 86.1 15995 92.6 14072 88 1284 7.4 802 62.5
amod 17271 15056 87.2 1251 7.2 506 40.4 16020 92.8 14550 90.8
case 15839 14745 93.1 6 0 0 0 15833 100 14745 93.1
nsubj 9820 6165 62.8 3072 31.3 1596 52 6748 68.7 4569 67.7
obl 9728 5226 53.7 5194 53.4 2965 57.1 4534 46.6 2261 49.9
obj 9139 5810 63.6 6343 69.4 4520 71.3 2796 30.6 1290 46.1
advmod 7117 4132 58.1 1587 22.3 419 26.4 5530 77.7 3713 67.1
conj 7099 4826 68 7099 100 4826 68 0 0 0 0
cc 5854 4467 76.3 190 3.2 67 35.3 5664 96.8 4400 77.7
det 3328 3009 90.4 81 2.4 21 25.9 3247 97.6 2988 92
mark 3318 2317 69.8 84 2.5 66 78.6 3234 97.5 2251 69.6
advmod:emph 2544 2064 81.1 28 1.1 4 14.3 2516 98.9 2060 81.9
cop 2508 1857 74 394 15.7 231 58.6 2114 84.3 1626 76.9
acl 2492 1536 61.6 2470 99.1 1532 62 22 0.9 4 18.2
xcomp 2132 1412 66.2 1971 92.4 1368 69.4 161 7.6 44 27.3
nummod 2051 1303 63.5 889 43.3 461 51.9 1162 56.7 842 72.5
expl:pv 1901 1297 68.2 357 18.8 234 65.5 1544 81.2 1063 68.8
aux 1749 1216 69.5 219 12.5 141 64.4 1530 87.5 1075 70.3
dep 1515 999 65.9 1368 90.3 962 70.3 147 9.7 37 25.2
flat 1468 1339 91.2 1468 100 1339 91.2 0 0 0 0
advcl 1274 583 45.8 790 62 397 50.3 484 38 186 38.4
ccomp 1152 633 54.9 940 81.6 533 56.7 212 18.4 100 47.2
iobj 961 548 57 576 59.9 352 61.1 385 40.1 196 50.9
nsubj:pass 856 496 57.9 347 40.5 188 54.2 509 59.5 308 60.5
appos 807 537 66.5 805 99.8 537 66.7 2 0.2 0 0
nummod:gov 767 684 89.2 17 2.2 4 23.5 750 97.8 680 90.7
aux:pass 668 475 71.1 12 1.8 0 0 656 98.2 475 72.4
csubj 607 368 60.6 548 90.3 352 64.2 59 9.7 16 27.1
expl:pass 535 374 69.9 83 15.5 44 53 452 84.5 330 73
fixed 494 462 93.5 494 100 462 93.5 0 0 0 0
flat:foreign 315 155 49.2 63 20 26 41.3 252 80 129 51.2
parataxis 216 82 38 154 71.3 64 41.6 62 28.7 18 29
compound 201 140 69.7 153 76.1 106 69.3 48 23.9 34 70.8
det:numgov 116 105 90.5 4 3.4 0 0 112 96.6 105 93.8
det:nummod 70 54 77.1 5 7.1 2 40 65 92.9 52 80
csubj:pass 49 29 59.2 45 91.8 28 62.2 4 8.2 1 25
discourse 45 25 55.6 9 20 5 55.6 36 80 20 55.6
vocative 10 5 50 4 40 2 50 6 60 3 50
total 157740 116314 73.7 69074 43.8 48120 69.7 88666 56.2 68194 76.9

Table A.4: Czech. Approximate match.

97

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 3031 1530 50.5 2187 72.2 1205 55.1 844 27.8 325 38.5
case 1961 1429 72.9 78 4 54 69.2 1883 96 1375 73
nsubj 1951 1383 70.9 87 4.5 50 57.5 1864 95.5 1333 71.5
det 1817 1408 77.5 4 0.2 0 0 1813 99.8 1408 77.7
advmod 1262 613 48.6 305 24.2 108 35.4 957 75.8 505 52.8
obj 1169 892 76.3 1135 97.1 882 77.7 34 2.9 10 29.4
amod 1162 820 70.6 36 3.1 10 27.8 1126 96.9 810 71.9
compound 1147 720 62.8 22 1.9 5 22.7 1125 98.1 715 63.6
obl 1044 555 53.2 963 92.2 533 55.3 81 7.8 22 27.2
conj 856 370 43.2 846 98.8 366 43.3 10 1.2 4 40
aux 809 560 69.2 2 0.2 0 0 807 99.8 560 69.4
mark 769 569 74 0 0 0 0 769 100 569 74
nmod 764 471 61.6 757 99.1 471 62.2 7 0.9 0 0
cc 747 499 66.8 0 0 0 0 747 100 499 66.8
cop 554 396 71.5 36 6.5 20 55.6 518 93.5 376 72.6
nmod:poss 384 313 81.5 0 0 0 0 384 100 313 81.5
advcl 367 163 44.4 285 77.7 133 46.7 82 22.3 30 36.6
xcomp 343 248 72.3 343 100 248 72.3 0 0 0 0
nummod 277 151 54.5 73 26.4 34 46.6 204 73.6 117 57.4
list 251 41 16.3 249 99.2 41 16.5 2 0.8 0 0
flat 247 179 72.5 247 100 179 72.5 0 0 0 0
ccomp 241 115 47.7 233 96.7 115 49.4 8 3.3 0 0
acl:relcl 212 105 49.5 212 100 105 49.5 0 0 0 0
parataxis 199 57 28.6 188 94.5 55 29.3 11 5.5 2 18.2
appos 186 64 34.4 178 95.7 62 34.8 8 4.3 2 25
acl 173 92 53.2 172 99.4 92 53.5 1 0.6 0 0
discourse 122 66 54.1 39 32 16 41 83 68 50 60.2
aux:pass 114 79 69.3 4 3.5 1 25 110 96.5 78 70.9
nsubj:pass 100 61 61 4 4 0 0 96 96 61 63.5
compound:prt 87 61 70.1 87 100 61 70.1 0 0 0 0
obl:tmod 66 28 42.4 60 90.9 28 46.7 6 9.1 0 0
expl 64 39 60.9 8 12.5 0 0 56 87.5 39 69.6
fixed 62 47 75.8 62 100 47 75.8 0 0 0 0
obl:npmod 48 22 45.8 14 29.2 4 28.6 34 70.8 18 52.9
iobj 40 37 92.5 40 100 37 92.5 0 0 0 0
nmod:tmod 37 23 62.2 37 100 23 62.2 0 0 0 0
csubj 23 5 21.7 16 69.6 3 18.8 7 30.4 2 28.6
det:predet 22 18 81.8 0 0 0 0 22 100 18 81.8
vocative 20 14 70 11 55 10 90.9 9 45 4 44.4
nmod:npmod 13 3 23.1 9 69.2 2 22.2 4 30.8 1 25
cc:preconj 9 1 11.1 1 11.1 0 0 8 88.9 1 12.5
flat:foreign 7 0 0 3 42.9 0 0 4 57.1 0 0
dep 1 0 0 0 0 0 0 1 100 0 0
csubj:pass 1 0 0 0 0 0 0 1 100 0 0
total 22759 14247 62.6 9033 39.7 5000 55.4 13726 60.3 9247 67.4

Table A.5: English. Exact match.

98

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 3031 1962 64.7 2187 72.2 1524 69.7 844 27.8 438 51.9
case 1961 1634 83.3 78 4 57 73.1 1883 96 1577 83.7
nsubj 1951 1667 85.4 87 4.5 58 66.7 1864 95.5 1609 86.3
det 1817 1537 84.6 4 0.2 0 0 1813 99.8 1537 84.8
advmod 1262 725 57.4 305 24.2 130 42.6 957 75.8 595 62.2
obj 1169 986 84.3 1135 97.1 975 85.9 34 2.9 11 32.4
amod 1162 880 75.7 36 3.1 10 27.8 1126 96.9 870 77.3
compound 1147 820 71.5 22 1.9 5 22.7 1125 98.1 815 72.4
obl 1044 698 66.9 963 92.2 667 69.3 81 7.8 31 38.3
conj 856 504 58.9 846 98.8 499 59 10 1.2 5 50
aux 809 714 88.3 2 0.2 0 0 807 99.8 714 88.5
mark 769 623 81 0 0 0 0 769 100 623 81
nmod 764 583 76.3 757 99.1 583 77 7 0.9 0 0
cc 747 597 79.9 0 0 0 0 747 100 597 79.9
cop 554 476 85.9 36 6.5 21 58.3 518 93.5 455 87.8
nmod:poss 384 336 87.5 0 0 0 0 384 100 336 87.5
advcl 367 211 57.5 285 77.7 170 59.6 82 22.3 41 50
xcomp 343 290 84.5 343 100 290 84.5 0 0 0 0
nummod 277 173 62.5 73 26.4 36 49.3 204 73.6 137 67.2
list 251 81 32.3 249 99.2 81 32.5 2 0.8 0 0
flat 247 203 82.2 247 100 203 82.2 0 0 0 0
ccomp 241 162 67.2 233 96.7 161 69.1 8 3.3 1 12.5
acl:relcl 212 135 63.7 212 100 135 63.7 0 0 0 0
parataxis 199 101 50.8 188 94.5 98 52.1 11 5.5 3 27.3
appos 186 85 45.7 178 95.7 83 46.6 8 4.3 2 25
acl 173 112 64.7 172 99.4 112 65.1 1 0.6 0 0
discourse 122 82 67.2 39 32 19 48.7 83 68 63 75.9
aux:pass 114 95 83.3 4 3.5 1 25 110 96.5 94 85.5
nsubj:pass 100 79 79 4 4 1 25 96 96 78 81.2
compound:prt 87 65 74.7 87 100 65 74.7 0 0 0 0
obl:tmod 66 37 56.1 60 90.9 36 60 6 9.1 1 16.7
expl 64 47 73.4 8 12.5 0 0 56 87.5 47 83.9
fixed 62 49 79 62 100 49 79 0 0 0 0
obl:npmod 48 24 50 14 29.2 5 35.7 34 70.8 19 55.9
iobj 40 37 92.5 40 100 37 92.5 0 0 0 0
nmod:tmod 37 31 83.8 37 100 31 83.8 0 0 0 0
csubj 23 6 26.1 16 69.6 4 25 7 30.4 2 28.6
det:predet 22 20 90.9 0 0 0 0 22 100 20 90.9
vocative 20 17 85 11 55 11 100 9 45 6 66.7
nmod:npmod 13 4 30.8 9 69.2 3 33.3 4 30.8 1 25
cc:preconj 9 2 22.2 1 11.1 0 0 8 88.9 2 25
flat:foreign 7 0 0 3 42.9 0 0 4 57.1 0 0
dep 1 0 0 0 0 0 0 1 100 0 0
csubj:pass 1 0 0 0 0 0 0 1 100 0 0
total 22759 16890 74.2 9033 39.7 6160 68.2 13726 60.3 10730 78.2

Table A.6: English. Approximate match.

99

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

case 7228 5091 70.4 118 1.6 36 30.5 7110 98.4 5055 71.1
det 7135 5183 72.6 103 1.4 53 51.5 7032 98.6 5130 73
punct 6306 2560 40.6 3594 57 1512 42.1 2712 43 1048 38.6
nmod 3586 2014 56.2 3495 97.5 1990 56.9 91 2.5 24 26.4
obj 3522 1914 54.3 2631 74.7 1371 52.1 891 25.3 543 60.9
nsubj 2875 1591 55.3 481 16.7 188 39.1 2394 83.3 1403 58.6
amod 2821 1222 43.3 2005 71.1 1049 52.3 816 28.9 173 21.2
obl 2434 983 40.4 1781 73.2 749 42.1 653 26.8 234 35.8
advmod 1913 734 38.4 695 36.3 246 35.4 1218 63.7 488 40.1
mark 1865 866 46.4 9 0.5 1 11.1 1856 99.5 865 46.6
conj 1543 550 35.6 1543 100 550 35.6 0 0 0 0
cc 1440 817 56.7 21 1.5 1 4.8 1419 98.5 816 57.5
flat 1433 1010 70.5 1433 100 1010 70.5 0 0 0 0
acl 977 385 39.4 977 100 385 39.4 0 0 0 0
aux 954 620 65 16 1.7 1 6.2 938 98.3 619 66
advcl 797 183 23 684 85.8 164 24 113 14.2 19 16.8
appos 727 315 43.3 721 99.2 315 43.7 6 0.8 0 0
fixed 708 575 81.2 708 100 575 81.2 0 0 0 0
ccomp 585 203 34.7 476 81.4 177 37.2 109 18.6 26 23.9
nummod 578 360 62.3 153 26.5 51 33.3 425 73.5 309 72.7
cop 533 303 56.8 16 3 1 6.2 517 97 302 58.4
xcomp 256 131 51.2 246 96.1 128 52 10 3.9 3 30
compound 234 142 60.7 234 100 142 60.7 0 0 0 0
iobj 164 91 55.5 79 48.2 42 53.2 85 51.8 49 57.6
csubj 98 29 29.6 70 71.4 23 32.9 28 28.6 6 21.4
parataxis 80 22 27.5 41 51.2 10 24.4 39 48.8 12 30.8
expl:pass 47 31 66 0 0 0 0 47 100 31 66
dep 24 6 25 15 62.5 4 26.7 9 37.5 2 22.2
nsubj:pass 5 1 20 3 60 0 0 2 40 1 50
total 50868 27932 54.9 22348 43.9 10774 48.2 28520 56.1 17158 60.2

Table A.7: Spanish. Exact match.

100

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

case 7228 5972 82.6 118 1.6 55 46.6 7110 98.4 5917 83.2
det 7135 5895 82.6 103 1.4 62 60.2 7032 98.6 5833 82.9
punct 6306 3586 56.9 3594 57 2158 60 2712 43 1428 52.7
nmod 3586 2688 75 3495 97.5 2658 76.1 91 2.5 30 33
obj 3522 2467 70 2631 74.7 1865 70.9 891 25.3 602 67.6
nsubj 2875 2046 71.2 481 16.7 240 49.9 2394 83.3 1806 75.4
amod 2821 1381 49 2005 71.1 1194 59.6 816 28.9 187 22.9
obl 2434 1382 56.8 1781 73.2 1049 58.9 653 26.8 333 51
advmod 1913 928 48.5 695 36.3 292 42 1218 63.7 636 52.2
mark 1865 1143 61.3 9 0.5 4 44.4 1856 99.5 1139 61.4
conj 1543 810 52.5 1543 100 810 52.5 0 0 0 0
cc 1440 1022 71 21 1.5 4 19 1419 98.5 1018 71.7
flat 1433 1135 79.2 1433 100 1135 79.2 0 0 0 0
acl 977 569 58.2 977 100 569 58.2 0 0 0 0
aux 954 701 73.5 16 1.7 5 31.2 938 98.3 696 74.2
advcl 797 302 37.9 684 85.8 269 39.3 113 14.2 33 29.2
appos 727 428 58.9 721 99.2 428 59.4 6 0.8 0 0
fixed 708 579 81.8 708 100 579 81.8 0 0 0 0
ccomp 585 307 52.5 476 81.4 261 54.8 109 18.6 46 42.2
nummod 578 383 66.3 153 26.5 67 43.8 425 73.5 316 74.4
cop 533 402 75.4 16 3 1 6.2 517 97 401 77.6
xcomp 256 174 68 246 96.1 171 69.5 10 3.9 3 30
compound 234 159 67.9 234 100 159 67.9 0 0 0 0
iobj 164 103 62.8 79 48.2 50 63.3 85 51.8 53 62.4
csubj 98 42 42.9 70 71.4 31 44.3 28 28.6 11 39.3
parataxis 80 34 42.5 41 51.2 16 39 39 48.8 18 46.2
expl:pass 47 36 76.6 0 0 0 0 47 100 36 76.6
dep 24 10 41.7 15 62.5 8 53.3 9 37.5 2 22.2
nsubj:pass 5 2 40 3 60 1 33.3 2 40 1 50
total 50868 34686 68.2 22348 43.9 14141 63.3 28520 56.1 20545 72

Table A.8: Spanish. Approximate match.

101

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 3015 1422 47.2 1776 58.9 811 45.7 1239 41.1 611 49.3
obl 1759 671 38.1 1036 58.9 404 39 723 41.1 267 36.9
advmod 1514 607 40.1 424 28 121 28.5 1090 72 486 44.6
nsubj 1196 771 64.5 137 11.5 20 14.6 1059 88.5 751 70.9
obj 1179 546 46.3 841 71.3 421 50.1 338 28.7 125 37
conj 1134 437 38.5 1134 100 437 38.5 0 0 0 0
nmod:poss 1028 674 65.6 0 0 0 0 1028 100 674 65.6
amod 933 656 70.3 1 0.1 1 100 932 99.9 655 70.3
cc 910 543 59.7 1 0.1 0 0 909 99.9 543 59.7
cop 580 344 59.3 106 18.3 50 47.2 474 81.7 294 62
aux 559 353 63.1 19 3.4 8 42.1 540 96.6 345 63.9
nsubj:cop 523 262 50.1 132 25.2 52 39.4 391 74.8 210 53.7
nmod 500 181 36.2 356 71.2 159 44.7 144 28.8 22 15.3
mark 428 214 50 0 0 0 0 428 100 214 50
acl 359 180 50.1 50 13.9 9 18 309 86.1 171 55.3
advcl 353 95 26.9 252 71.4 82 32.5 101 28.6 13 12.9
nummod 339 165 48.7 89 26.3 38 42.7 250 73.7 127 50.8
det 307 219 71.3 4 1.3 0 0 303 98.7 219 72.3
flat:name 287 216 75.3 287 100 216 75.3 0 0 0 0
case 267 174 65.2 239 89.5 171 71.5 28 10.5 3 10.7
xcomp 234 143 61.1 220 94 136 61.8 14 6 7 50
ccomp 228 78 34.2 227 99.6 78 34.4 1 0.4 0 0
acl:relcl 208 72 34.6 208 100 72 34.6 0 0 0 0
nmod:gobj 204 126 61.8 0 0 0 0 204 100 126 61.8
xcomp:ds 120 64 53.3 111 92.5 61 55 9 7.5 3 33.3
flat 118 79 66.9 118 100 79 66.9 0 0 0 0
appos 100 34 34 100 100 34 34 0 0 0 0
compound:nn 93 62 66.7 2 2.2 2 100 91 97.8 60 65.9
aux:pass 93 63 67.7 1 1.1 0 0 92 98.9 63 68.5
parataxis 77 18 23.4 76 98.7 18 23.7 1 1.3 0 0
fixed 58 36 62.1 58 100 36 62.1 0 0 0 0
nmod:gsubj 54 25 46.3 0 0 0 0 54 100 25 46.3
cop:own 36 25 69.4 33 91.7 25 75.8 3 8.3 0 0
compound:prt 30 16 53.3 16 53.3 11 68.8 14 46.7 5 35.7
csubj:cop 22 10 45.5 21 95.5 10 47.6 1 4.5 0 0
discourse 19 6 31.6 6 31.6 0 0 13 68.4 6 46.2
cc:preconj 17 6 35.3 0 0 0 0 17 100 6 35.3
compound 11 6 54.5 0 0 0 0 11 100 6 54.5
vocative 10 3 30 3 30 1 33.3 7 70 2 28.6
csubj 2 0 0 1 50 0 0 1 50 0 0
dep 1 0 0 0 0 0 0 1 100 0 0
total 18905 9602 50.8 8085 42.8 3563 44.1 10820 57.2 6039 55.8

Table A.9: Finnish. Exact match.

102

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 3015 1981 65.7 1776 58.9 1178 66.3 1239 41.1 803 64.8
obl 1759 951 54.1 1036 58.9 603 58.2 723 41.1 348 48.1
advmod 1514 797 52.6 424 28 170 40.1 1090 72 627 57.5
nsubj 1196 893 74.7 137 11.5 28 20.4 1059 88.5 865 81.7
obj 1179 712 60.4 841 71.3 555 66 338 28.7 157 46.4
conj 1134 642 56.6 1134 100 642 56.6 0 0 0 0
nmod:poss 1028 764 74.3 0 0 0 0 1028 100 764 74.3
amod 933 713 76.4 1 0.1 1 100 932 99.9 712 76.4
cc 910 682 74.9 1 0.1 0 0 909 99.9 682 75
cop 580 436 75.2 106 18.3 57 53.8 474 81.7 379 80
aux 559 459 82.1 19 3.4 9 47.4 540 96.6 450 83.3
nsubj:cop 523 354 67.7 132 25.2 66 50 391 74.8 288 73.7
nmod 500 241 48.2 356 71.2 213 59.8 144 28.8 28 19.4
mark 428 292 68.2 0 0 0 0 428 100 292 68.2
acl 359 218 60.7 50 13.9 11 22 309 86.1 207 67
advcl 353 166 47 252 71.4 140 55.6 101 28.6 26 25.7
nummod 339 190 56 89 26.3 39 43.8 250 73.7 151 60.4
det 307 249 81.1 4 1.3 1 25 303 98.7 248 81.8
flat:name 287 227 79.1 287 100 227 79.1 0 0 0 0
case 267 186 69.7 239 89.5 181 75.7 28 10.5 5 17.9
xcomp 234 182 77.8 220 94 175 79.5 14 6 7 50
ccomp 228 126 55.3 227 99.6 125 55.1 1 0.4 1 100
acl:relcl 208 114 54.8 208 100 114 54.8 0 0 0 0
nmod:gobj 204 144 70.6 0 0 0 0 204 100 144 70.6
xcomp:ds 120 80 66.7 111 92.5 77 69.4 9 7.5 3 33.3
flat 118 81 68.6 118 100 81 68.6 0 0 0 0
appos 100 49 49 100 100 49 49 0 0 0 0
compound:nn 93 69 74.2 2 2.2 2 100 91 97.8 67 73.6
aux:pass 93 74 79.6 1 1.1 0 0 92 98.9 74 80.4
parataxis 77 40 51.9 76 98.7 40 52.6 1 1.3 0 0
fixed 58 37 63.8 58 100 37 63.8 0 0 0 0
nmod:gsubj 54 29 53.7 0 0 0 0 54 100 29 53.7
cop:own 36 26 72.2 33 91.7 26 78.8 3 8.3 0 0
compound:prt 30 18 60 16 53.3 13 81.2 14 46.7 5 35.7
csubj:cop 22 17 77.3 21 95.5 17 81 1 4.5 0 0
discourse 19 10 52.6 6 31.6 1 16.7 13 68.4 9 69.2
cc:preconj 17 8 47.1 0 0 0 0 17 100 8 47.1
compound 11 6 54.5 0 0 0 0 11 100 6 54.5
vocative 10 4 40 3 30 1 33.3 7 70 3 42.9
csubj 2 0 0 1 50 0 0 1 50 0 0
dep 1 0 0 0 0 0 0 1 100 0 0
total 18905 12267 64.9 8085 42.8 4879 60.3 10820 57.2 7388 68.3

Table A.10: Finnish. Approximate match.

103

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

det 1356 1025 75.6 0 0 0 0 1356 100 1025 75.6
case 1282 960 74.9 0 0 0 0 1282 100 960 74.9
punct 1195 464 38.8 808 67.6 305 37.7 387 32.4 159 41.1
nmod 770 428 55.6 754 97.9 424 56.2 16 2.1 4 25
nsubj 573 343 59.9 26 4.5 2 7.7 547 95.5 341 62.3
obl 563 254 45.1 474 84.2 218 46 89 15.8 36 40.4
amod 480 221 46 365 76 202 55.3 115 24 19 16.5
advmod 458 202 44.1 125 27.3 58 46.4 333 72.7 144 43.2
obj 388 232 59.8 309 79.6 183 59.2 79 20.4 49 62
conj 331 123 37.2 331 100 123 37.2 0 0 0 0
cc 258 159 61.6 0 0 0 0 258 100 159 61.6
mark 231 152 65.8 2 0.9 0 0 229 99.1 152 66.4
aux 187 127 67.9 0 0 0 0 187 100 127 67.9
fixed 178 132 74.2 178 100 132 74.2 0 0 0 0
acl 170 87 51.2 160 94.1 86 53.8 10 5.9 1 10
nummod 146 91 62.3 18 12.3 2 11.1 128 87.7 89 69.5
cop 132 81 61.4 3 2.3 0 0 129 97.7 81 62.8
flat:name 119 92 77.3 119 100 92 77.3 0 0 0 0
appos 118 51 43.2 115 97.5 49 42.6 3 2.5 2 66.7
nmod:poss 113 89 78.8 0 0 0 0 113 100 89 78.8
advcl 94 27 28.7 62 66 18 29 32 34 9 28.1
acl:relcl 75 21 28 75 100 21 28 0 0 0 0
ccomp 60 18 30 51 85 17 33.3 9 15 1 11.1
expl 56 27 48.2 10 17.9 4 40 46 82.1 23 50
nsubj:pass 54 33 61.1 0 0 0 0 54 100 33 61.1
aux:pass 50 38 76 0 0 0 0 50 100 38 76
xcomp 45 25 55.6 42 93.3 25 59.5 3 6.7 0 0
compound 44 14 31.8 34 77.3 12 35.3 10 22.7 2 20
parataxis 32 7 21.9 26 81.2 7 26.9 6 18.8 0 0
iobj 27 10 37 0 0 0 0 27 100 10 37
dep 13 3 23.1 11 84.6 3 27.3 2 15.4 0 0
discourse 5 2 40 1 20 0 0 4 80 2 50
csubj 1 0 0 0 0 0 0 1 100 0 0
total 9604 5538 57.7 4099 42.7 1983 48.4 5505 57.3 3555 64.6

Table A.11: French. Exact match.

104

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

det 1356 1159 85.5 0 0 0 0 1356 100 1159 85.5
case 1282 1123 87.6 0 0 0 0 1282 100 1123 87.6
punct 1195 653 54.6 808 67.6 448 55.4 387 32.4 205 53
nmod 770 590 76.6 754 97.9 586 77.7 16 2.1 4 25
nsubj 573 445 77.7 26 4.5 4 15.4 547 95.5 441 80.6
obl 563 344 61.1 474 84.2 300 63.3 89 15.8 44 49.4
amod 480 244 50.8 365 76 223 61.1 115 24 21 18.3
advmod 458 256 55.9 125 27.3 70 56 333 72.7 186 55.9
obj 388 289 74.5 309 79.6 225 72.8 79 20.4 64 81
conj 331 182 55 331 100 182 55 0 0 0 0
cc 258 195 75.6 0 0 0 0 258 100 195 75.6
mark 231 176 76.2 2 0.9 0 0 229 99.1 176 76.9
aux 187 152 81.3 0 0 0 0 187 100 152 81.3
fixed 178 143 80.3 178 100 143 80.3 0 0 0 0
acl 170 116 68.2 160 94.1 113 70.6 10 5.9 3 30
nummod 146 92 63 18 12.3 2 11.1 128 87.7 90 70.3
cop 132 101 76.5 3 2.3 0 0 129 97.7 101 78.3
flat:name 119 94 79 119 100 94 79 0 0 0 0
appos 118 72 61 115 97.5 70 60.9 3 2.5 2 66.7
nmod:poss 113 100 88.5 0 0 0 0 113 100 100 88.5
advcl 94 50 53.2 62 66 33 53.2 32 34 17 53.1
acl:relcl 75 41 54.7 75 100 41 54.7 0 0 0 0
ccomp 60 26 43.3 51 85 24 47.1 9 15 2 22.2
expl 56 36 64.3 10 17.9 4 40 46 82.1 32 69.6
nsubj:pass 54 40 74.1 0 0 0 0 54 100 40 74.1
aux:pass 50 45 90 0 0 0 0 50 100 45 90
xcomp 45 35 77.8 42 93.3 35 83.3 3 6.7 0 0
compound 44 16 36.4 34 77.3 14 41.2 10 22.7 2 20
parataxis 32 13 40.6 26 81.2 12 46.2 6 18.8 1 16.7
iobj 27 13 48.1 0 0 0 0 27 100 13 48.1
dep 13 4 30.8 11 84.6 3 27.3 2 15.4 1 50
discourse 5 2 40 1 20 0 0 4 80 2 50
csubj 1 0 0 0 0 0 0 1 100 0 0
total 9604 6847 71.3 4099 42.7 2626 64.1 5505 57.3 4221 76.7

Table A.12: French. Approximate match.

105

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

det 1623 1192 73.4 0 0 0 0 1623 100 1192 73.4
case 1535 1008 65.7 0 0 0 0 1535 100 1008 65.7
punct 1170 532 45.5 952 81.4 446 46.8 218 18.6 86 39.4
nmod 843 435 51.6 823 97.6 432 52.5 20 2.4 3 15
obl 652 264 40.5 502 77 207 41.2 150 23 57 38
amod 570 227 39.8 383 67.2 190 49.6 187 32.8 37 19.8
nsubj 429 252 58.7 111 25.9 69 62.2 318 74.1 183 57.5
advmod 365 139 38.1 70 19.2 15 21.4 295 80.8 124 42
obj 336 194 57.7 295 87.8 171 58 41 12.2 23 56.1
conj 304 103 33.9 304 100 103 33.9 0 0 0 0
cc 262 143 54.6 4 1.5 0 0 258 98.5 143 55.4
aux 192 154 80.2 0 0 0 0 192 100 154 80.2
mark 187 99 52.9 0 0 0 0 187 100 99 52.9
advcl 128 29 22.7 91 71.1 18 19.8 37 28.9 11 29.7
acl:relcl 121 42 34.7 121 100 42 34.7 0 0 0 0
flat:name 116 100 86.2 116 100 100 86.2 0 0 0 0
nummod 114 47 41.2 37 32.5 11 29.7 77 67.5 36 46.8
acl 110 57 51.8 106 96.4 57 53.8 4 3.6 0 0
aux:pass 105 84 80 0 0 0 0 105 100 84 80
cop 105 65 61.9 27 25.7 24 88.9 78 74.3 41 52.6
nsubj:pass 101 50 49.5 35 34.7 13 37.1 66 65.3 37 56.1
expl 74 51 68.9 14 18.9 3 21.4 60 81.1 48 80
xcomp 74 32 43.2 73 98.6 32 43.8 1 1.4 0 0
det:poss 61 44 72.1 1 1.6 0 0 60 98.4 44 73.3
obl:agent 46 23 50 44 95.7 23 52.3 2 4.3 0 0
fixed 43 34 79.1 43 100 34 79.1 0 0 0 0
appos 40 15 37.5 40 100 15 37.5 0 0 0 0
ccomp 35 8 22.9 35 100 8 22.9 0 0 0 0
compound 23 14 60.9 23 100 14 60.9 0 0 0 0
flat 20 17 85 20 100 17 85 0 0 0 0
expl:impers 20 17 85 0 0 0 0 20 100 17 85
iobj 20 11 55 6 30 3 50 14 70 8 57.1
det:predet 15 11 73.3 0 0 0 0 15 100 11 73.3
parataxis 14 3 21.4 11 78.6 3 27.3 3 21.4 0 0
expl:pass 11 8 72.7 1 9.1 0 0 10 90.9 8 80
flat:foreign 6 4 66.7 6 100 4 66.7 0 0 0 0
csubj 3 1 33.3 3 100 1 33.3 0 0 0 0
vocative 3 1 33.3 0 0 0 0 3 100 1 33.3
dep 1 0 0 0 0 0 0 1 100 0 0
dislocated 1 1 100 0 0 0 0 1 100 1 100
total 9878 5511 55.8 4297 43.5 2055 47.8 5581 56.5 3456 61.9

Table A.13: Italian. Exact match.

106

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

det 1623 1338 82.4 0 0 0 0 1623 100 1338 82.4
case 1535 1240 80.8 0 0 0 0 1535 100 1240 80.8
punct 1170 706 60.3 952 81.4 587 61.7 218 18.6 119 54.6
nmod 843 603 71.5 823 97.6 600 72.9 20 2.4 3 15
obl 652 366 56.1 502 77 295 58.8 150 23 71 47.3
amod 570 262 46 383 67.2 220 57.4 187 32.8 42 22.5
nsubj 429 301 70.2 111 25.9 77 69.4 318 74.1 224 70.4
advmod 365 181 49.6 70 19.2 17 24.3 295 80.8 164 55.6
obj 336 245 72.9 295 87.8 219 74.2 41 12.2 26 63.4
conj 304 148 48.7 304 100 148 48.7 0 0 0 0
cc 262 178 67.9 4 1.5 0 0 258 98.5 178 69
aux 192 175 91.1 0 0 0 0 192 100 175 91.1
mark 187 122 65.2 0 0 0 0 187 100 122 65.2
advcl 128 51 39.8 91 71.1 34 37.4 37 28.9 17 45.9
acl:relcl 121 58 47.9 121 100 58 47.9 0 0 0 0
flat:name 116 101 87.1 116 100 101 87.1 0 0 0 0
nummod 114 50 43.9 37 32.5 11 29.7 77 67.5 39 50.6
acl 110 71 64.5 106 96.4 71 67 4 3.6 0 0
aux:pass 105 98 93.3 0 0 0 0 105 100 98 93.3
cop 105 82 78.1 27 25.7 24 88.9 78 74.3 58 74.4
nsubj:pass 101 66 65.3 35 34.7 17 48.6 66 65.3 49 74.2
expl 74 54 73 14 18.9 3 21.4 60 81.1 51 85
xcomp 74 43 58.1 73 98.6 43 58.9 1 1.4 0 0
det:poss 61 48 78.7 1 1.6 0 0 60 98.4 48 80
obl:agent 46 32 69.6 44 95.7 32 72.7 2 4.3 0 0
fixed 43 34 79.1 43 100 34 79.1 0 0 0 0
appos 40 20 50 40 100 20 50 0 0 0 0
ccomp 35 11 31.4 35 100 11 31.4 0 0 0 0
compound 23 18 78.3 23 100 18 78.3 0 0 0 0
flat 20 17 85 20 100 17 85 0 0 0 0
expl:impers 20 18 90 0 0 0 0 20 100 18 90
iobj 20 12 60 6 30 3 50 14 70 9 64.3
det:predet 15 12 80 0 0 0 0 15 100 12 80
parataxis 14 6 42.9 11 78.6 6 54.5 3 21.4 0 0
expl:pass 11 8 72.7 1 9.1 0 0 10 90.9 8 80
flat:foreign 6 5 83.3 6 100 5 83.3 0 0 0 0
csubj 3 2 66.7 3 100 2 66.7 0 0 0 0
vocative 3 2 66.7 0 0 0 0 3 100 2 66.7
dep 1 0 0 0 0 0 0 1 100 0 0
dislocated 1 1 100 0 0 0 0 1 100 1 100
total 9878 6785 68.7 4297 43.5 2673 62.2 5581 56.5 4112 73.7

Table A.14: Italian. Approximate match.

107

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 1191 419 35.2 886 74.4 317 35.8 305 25.6 102 33.4
det 1185 845 71.3 0 0 0 0 1185 100 845 71.3
case 1180 786 66.6 13 1.1 4 30.8 1167 98.9 782 67
nmod 838 474 56.6 543 64.8 281 51.7 295 35.2 193 65.4
nsubj 708 325 45.9 131 18.5 49 37.4 577 81.5 276 47.8
obl 691 223 32.3 302 43.7 109 36.1 389 56.3 114 29.3
obj 652 249 38.2 306 46.9 128 41.8 346 53.1 121 35
advmod 596 197 33.1 169 28.4 56 33.1 427 71.6 141 33
conj 428 146 34.1 428 100 146 34.1 0 0 0 0
amod 410 303 73.9 19 4.6 2 10.5 391 95.4 301 77
cc 357 190 53.2 1 0.3 0 0 356 99.7 190 53.4
mark 336 147 43.8 16 4.8 4 25 320 95.2 143 44.7
compound 326 232 71.2 319 97.9 231 72.4 7 2.1 1 14.3
aux 291 98 33.7 76 26.1 8 10.5 215 73.9 90 41.9
acl 209 85 40.7 103 49.3 24 23.3 106 50.7 61 57.5
xcomp 199 78 39.2 184 92.5 77 41.8 15 7.5 1 6.7
cop 193 107 55.4 78 40.4 44 56.4 115 59.6 63 54.8
appos 150 82 54.7 149 99.3 81 54.4 1 0.7 1 100
flat 149 110 73.8 149 100 110 73.8 0 0 0 0
ccomp 120 26 21.7 103 85.8 23 22.3 17 14.2 3 17.6
dep 108 23 21.3 108 100 23 21.3 0 0 0 0
parataxis 97 18 18.6 97 100 18 18.6 0 0 0 0
nummod 97 62 63.9 22 22.7 6 27.3 75 77.3 56 74.7
compound:prt 94 44 46.8 53 56.4 15 28.3 41 43.6 29 70.7
advcl 87 8 9.2 52 59.8 3 5.8 35 40.2 5 14.3
csubj 41 8 19.5 19 46.3 1 5.3 22 53.7 7 31.8
iobj 23 8 34.8 1 4.3 1 100 22 95.7 7 31.8
det:nummod 22 14 63.6 2 9.1 0 0 20 90.9 14 70
expl:pv 16 8 50 8 50 5 62.5 8 50 3 37.5
fixed 7 2 28.6 7 100 2 28.6 0 0 0 0
total 10801 5317 49.2 4344 40.2 1768 40.7 6457 59.8 3549 55

Table A.15: Dutch. Exact match.

108

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 1191 595 50 886 74.4 469 52.9 305 25.6 126 41.3
det 1185 940 79.3 0 0 0 0 1185 100 940 79.3
case 1180 929 78.7 13 1.1 4 30.8 1167 98.9 925 79.3
nmod 838 565 67.4 543 64.8 358 65.9 295 35.2 207 70.2
nsubj 708 396 55.9 131 18.5 56 42.7 577 81.5 340 58.9
obl 691 311 45 302 43.7 142 47 389 56.3 169 43.4
obj 652 321 49.2 306 46.9 171 55.9 346 53.1 150 43.4
advmod 596 273 45.8 169 28.4 81 47.9 427 71.6 192 45
conj 428 192 44.9 428 100 192 44.9 0 0 0 0
amod 410 317 77.3 19 4.6 2 10.5 391 95.4 315 80.6
cc 357 230 64.4 1 0.3 0 0 356 99.7 230 64.6
mark 336 187 55.7 16 4.8 6 37.5 320 95.2 181 56.6
compound 326 255 78.2 319 97.9 254 79.6 7 2.1 1 14.3
aux 291 117 40.2 76 26.1 10 13.2 215 73.9 107 49.8
acl 209 110 52.6 103 49.3 43 41.7 106 50.7 67 63.2
xcomp 199 96 48.2 184 92.5 95 51.6 15 7.5 1 6.7
cop 193 126 65.3 78 40.4 49 62.8 115 59.6 77 67
appos 150 96 64 149 99.3 95 63.8 1 0.7 1 100
flat 149 117 78.5 149 100 117 78.5 0 0 0 0
ccomp 120 44 36.7 103 85.8 40 38.8 17 14.2 4 23.5
dep 108 41 38 108 100 41 38 0 0 0 0
parataxis 97 41 42.3 97 100 41 42.3 0 0 0 0
nummod 97 65 67 22 22.7 7 31.8 75 77.3 58 77.3
compound:prt 94 55 58.5 53 56.4 23 43.4 41 43.6 32 78
advcl 87 13 14.9 52 59.8 7 13.5 35 40.2 6 17.1
csubj 41 14 34.1 19 46.3 4 21.1 22 53.7 10 45.5
iobj 23 9 39.1 1 4.3 1 100 22 95.7 8 36.4
det:nummod 22 16 72.7 2 9.1 0 0 20 90.9 16 80
expl:pv 16 8 50 8 50 5 62.5 8 50 3 37.5
fixed 7 2 28.6 7 100 2 28.6 0 0 0 0
total 10801 6481 60 4344 40.2 2315 53.3 6457 59.8 4166 64.5

Table A.16: Dutch. Approximate match.

109

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

det 1552 1142 73.6 11 0.7 2 18.2 1541 99.3 1140 74
case 1491 992 66.5 7 0.5 3 42.9 1484 99.5 989 66.6
punct 1336 541 40.5 944 70.7 395 41.8 392 29.3 146 37.2
nmod 850 444 52.2 829 97.5 441 53.2 21 2.5 3 14.3
obl 563 242 43 458 81.3 196 42.8 105 18.7 46 43.8
nsubj 517 289 55.9 55 10.6 10 18.2 462 89.4 279 60.4
obj 383 220 57.4 347 90.6 207 59.7 36 9.4 13 36.1
advmod 353 113 32 99 28 22 22.2 254 72 91 35.8
amod 323 135 41.8 229 70.9 117 51.1 94 29.1 18 19.1
flat:name 283 194 68.6 283 100 194 68.6 0 0 0 0
conj 243 71 29.2 242 99.6 71 29.3 1 0.4 0 0
mark 209 94 45 1 0.5 0 0 208 99.5 94 45.2
cc 199 105 52.8 11 5.5 2 18.2 188 94.5 103 54.8
appos 196 94 48 196 100 94 48 0 0 0 0
acl 147 70 47.6 145 98.6 70 48.3 2 1.4 0 0
nummod 137 71 51.8 27 19.7 2 7.4 110 80.3 69 62.7
cop 116 75 64.7 4 3.4 0 0 112 96.6 75 67
acl:relcl 105 36 34.3 103 98.1 35 34 2 1.9 1 50
advcl 102 19 18.6 85 83.3 18 21.2 17 16.7 1 5.9
aux 100 70 70 1 1 0 0 99 99 70 70.7
ccomp 72 23 31.9 56 77.8 22 39.3 16 22.2 1 6.2
xcomp 61 26 42.6 58 95.1 26 44.8 3 4.9 0 0
aux:pass 57 47 82.5 0 0 0 0 57 100 47 82.5
dep 55 20 36.4 39 70.9 15 38.5 16 29.1 5 31.2
nsubj:pass 49 25 51 6 12.2 2 33.3 43 87.8 23 53.5
expl 35 17 48.6 10 28.6 7 70 25 71.4 10 40
obl:agent 31 19 61.3 31 100 19 61.3 0 0 0 0
compound 28 12 42.9 25 89.3 12 48 3 10.7 0 0
nmod:npmod 25 14 56 19 76 14 73.7 6 24 0 0
fixed 24 16 66.7 19 79.2 13 68.4 5 20.8 3 60
parataxis 20 6 30 20 100 6 30 0 0 0 0
nmod:tmod 12 7 58.3 11 91.7 7 63.6 1 8.3 0 0
csubj 11 0 0 9 81.8 0 0 2 18.2 0 0
iobj 7 3 42.9 4 57.1 2 50 3 42.9 1 33.3
flat:foreign 4 1 25 4 100 1 25 0 0 0 0
vocative 3 0 0 3 100 0 0 0 0 0 0
flat 2 1 50 2 100 1 50 0 0 0 0
dislocated 1 0 0 0 0 0 0 1 100 0 0
total 9702 5254 54.2 4393 45.3 2026 46.1 5309 54.7 3228 60.8

Table A.17: Portuguese. Exact match.

110

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

det 1552 1236 79.6 11 0.7 3 27.3 1541 99.3 1233 80
case 1491 1200 80.5 7 0.5 3 42.9 1484 99.5 1197 80.7
punct 1336 723 54.1 944 70.7 540 57.2 392 29.3 183 46.7
nmod 850 600 70.6 829 97.5 597 72 21 2.5 3 14.3
obl 563 341 60.6 458 81.3 278 60.7 105 18.7 63 60
nsubj 517 373 72.1 55 10.6 17 30.9 462 89.4 356 77.1
obj 383 281 73.4 347 90.6 260 74.9 36 9.4 21 58.3
advmod 353 138 39.1 99 28 25 25.3 254 72 113 44.5
amod 323 141 43.7 229 70.9 121 52.8 94 29.1 20 21.3
flat:name 283 201 71 283 100 201 71 0 0 0 0
conj 243 116 47.7 242 99.6 116 47.9 1 0.4 0 0
mark 209 126 60.3 1 0.5 0 0 208 99.5 126 60.6
cc 199 139 69.8 11 5.5 4 36.4 188 94.5 135 71.8
appos 196 119 60.7 196 100 119 60.7 0 0 0 0
acl 147 93 63.3 145 98.6 93 64.1 2 1.4 0 0
nummod 137 76 55.5 27 19.7 3 11.1 110 80.3 73 66.4
cop 116 93 80.2 4 3.4 0 0 112 96.6 93 83
acl:relcl 105 54 51.4 103 98.1 53 51.5 2 1.9 1 50
advcl 102 28 27.5 85 83.3 25 29.4 17 16.7 3 17.6
aux 100 83 83 1 1 0 0 99 99 83 83.8
ccomp 72 35 48.6 56 77.8 29 51.8 16 22.2 6 37.5
xcomp 61 34 55.7 58 95.1 34 58.6 3 4.9 0 0
aux:pass 57 50 87.7 0 0 0 0 57 100 50 87.7
dep 55 27 49.1 39 70.9 21 53.8 16 29.1 6 37.5
nsubj:pass 49 33 67.3 6 12.2 2 33.3 43 87.8 31 72.1
expl 35 18 51.4 10 28.6 7 70 25 71.4 11 44
obl:agent 31 23 74.2 31 100 23 74.2 0 0 0 0
compound 28 12 42.9 25 89.3 12 48 3 10.7 0 0
nmod:npmod 25 16 64 19 76 16 84.2 6 24 0 0
fixed 24 16 66.7 19 79.2 13 68.4 5 20.8 3 60
parataxis 20 7 35 20 100 7 35 0 0 0 0
nmod:tmod 12 7 58.3 11 91.7 7 63.6 1 8.3 0 0
csubj 11 2 18.2 9 81.8 2 22.2 2 18.2 0 0
iobj 7 3 42.9 4 57.1 2 50 3 42.9 1 33.3
flat:foreign 4 2 50 4 100 2 50 0 0 0 0
vocative 3 0 0 3 100 0 0 0 0 0 0
flat 2 1 50 2 100 1 50 0 0 0 0
dislocated 1 0 0 0 0 0 0 1 100 0 0
total 9702 6447 66.5 4393 45.3 2636 60 5309 54.7 3811 71.8

Table A.18: Portuguese. Approximate match.

111

Appendix A. Appendix A

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 20708 16911 81.7 18881 91.2 15916 84.3 1827 8.8 995 54.5
amod 11954 9457 79.1 814 6.8 424 52.1 11140 93.2 9033 81.1
nmod 11100 7836 70.6 10202 91.9 7409 72.6 898 8.1 427 47.6
case 10972 9243 84.2 18 0.2 3 16.7 10954 99.8 9240 84.4
obl 8412 4734 56.3 5358 63.7 3229 60.3 3054 36.3 1505 49.3
nsubj 8084 5221 64.6 2314 28.6 1477 63.8 5770 71.4 3744 64.9
advmod 7767 4554 58.6 1292 16.6 557 43.1 6475 83.4 3997 61.7
conj 5398 2950 54.6 5391 99.9 2947 54.7 7 0.1 3 42.9
cc 4709 3275 69.5 331 7 223 67.4 4378 93 3052 69.7
obj 3584 2329 65 2919 81.4 2051 70.3 665 18.6 278 41.8
parataxis 2131 1167 54.8 1242 58.3 600 48.3 889 41.7 567 63.8
nummod 1890 1235 65.3 551 29.2 203 36.8 1339 70.8 1032 77.1
advcl 1783 898 50.4 1309 73.4 673 51.4 474 26.6 225 47.5
mark 1317 932 70.8 905 68.7 708 78.2 412 31.3 224 54.4
appos 930 616 66.2 922 99.1 614 66.6 8 0.9 2 25
fixed 890 754 84.7 844 94.8 732 86.7 46 5.2 22 47.8
xcomp 841 570 67.8 796 94.6 559 70.2 45 5.4 11 24.4
acl:relcl 715 436 61 713 99.7 434 60.9 2 0.3 2 100
flat:name 707 608 86 707 100 608 86 0 0 0 0
cop 631 387 61.3 230 36.5 152 66.1 401 63.5 235 58.6
nsubj:pass 587 395 67.3 219 37.3 148 67.6 368 62.7 247 67.1
nummod:gov 492 349 70.9 44 8.9 14 31.8 448 91.1 335 74.8
dep 415 283 68.2 404 97.3 282 69.8 11 2.7 1 9.1
aux:pass 373 303 81.2 11 2.9 2 18.2 362 97.1 301 83.1
aux 228 154 67.5 75 32.9 61 81.3 153 67.1 93 60.8
flat:foreign 220 134 60.9 218 99.1 133 61 2 0.9 1 50
acl 186 83 44.6 117 62.9 51 43.6 69 37.1 32 46.4
obl:agent 174 111 63.8 159 91.4 106 66.7 15 8.6 5 33.3
iobj 163 85 52.1 98 60.1 61 62.2 65 39.9 24 36.9
ccomp 101 52 51.5 93 92.1 48 51.6 8 7.9 4 50
compound 57 35 61.4 0 0 0 0 57 100 35 61.4
discourse 47 24 51.1 4 8.5 0 0 43 91.5 24 55.8
nummod:entity 7 6 85.7 7 100 6 85.7 0 0 0 0
flat 3 2 66.7 3 100 2 66.7 0 0 0 0
vocative 2 1 50 1 50 1 100 1 50 0 0
expl 1 0 0 0 0 0 0 1 100 0 0
total 107579 76130 70.8 57192 53.2 40434 70.7 50387 46.8 35696 70.8

Table A.19: Russian. Exact match.

112

deprel count found-m % HI HI% HI-m HI-m% HF HF% HF-m HF-m%

punct 20708 17718 85.6 18881 91.2 16610 88 1827 8.8 1108 60.6
amod 11954 10156 85 814 6.8 483 59.3 11140 93.2 9673 86.8
nmod 11100 9257 83.4 10202 91.9 8701 85.3 898 8.1 556 61.9
case 10972 9898 90.2 18 0.2 3 16.7 10954 99.8 9895 90.3
obl 8412 5817 69.2 5358 63.7 3881 72.4 3054 36.3 1936 63.4
nsubj 8084 6352 78.6 2314 28.6 1727 74.6 5770 71.4 4625 80.2
advmod 7767 5428 69.9 1292 16.6 678 52.5 6475 83.4 4750 73.4
conj 5398 3793 70.3 5391 99.9 3789 70.3 7 0.1 4 57.1
cc 4709 3803 80.8 331 7 246 74.3 4378 93 3557 81.2
obj 3584 2643 73.7 2919 81.4 2298 78.7 665 18.6 345 51.9
parataxis 2131 1469 68.9 1242 58.3 794 63.9 889 41.7 675 75.9
nummod 1890 1356 71.7 551 29.2 251 45.6 1339 70.8 1105 82.5
advcl 1783 1173 65.8 1309 73.4 880 67.2 474 26.6 293 61.8
mark 1317 1052 79.9 905 68.7 763 84.3 412 31.3 289 70.1
appos 930 731 78.6 922 99.1 727 78.9 8 0.9 4 50
fixed 890 763 85.7 844 94.8 737 87.3 46 5.2 26 56.5
xcomp 841 654 77.8 796 94.6 639 80.3 45 5.4 15 33.3
acl:relcl 715 529 74 713 99.7 527 73.9 2 0.3 2 100
flat:name 707 623 88.1 707 100 623 88.1 0 0 0 0
cop 631 470 74.5 230 36.5 168 73 401 63.5 302 75.3
nsubj:pass 587 461 78.5 219 37.3 171 78.1 368 62.7 290 78.8
nummod:gov 492 381 77.4 44 8.9 17 38.6 448 91.1 364 81.2
dep 415 329 79.3 404 97.3 328 81.2 11 2.7 1 9.1
aux:pass 373 334 89.5 11 2.9 3 27.3 362 97.1 331 91.4
aux 228 174 76.3 75 32.9 62 82.7 153 67.1 112 73.2
flat:foreign 220 160 72.7 218 99.1 159 72.9 2 0.9 1 50
acl 186 124 66.7 117 62.9 80 68.4 69 37.1 44 63.8
obl:agent 174 125 71.8 159 91.4 118 74.2 15 8.6 7 46.7
iobj 163 106 65 98 60.1 68 69.4 65 39.9 38 58.5
ccomp 101 70 69.3 93 92.1 64 68.8 8 7.9 6 75
compound 57 42 73.7 0 0 0 0 57 100 42 73.7
discourse 47 29 61.7 4 8.5 0 0 43 91.5 29 67.4
nummod:entity 7 6 85.7 7 100 6 85.7 0 0 0 0
flat 3 2 66.7 3 100 2 66.7 0 0 0 0
vocative 2 1 50 1 50 1 100 1 50 0 0
expl 1 0 0 0 0 0 0 1 100 0 0
total 107579 86029 80 57192 53.2 45604 79.7 50387 46.8 40425 80.2

Table A.20: Russian. Approximate match.

113

Appendix A. Appendix A

114

B

Appendix B

115

Appendix B. Appendix B

Figure B.1: Spearman ρ coefficients between dependency edge accuracy and entropy. A cross
indicates that a team did not make a submission for the treebank. Treebanks are grouped by
language families.

116

Bibliography

Agarwal, S. and Dymetman, M. (2017). A surprisingly effective out-of-the-box char2char model
on the e2e nlg challenge dataset. In Proceedings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 158–163. Association for Computational Linguistics.

Aharoni, R. and Goldberg, Y. (2017). Morphological inflection generation with hard monotonic
attention. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2004–2015, Vancouver, Canada. Association for
Computational Linguistics.

Aharoni, R. and Goldberg, Y. (2018). Split and rephrase: Better evaluation and stronger
baselines. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 719–724. Association for Computational Linguis-
tics.

Alexandrescu, A. and Kirchhoff, K. (2006). Factored neural language models. In Proceedings
of the Human Language Technology Conference of the NAACL, Companion Volume: Short
Papers, pages 1–4. Association for Computational Linguistics.

Angeli, G., Liang, P., and Klein, D. (2010). A simple domain-independent probabilistic ap-
proach to generation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 502–512, Cambridge, MA. Association for Computational Linguis-
tics.

Baayen, R. H., Piepenbrock, R., and Gulikers, L. (1993). The CELEX lexical database (CD-
ROM).

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In International Conference on Learning Representations.

Balakrishnan, A., Rao, J., Upasani, K., White, M., and Subba, R. (2019). Constrained decoding
for neural NLG from compositional representations in task-oriented dialogue. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages 831–844,
Florence, Italy. Association for Computational Linguistics.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K.,
Koehn, P., Palmer, M., and Schneider, N. (2013). Abstract Meaning Representation for sem-
banking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Association for Computational Linguistics.

Basile, V. and Bos, J. (2011). Towards generating text from discourse representation structures.
In Proceedings of the 13th European Workshop on Natural Language Generation, pages 145–150,
Nancy, France. Association for Computational Linguistics.

117

Bibliography

Basile, V. and Mazzei, A. (2018). The dipinfo-unito system for srst 2018. In Proceedings of
the First Workshop on Multilingual Surface Realisation, pages 65–71. Association for Compu-
tational Linguistics.

Beck, D., Haffari, G., and Cohn, T. (2018). Graph-to-sequence learning using gated graph neu-
ral networks. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 273–283, Melbourne, Australia. Association for
Computational Linguistics.

Belz, A. (2008). Automatic generation of weather forecast texts using comprehensive proba-
bilistic generation-space models. Natural Language Engineering, 14(4):431.

Belz, A., White, M., Espinosa, D., Kow, E., Hogan, D., and Stent, A. (2011). The first surface
realisation shared task: Overview and evaluation results. In Proceedings of the 13th European
Workshop on Natural Language Generation, pages 217–226. Association for Computational
Linguistics.

Bernardi, R., Çakici, R., Elliott, D., Erdem, A., Erdem, E., Ikizler-Cinbis, N., Keller, F.,
Muscat, A., and Plank, B. (2017). Automatic description generation from images: A sur-
vey of models, datasets, and evaluation measures (extended abstract). In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 4970–4974.

Bohnet, B., Mille, S., Favre, B., and Wanner, L. (2011). <StuMaBa>: From deep representa-
tion to surface. In Proceedings of the 13th European Workshop on Natural Language Generation,
pages 232–235, Nancy, France. Association for Computational Linguistics.

Bohnet, B., Wanner, L., Mille, S., and Burga, A. (2010). Broad coverage multilingual deep
sentence generation with a stochastic multi-level realizer. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics, pages 98–106. Association for Computational
Linguistics.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–
146.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S., Huck, M.,
Koehn, P., Liu, Q., Logacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Specia, L.,
and Turchi, M. (2017). Findings of the 2017 conference on machine translation (wmt17). In
Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers,
pages 169–214, Copenhagen, Denmark. Association for Computational Linguistics.

Cahill, A. (2009). Correlating human and automatic evaluation of a German surface realiser.
In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 97–100, Suntec, Sin-
gapore. Association for Computational Linguistics.

Cahill, A. and van Genabith, J. (2006). Robust PCFG-based generation using automatically
acquired LFG approximations. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,
pages 1033–1040, Sydney, Australia. Association for Computational Linguistics.

118

Callaway, C. B. (2003). Evaluating coverage for large symbolic nlg grammars. In IJCAI, pages
811–816.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., and Schroeder, J. (2008). Further meta-
evaluation of machine translation. In Proceedings of the Third Workshop on Statistical Machine
Translation, pages 70–106, Columbus, Ohio. Association for Computational Linguistics.

Callison-Burch, C., Koehn, P., Monz, C., and Schroeder, J. (2009). Findings of the 2009 work-
shop on statistical machine translation. In Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28. Association for Computational Linguistics.

Cao, M. and Cheung, J. C. K. (2019). Referring expression generation using entity profiles. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3163–3172, Hong Kong, China. Association for Computational Linguistics.

Cao, Z., Luo, C., Li, W., and Li, S. (2017). Joint copying and restricted generation for
paraphrase. In AAAI, pages 3152–3158.

Castro Ferreira, T., Gardent, C., Ilinykh, N., van der Lee, C., Mille, S., Moussallem, D., and
Shimorina, A. (2020). The 2020 bilingual, bi-directional webnlg+ shared task overview and
evaluation results (webnlg+ 2020). In Proceedings of the 3rd WebNLG Workshop on Natural
Language Generation from the Semantic Web (WebNLG+ 2020), Dublin, Ireland (Virtual).
Association for Computational Linguistics.

Castro Ferreira, T., Moussallem, D., Kádár, Á., Wubben, S., and Krahmer, E. (2018a). Neu-
ralREG: An end-to-end approach to referring expression generation. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1959–1969, Melbourne, Australia. Association for Computational Linguistics.

Castro Ferreira, T., Moussallem, D., Krahmer, E., and Wubben, S. (2018b). Enriching the
webnlg corpus. In Proceedings of the 11th International Conference on Natural Language Gen-
eration, pages 171–176, Tilburg University, The Netherlands. Association for Computational
Linguistics.

Castro Ferreira, T., van der Lee, C., van Miltenburg, E., and Krahmer, E. (2019). Neural
data-to-text generation: A comparison between pipeline and end-to-end architectures. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
552–562, Hong Kong, China. Association for Computational Linguistics.

Castro Ferreira, T., Wubben, S., and Krahmer, E. (2018c). Surface realization shared task 2018
(sr18): The tilburg university approach. In Proceedings of the First Workshop on Multilingual
Surface Realisation, pages 35–38. Association for Computational Linguistics.

Cawsey, A. J., Webber, B. L., and Jones, R. B. (1997). Natural Language Generation in Health
Care. Journal of the American Medical Informatics Association, 4(6):473–482.

Chatterjee, R., Federmann, C., Negri, M., and Turchi, M. (2019). Findings of the WMT 2019
shared task on automatic post-editing. In Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day 2), pages 11–28, Florence, Italy. Association
for Computational Linguistics.

119

Bibliography

Chatterjee, R., Negri, M., Rubino, R., and Turchi, M. (2018). Findings of the wmt 2018 shared
task on automatic post-editing. In Proceedings of the Third Conference on Machine Transla-
tion: Shared Task Papers, pages 710–725, Belgium, Brussels. Association for Computational
Linguistics.

Chen, B. and Cherry, C. (2014). A systematic comparison of smoothing techniques for sentence-
level bleu. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages
362–367.

Chen, D. L. and Mooney, R. J. (2008). Learning to sportscast: a test of grounded language
acquisition. In Proceedings of the 25th international conference on Machine learning, pages
128–135.

Chen, M., Lampouras, G., and Vlachos, A. (2018). Sheffield at e2e: structured prediction
approaches to end-to-end language generation. Technical report, E2E Challenge System De-
scriptions.

Chen, S. (2018). A general model for neural text generation from structured data. Technical
report, E2E Challenge System Descriptions.

Chen, W., Chen, J., Su, Y., Chen, Z., and Wang, W. Y. (2020a). Logical natural language
generation from open-domain tables. In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 7929–7942, Online. Association for Computational
Linguistics.

Chen, Z., Eavani, H., Chen, W., Liu, Y., and Wang, W. Y. (2020b). Few-shot NLG with
pre-trained language model. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 183–190, Online. Association for Computational Linguistics.

Cheng, J. and Lapata, M. (2016). Neural summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 484–494. Association for Computational Linguistics.

Chisholm, A., Radford, W., and Hachey, B. (2017). Learning to generate one-sentence biogra-
phies from Wikidata. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers, pages 633–642, Valencia,
Spain. Association for Computational Linguistics.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational
Linguistics.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological
measurement, 20(1):37–46.

Cotterell, R., Kirov, C., Sylak-Glassman, J., Walther, G., Vylomova, E., Xia, P., Faruqui,
M., Kübler, S., Yarowsky, D., Eisner, J., and Hulden, M. (2017). CoNLL-SIGMORPHON
2017 shared task: Universal morphological reinflection in 52 languages. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 1–30,
Vancouver. Association for Computational Linguistics.

120

Cotterell, R., Kirov, C., Sylak-Glassman, J., Yarowsky, D., Eisner, J., and Hulden, M. (2016).
The SIGMORPHON 2016 shared Task—Morphological reinflection. In Proceedings of the 14th
SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphol-
ogy, pages 10–22, Berlin, Germany. Association for Computational Linguistics.

Damonte, M. and Cohen, S. B. (2018). Cross-lingual Abstract Meaning Representation parsing.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1146–1155, New Orleans, Louisiana. Association for Computational Linguistics.

Dang, H. T. and Owczarzak, K. (2008). Overview of the TAC 2008 update summarization task.
In Proceedings of the First Text Analysis Conference, TAC 2008, Gaithersburg, Maryland, USA,
November 17-19, 2008. NIST.

Davoodi, E., Smiley, C., Song, D., and Schilder, F. (2018). The e2e nlg challenge: Training
a sequence-to-sequence approach for meaning representation to natural language sentences.
Technical report, E2E Challenge System Descriptions.

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and Manning,
C. D. (2014). Universal Stanford dependencies: A cross-linguistic typology. In Proceedings of
the Ninth International Conference on Language Resources and Evaluation (LREC’14), pages
4585–4592, Reykjavik, Iceland. European Language Resources Association (ELRA).

Denkowski, M. and Lavie, A. (2014). Meteor universal: Language specific translation evalu-
ation for any target language. In Proceedings of the Ninth Workshop on Statistical Machine
Translation, pages 376–380. Association for Computational Linguistics.

Deriu, J. and Cieliebak, M. (2018a). End-to-end trainable system for enhancing diversity in
natural language generation. Technical report, E2E Challenge System Descriptions.

Deriu, J. M. and Cieliebak, M. (2018b). Syntactic manipulation for generating more diverse
and interesting texts. In Proceedings of the 11th International Conference on Natural Language
Generation, pages 22–34, Tilburg University, The Netherlands. Association for Computational
Linguistics.

Dethlefs, N. and Cuayáhuitl, H. (2015). Hierarchical reinforcement learning for situated natural
language generation. Natural language engineering, 21:391–435.

DiMarco, C., Covvey, H. D., Bray, P., Cowan, D., Diciccio, V., Hovy, E., Lipa, J., and Mul-
holland, D. (2007). The development of a natural language generation system for personalized
e-health information. In 12th International Health (Medical) Informatics Congress, Medinfo
2007, Brisbane, Australia.

Doddington, G. (2002). Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In Proceedings of the Second International Conference on Human
Language Technology Research, HLT ’02, pages 138–145, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Dreyer, M., Smith, J., and Eisner, J. (2008). Latent-variable modeling of string transductions
with finite-state methods. In Proceedings of the 2008 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1080–1089, Honolulu, Hawaii. Association for Computational
Linguistics.

121

Bibliography

Durrett, G. and DeNero, J. (2013). Supervised learning of complete morphological paradigms.
In Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1185–1195, Atlanta, Georgia.
Association for Computational Linguistics.

Dušek, O. and Jurčíček, F. (2015). Training a natural language generator from unaligned data.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 451–461. Association for Computational Linguistics.

Dušek, O. and Jurčíček, F. (2016). Sequence-to-sequence generation for spoken dialogue via
deep syntax trees and strings. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 45–51, Berlin, Germany. As-
sociation for Computational Linguistics.

Dušek, O. and Jurčíček, F. (2019). Neural generation for Czech: Data and baselines. In
Proceedings of the 12th International Conference on Natural Language Generation, pages 563–
574, Tokyo, Japan. Association for Computational Linguistics.

Dušek, O., Novikova, J., and Rieser, V. (2020). Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge. Computer Speech & Language, 59:123 –
156.

Dyer, W. (2019). Weighted posets: Learning surface order from dependency trees. In Pro-
ceedings of the 18th International Workshop on Treebanks and Linguistic Theories (TLT, Syn-
taxFest 2019), pages 61–73, Paris, France. Association for Computational Linguistics.

Elder, H. (2017). Adapt centre submission for the webnlg challenge. Technical report, WebNLG
Challenge System Descriptions.

Elder, H., Foster, J., Barry, J., and O’Connor, A. (2019). Designing a symbolic intermediate
representation for neural surface realization. In Proceedings of the Workshop on Methods for
Optimizing and Evaluating Neural Language Generation, pages 65–73, Minneapolis, Minnesota.
Association for Computational Linguistics.

Elder, H., Gehrmann, S., O’Connor, A., and Liu, Q. (2018). E2e nlg challenge submission:
Towards controllable generation of diverse natural language. Technical report, E2E Challenge
System Descriptions.

Elder, H. and Hokamp, C. (2018). Generating high-quality surface realizations using data aug-
mentation and factored sequence models. In Proceedings of the First Workshop on Multilingual
Surface Realisation, pages 49–53. Association for Computational Linguistics.

Elliott, D. and Keller, F. (2014). Comparing automatic evaluation measures for image de-
scription. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 452–457. Association for Computational Linguis-
tics.

Elsahar, H., Vougiouklis, P., Remaci, A., Gravier, C., Hare, J., Laforest, F., and Simperl, E.
(2018). T-REx: A large scale alignment of natural language with knowledge base triples. In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).

122

Ficler, J. and Goldberg, Y. (2017). Controlling linguistic style aspects in neural language
generation. In Proceedings of the Workshop on Stylistic Variation, pages 94–104, Copenhagen,
Denmark. Association for Computational Linguistics.

Filippova, K. and Strube, M. (2009). Tree linearization in English: Improving language model
based approaches. In Proceedings of Human Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Association for Computational Linguistics, Compan-
ion Volume: Short Papers, pages 225–228, Boulder, Colorado. Association for Computational
Linguistics.

Futrell, R., Mahowald, K., and Gibson, E. (2015). Quantifying word order freedom in depen-
dency corpora. In Proceedings of the Third International Conference on Dependency Linguistics
(Depling 2015), pages 91–100, Uppsala, Sweden. Uppsala University, Uppsala, Sweden.

Gage, P. (1994). A new algorithm for data compression. C Users J., 12(2):23–38.

Gardent, C. and Narayan, S. (2012). Error mining on dependency trees. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 592–600, Jeju Island, Korea. Association for Computational Linguistics.

Gardent, C., Shimorina, A., Narayan, S., and Perez-Beltrachini, L. (2017a). Creating training
corpora for nlg micro-planners. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 179–188, Vancouver, Canada.
Association for Computational Linguistics.

Gardent, C., Shimorina, A., Narayan, S., and Perez-Beltrachini, L. (2017b). The webnlg
challenge: Generating text from rdf data. In Proceedings of the 10th International Conference
on Natural Language Generation, pages 124–133. Association for Computational Linguistics.

Gatt, A. and Belz, A. (2010). Introducing shared tasks to nlg: The tuna shared task evaluation
challenges. In Krahmer, E. and Theune, M., editors, Empirical Methods in Natural Language
Generation, pages 264–293. Springer-Verlag, Berlin, Heidelberg.

Gatt, A. and Krahmer, E. (2018). Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. J. Artif. Intell. Res., 61:65–170.

Gehrmann, S., Dai, F., Elder, H., and Rush, A. (2018). End-to-end content and plan selection
for natural language generation. Technical report, E2E Challenge System Descriptions.

Gerdemann, D. and Hinrichs, E. W. (1990). Functor-driven natural language generation with
categorial-unification grammars. In COLING 1990 Volume 2: Papers presented to the 13th
International Conference on Computational Linguistics.

Gervás, P. (2011). UCM submission to the surface realization challenge. In Proceedings of
the 13th European Workshop on Natural Language Generation, pages 239–241, Nancy, France.
Association for Computational Linguistics.

Giménez, J. and Màrquez, L. (2009). On the robustness of syntactic and semantic features
for automatic MT evaluation. In Proceedings of the Fourth Workshop on Statistical Machine
Translation, pages 250–258, Athens, Greece. Association for Computational Linguistics.

123

Bibliography

Gkatzia, D. and Mahamood, S. (2015). A snapshot of NLG evaluation practices 2005 - 2014. In
Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), pages
57–60, Brighton, UK. Association for Computational Linguistics.

Gorman, K., McCarthy, A. D., Cotterell, R., Vylomova, E., Silfverberg, M., and Markowska, M.
(2019). Weird inflects but OK: Making sense of morphological generation errors. In Proceedings
of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 140–151,
Hong Kong, China. Association for Computational Linguistics.

Gu, J., Lu, Z., Li, H., and Li, V. O. (2016). Incorporating copying mechanism in sequence-to-
sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1631–1640. Association for Computational
Linguistics.

Gulordava, K. and Merlo, P. (2016). Multi-lingual dependency parsing evaluation: a large-
scale analysis of word order properties using artificial data. Transactions of the Association for
Computational Linguistics, 4:343–356.

Guo, Y., Hogan, D., and van Genabith, J. (2011). DCU at generation challenges 2011 sur-
face realisation track. In Proceedings of the 13th European Workshop on Natural Language
Generation, pages 227–229, Nancy, France. Association for Computational Linguistics.

Hajdik, V., Buys, J., Goodman, M. W., and Bender, E. M. (2019). Neural text generation from
rich semantic representations. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2259–2266, Minneapolis, Minnesota. Association
for Computational Linguistics.

Hasan, S. A. and Farri, O. (2019). Clinical Natural Language Processing with Deep Learning,
pages 147–171. Springer International Publishing, Cham.

Hayashi, H., Oda, Y., Birch, A., Konstas, I., Finch, A., Luong, M.-T., Neubig, G., and Sudoh,
K. (2019). Findings of the third workshop on neural generation and translation. In Pro-
ceedings of the 3rd Workshop on Neural Generation and Translation, pages 1–14, Hong Kong.
Association for Computational Linguistics.

He, S., Liu, C., Liu, K., and Zhao, J. (2017). Generating natural answers by incorporating
copying and retrieving mechanisms in sequence-to-sequence learning. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 199–208. Association for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hokamp, C. (2017). Ensembling factored neural machine translation models for automatic
post-editing and quality estimation. In Proceedings of the Second Conference on Machine
Translation, pages 647–654, Copenhagen, Denmark. Association for Computational Linguistics.

Hovy, D., Berg-Kirkpatrick, T., Vaswani, A., and Hovy, E. (2013). Learning whom to trust with
mace. In Proceedings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1120–1130. Association
for Computational Linguistics.

124

Hovy, E., Lin, C.-Y., and Zhou, L. (2005). Evaluating duc 2005 using basic elements. In
Proceedings of the 5th Document Understanding Conference (DUC).

Howcroft, D. M., Belz, A., Clinciu, M.-A., Gkatzia, D., Hasan, S. A., Mahamood, S., Mille,
S., van Miltenburg, E., Santhanam, S., and Rieser, V. (2020). Twenty years of confusion in
human evaluation: NLG needs evaluation sheets and standardised definitions. In Proceedings
of the 13th International Conference on Natural Language Generation, pages 169–182, Dublin,
Ireland. Association for Computational Linguistics.

Jagfeld, G., Jenne, S., and Vu, N. T. (2018). Sequence-to-sequence models for data-to-text
natural language generation: Word- vs. character-based processing and output diversity. In
Proceedings of the 11th International Conference on Natural Language Generation, pages 221–
232, Tilburg University, The Netherlands. Association for Computational Linguistics.

Jia, R. and Liang, P. (2017). Adversarial examples for evaluating reading comprehension
systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 2021–2031, Copenhagen, Denmark. Association for Computational Linguis-
tics.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2018). Ms-uedin submission to the wmt2018 ape
shared task: Dual-source transformer for automatic post-editing. In Proceedings of the Third
Conference on Machine Translation: Shared Task Papers, pages 822–826, Belgium, Brussels.
Association for Computational Linguistics.

Juraska, J., Bowden, K., and Walker, M. (2019). ViGGO: A video game corpus for data-to-text
generation in open-domain conversation. In Proceedings of the 12th International Conference
on Natural Language Generation, pages 164–172, Tokyo, Japan. Association for Computational
Linguistics.

Juraska, J., Karagiannis, P., Bowden, K., and Walker, M. (2018). A deep ensemble model
with slot alignment for sequence-to-sequence natural language generation. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pages 152–162. Association
for Computational Linguistics.

Kahane, S., Yan, C., and Botalla, M.-A. (2017). What are the limitations on the flux of syn-
tactic dependencies? evidence from UD treebanks. In Proceedings of the Fourth International
Conference on Dependency Linguistics (Depling 2017), pages 73–82, Pisa,Italy. Linköping Uni-
versity Electronic Press.

Katragadda, R. (2009). On alternative automated content evaluation measures. In Proceedings
of the Second Text Analysis Conference, Gaithersburg, Maryland, USA.

King, D. and White, M. (2018). The OSU realizer for SRST ‘18: Neural sequence-to-sequence
inflection and incremental locality-based linearization. In Proceedings of the First Workshop
on Multilingual Surface Realisation, pages 39–48, Melbourne, Australia. Association for Com-
putational Linguistics.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. (2017). Opennmt: Open-source
toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations,
pages 67–72. Association for Computational Linguistics.

125

Bibliography

Komalova, L. R. (2017). Oshibki i netochnosti perevoda (svodnyj referat). Social’nye i guman-
itarnye nauki. Otechestvennaja i zarubezhnaja literatura. Ser. 6, Jazykoznanie: Referativnyj
zhurnal, (4):32–44.

Kondadadi, R., Howald, B., and Schilder, F. (2013). A statistical NLG framework for aggre-
gated planning and realization. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1406–1415, Sofia, Bulgaria.
Association for Computational Linguistics.

Konstas, I., Iyer, S., Yatskar, M., Choi, Y., and Zettlemoyer, L. (2017). Neural AMR: Sequence-
to-sequence models for parsing and generation. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 146–157,
Vancouver, Canada. Association for Computational Linguistics.

Konstas, I. and Lapata, M. (2013). A global model for concept-to-text generation. Journal of
Artificial Intelligence Research, 48:305–346.

Kovács, Á., Ács, E., Ács, J., Kornai, A., and Recski, G. (2019). BME-UW at SRST-2019:
Surface realization with interpreted regular tree grammars. In Proceedings of the 2nd Workshop
on Multilingual Surface Realisation (MSR 2019), pages 35–40, Hong Kong, China. Association
for Computational Linguistics.

Kukich, K. (1983). Design of a knowledge-based report generator. In 21st Annual Meeting
of the Association for Computational Linguistics, pages 145–150, Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Kulesza, A. and Shieber, S. M. (2004). A learning approach to improving sentence-level mt eval-
uation. In Proceedings of the 10th International Conference on Theoretical and Methodological
Issues in Machine Translation, pages 75–84.

Kunilovskaya, M. A. (2013). Klassifikacija perevodcheskih oshibok dlja sozdanija razmetki v
uchebnom parallel’nom korpuse russian learner translator corpus. Lingua mobilis, (1 (40)):141–
158.

Lampouras, G. and Vlachos, A. (2016). Imitation learning for language generation from un-
aligned data. In Proceedings of COLING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pages 1101–1112, Osaka, Japan. The COLING 2016
Organizing Committee.

Langkilde-Geary, I. (2002). An empirical verification of coverage and correctness for a general-
purpose sentence generator. In Proceedings of the International Natural Language Generation
Conference, pages 17–24, Harriman, New York, USA. Association for Computational Linguis-
tics.

Lebret, R., Grangier, D., and Auli, M. (2016). Neural text generation from structured data
with application to the biography domain. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1203–1213, Austin, Texas. Association for
Computational Linguistics.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann,
S., Morsey, M., Van Kleef, P., Auer, S., et al. (2015). Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web, 6(2):167–195.

126

Leppänen, L., Munezero, M., Granroth-Wilding, M., and Toivonen, H. (2017). Data-driven
news generation for automated journalism. In Proceedings of the 10th International Conference
on Natural Language Generation, pages 188–197, Santiago de Compostela, Spain. Association
for Computational Linguistics.

Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Re-
versals. Soviet Physics Doklady, 10:707.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and
Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 7871–7880, Online. Association for
Computational Linguistics.

Li, W. (2015). Abstractive multi-document summarization with semantic information ex-
traction. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1908–1913, Lisbon, Portugal. Association for Computational Linguistics.

Liang, P., Jordan, M., and Klein, D. (2009). Learning semantic correspondences with less
supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP,
pages 91–99, Suntec, Singapore. Association for Computational Linguistics.

Liao, K., Lebanoff, L., and Liu, F. (2018). Abstract Meaning Representation for multi-
document summarization. In Proceedings of the 27th International Conference on Compu-
tational Linguistics, pages 1178–1190, Santa Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Libovický, J., Helcl, J., Tlustý, M., Bojar, O., and Pecina, P. (2016). Cuni system for wmt16
automatic post-editing and multimodal translation tasks. In Proceedings of the First Confer-
ence on Machine Translation, pages 646–654, Berlin, Germany. Association for Computational
Linguistics.

Lin, B. Y., Zhou, W., Shen, M., Zhou, P., Bhagavatula, C., Choi, Y., and Ren, X. (2020).
CommonGen: A constrained text generation challenge for generative commonsense reasoning.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
Findings, pages 1823–1840, Online. Association for Computational Linguistics.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out.

Liu, D. and Gildea, D. (2005). Syntactic features for evaluation of machine translation. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Ma-
chine Translation and/or Summarization, pages 25–32, Ann Arbor, Michigan. Association for
Computational Linguistics.

Liu, H. (2008). Dependency distance as a metric of language comprehension difficulty. Journal
of Cognitive Science, 9(2):159–191.

Liu, H. (2010). Dependency direction as a means of word-order typology: A method based on
dependency treebanks. Lingua, 120(6):1567–1578.

127

Bibliography

Liu, T., Wang, K., Sha, L., Chang, B., and Sui, Z. (2018). Table-to-text generation by structure-
aware seq2seq learning. In AAAI.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettlemoyer,
L. (2020). Multilingual denoising pre-training for neural machine translation. arXiv preprint
arXiv:2001.08210.

Lo, C.-k., Tumuluru, A. K., and Wu, D. (2012). Fully automatic semantic MT evaluation.
In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages 243–252,
Montréal, Canada. Association for Computational Linguistics.

Lohar, P., Popović, M., and Way, A. (2019). Building English-to-Serbian machine translation
system for IMDb movie reviews. In Proceedings of the 7th Workshop on Balto-Slavic Natural
Language Processing, pages 105–113, Florence, Italy. Association for Computational Linguis-
tics.

Lu, W. and Ng, H. T. (2011). A probabilistic forest-to-string model for language generation
from typed lambda calculus expressions. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 1611–1622, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421. Association for Computational Linguistics.

Madsack, A., Heininger, J., Davaasambuu, N., Voronik, V., Käufl, M., and Weißgraeber, R.
(2018). Ax semantics’ submission to the surface realization shared task 2018. In Proceed-
ings of the First Workshop on Multilingual Surface Realisation, pages 54–57. Association for
Computational Linguistics.

Mager, M., Fernandez Astudillo, R., Naseem, T., Sultan, M. A., Lee, Y.-S., Florian, R., and
Roukos, S. (2020). GPT-too: A language-model-first approach for AMR-to-text generation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 1846–1852, Online. Association for Computational Linguistics.

Mairesse, F., Gašić, M., Jurčíček, F., Keizer, S., Thomson, B., Yu, K., and Young, S. (2010).
Phrase-based statistical language generation using graphical models and active learning. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
1552–1561, Uppsala, Sweden. Association for Computational Linguistics.

Mairesse, F. and Young, S. (2014). Stochastic language generation in dialogue using factored
language models. Computational Linguistics, 40(4):763–799.

Malouf, R. (2000). The order of prenominal adjectives in natural language generation. In
Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, pages
85–92, Hong Kong. Association for Computational Linguistics.

Marcheggiani, D. and Perez-Beltrachini, L. (2018). Deep graph convolutional encoders for
structured data to text generation. In Proceedings of the 11th International Conference on
Natural Language Generation, pages 1–9, Tilburg University, The Netherlands. Association for
Computational Linguistics.

128

Marciniak, T. and Strube, M. (2004). Classification-based generation using tag. In Belz,
A., Evans, R., and Piwek, P., editors, Natural Language Generation, pages 100–109, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Martins, A., Smith, N., and Xing, E. (2009). Concise integer linear programming formulations
for dependency parsing. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, pages 342–350, Suntec, Singapore. Association for Computational Linguistics.

McKeown, K. R. (1982). The text system for natural language generation: An overview. In
20th Annual Meeting of the Association for Computational Linguistics, pages 113–120, Toronto,
Ontario, Canada. Association for Computational Linguistics.

Mehay, D. N. and Brew, C. (2007). Bleuâtre: Flattening syntactic dependencies for mt evalu-
ation. In Proceedings of the 11th International Conference on Theoretical and Methodological
Issues in Machine Translation, pages 122–131.

Meteer, M. W. (1991). Bridging the generation gap between text planning and linguistic
realization. Computational Intelligence, 7(4):296–304.

Miao, Y. and Blunsom, P. (2016). Language as a latent variable: Discrete generative models for
sentence compression. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 319–328, Austin, Texas. Association for Computational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119.

Mille, S., Belz, A., Bohnet, B., Graham, Y., Pitler, E., and Wanner, L. (2018a). The first
multilingual surface realisation shared task (sr’18): Overview and evaluation results. In Pro-
ceedings of the First Workshop on Multilingual Surface Realisation, pages 1–12. Association for
Computational Linguistics.

Mille, S., Belz, A., Bohnet, B., Graham, Y., and Wanner, L. (2019). The second multilingual
surface realisation shared task (SR’19): Overview and evaluation results. In Proceedings of
the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 1–17, Hong Kong,
China. Association for Computational Linguistics.

Mille, S., Belz, A., Bohnet, B., and Wanner, L. (2018b). Underspecified Universal Dependency
structures as inputs for multilingual surface realisation. In Proceedings of the 11th Interna-
tional Conference on Natural Language Generation, pages 199–209, Tilburg University, The
Netherlands. Association for Computational Linguistics.

Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity
for processing information. Psychological review, 63 2:81–97.

Moryossef, A., Goldberg, Y., and Dagan, I. (2019). Step-by-step: Separating planning from
realization in neural data-to-text generation. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 2267–2277, Minneapolis, Minnesota.
Association for Computational Linguistics.

129

Bibliography

Naik, A., Ravichander, A., Sadeh, N., Rose, C., and Neubig, G. (2018). Stress test evalua-
tion for natural language inference. In Proceedings of the 27th International Conference on
Computational Linguistics, pages 2340–2353, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Nakanishi, H., Miyao, Y., and Tsujii, J. (2005a). Probabilistic models for disambiguation of
an HPSG-based chart generator. In Proceedings of the Ninth International Workshop on Pars-
ing Technology, pages 93–102, Vancouver, British Columbia. Association for Computational
Linguistics.

Nakanishi, H., Miyao, Y., and Tsujii, J. (2005b). Probabilistic models for disambiguation of
an hpsg-based chart generator. In Proceedings of the Ninth International Workshop on Parsing
Technology, pages 93–102.

Nallapati, R., Zhou, B., dos Santos, C., Gulçehre, Ç., and Xiang, B. (2016). Abstractive
text summarization using sequence-to-sequence RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning, pages 280–290, Berlin,
Germany. Association for Computational Linguistics.

Narayan, S., Cohen, S. B., and Lapata, M. (2018). Ranking sentences for extractive sum-
marization with reinforcement learning. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1747–1759, New Orleans, Louisiana. Association for
Computational Linguistics.

Narayan, S. and Gardent, C. (2012). Error mining with suspicion trees: Seeing the forest for
the trees. In Proceedings of COLING 2012, pages 2011–2026, Mumbai, India. The COLING
2012 Organizing Committee.

Narayan, S., Gardent, C., Cohen, S. B., and Shimorina, A. (2017). Split and rephrase. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 606–616, Copenhagen, Denmark. Association for Computational Linguistics.

Nayak, N., Hakkani-Tür, D., Walker, M., and Heck, L. (2017). To plan or not to plan? discourse
planning in slot-value informed sequence to sequence models for language generation. In Proc.
Interspeech 2017, pages 3339–3343.

Negri, M., Turchi, M., Chatterjee, R., and Bertoldi, N. (2018). ESCAPE: a large-scale syn-
thetic corpus for automatic post-editing. In Proceedings of the 11th Language Resources and
Evaluation Conference, Miyazaki, Japan. European Language Resource Association.

Nema, P., Shetty, S., Jain, P., Laha, A., Sankaranarayanan, K., and Khapra, M. M. (2018).
Generating descriptions from structured data using a bifocal attention mechanism and gated
orthogonalization. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 1539–1550, New Orleans, Louisiana. Association for Computational Linguistics.

Neubig, G., Dou, Z.-Y., Hu, J., Michel, P., Pruthi, D., and Wang, X. (2019). compare-mt:
A tool for holistic comparison of language generation systems. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(Demonstrations), pages 35–41, Minneapolis, Minnesota. Association for Computational Lin-
guistics.

130

Nie, F., Yao, J.-G., Wang, J., Pan, R., and Lin, C.-Y. (2019). A simple recipe towards reducing
hallucination in neural surface realisation. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 2673–2679, Florence, Italy. Association for
Computational Linguistics.

Nivre, J., Agić, Ž., Ahrenberg, L., Aranzabe, M. J., Asahara, M., Atutxa, A., Ballesteros, M.,
Bauer, J., Bengoetxea, K., Bhat, R. A., Bick, E., Bosco, C., Bouma, G., Bowman, S., Candito,
M., Cebiroğlu Eryiğit, G., Celano, G. G. A., Chalub, F., Choi, J., Çöltekin, Ç., Connor,
M., Davidson, E., de Marneffe, M.-C., de Paiva, V., Diaz de Ilarraza, A., Dobrovoljc, K.,
Dozat, T., Droganova, K., Dwivedi, P., Eli, M., Erjavec, T., Farkas, R., Foster, J., Freitas, C.,
Gajdošová, K., Galbraith, D., Garcia, M., Ginter, F., Goenaga, I., Gojenola, K., Gökırmak,
M., Goldberg, Y., Gómez Guinovart, X., Gonzáles Saavedra, B., Grioni, M., Grūz̄ıtis, N.,
Guillaume, B., Habash, N., Hajič, J., Hà Mỹ, L., Haug, D., Hladká, B., Hohle, P., Ion, R.,
Irimia, E., Johannsen, A., Jørgensen, F., Kaşıkara, H., Kanayama, H., Kanerva, J., Kotsyba,
N., Krek, S., Laippala, V., Lê Hồng, P., Lenci, A., Ljubešić, N., Lyashevskaya, O., Lynn, T.,
Makazhanov, A., Manning, C., Mărănduc, C., Mareček, D., Martínez Alonso, H., Martins, A.,
Mašek, J., Matsumoto, Y., McDonald, R., Missilä, A., Mititelu, V., Miyao, Y., Montemagni, S.,
More, A., Mori, S., Moskalevskyi, B., Muischnek, K., Mustafina, N., Müürisep, K., Nguyễn Thi.,
L., Nguyễn Thi. Minh, H., Nikolaev, V., Nurmi, H., Ojala, S., Osenova, P., Øvrelid, L., Pascual,
E., Passarotti, M., Perez, C.-A., Perrier, G., Petrov, S., Piitulainen, J., Plank, B., Popel, M.,
Pretkalnin, a, L., Prokopidis, P., Puolakainen, T., Pyysalo, S., Rademaker, A., Ramasamy, L.,
Real, L., Rituma, L., Rosa, R., Saleh, S., Sanguinetti, M., Saul̄ıte, B., Schuster, S., Seddah,
D., Seeker, W., Seraji, M., Shakurova, L., Shen, M., Sichinava, D., Silveira, N., Simi, M.,
Simionescu, R., Simkó, K., Šimková, M., Simov, K., Smith, A., Suhr, A., Sulubacak, U.,
Szántó, Z., Taji, D., Tanaka, T., Tsarfaty, R., Tyers, F., Uematsu, S., Uria, L., van Noord, G.,
Varga, V., Vincze, V., Washington, J. N., Žabokrtský, Z., Zeldes, A., Zeman, D., and Zhu, H.
(2017). Universal dependencies 2.0. LINDAT/CLARIN digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Novikova, J., Dušek, O., Cercas Curry, A., and Rieser, V. (2017a). Why we need new evalua-
tion metrics for nlg. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 2241–2252. Association for Computational Linguistics.

Novikova, J., Dušek, O., and Rieser, V. (2017b). The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue,
pages 201–206. Association for Computational Linguistics.

Oraby, S., Harrison, V., Ebrahimi, A., and Walker, M. (2019). Curate and generate: A corpus
and method for joint control of semantics and style in neural NLG. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 5938–5951, Florence,
Italy. Association for Computational Linguistics.

Owczarzak, K. (2009). DEPEVAL(summ): Dependency-based evaluation for automatic sum-
maries. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages
190–198, Suntec, Singapore. Association for Computational Linguistics.

Owczarzak, K., van Genabith, J., and Way, A. (2007). Dependency-based automatic evaluation
for machine translation. In Proceedings of SSST, NAACL-HLT 2007 / AMTA Workshop on

131

Bibliography

Syntax and Structure in Statistical Translation, pages 80–87, Rochester, New York. Association
for Computational Linguistics.

Pal, S., Naskar, S. K., Vela, M., and van Genabith, J. (2016). A neural network based approach
to automatic post-editing. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 281–286, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics.

Parikh, A., Wang, X., Gehrmann, S., Faruqui, M., Dhingra, B., Yang, D., and Das, D. (2020).
ToTTo: A controlled table-to-text generation dataset. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 1173–1186, Online.
Association for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word repre-
sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguis-
tics.

Perez-Beltrachini, L. and Gardent, C. (2017). Analysing data-to-text generation benchmarks.
In Proceedings of the 10th International Conference on Natural Language Generation, pages
238–242, Santiago de Compostela, Spain. Association for Computational Linguistics.

Perez-Beltrachini, L. and Lapata, M. (2018). Bootstrapping generators from noisy data. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1516–1527, New Orleans, Louisiana. Association for Computational Linguistics.

Plachouras, V., Smiley, C., Bretz, H., Taylor, O., Leidner, J. L., Song, D., and Schilder, F.
(2016). Interacting with financial data using natural language. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’16, page 1121–1124, New York, NY, USA. Association for Computing Machinery.

Popović, M. (2018). Error Classification and Analysis for Machine Translation Quality Assess-
ment, pages 129–158. Springer International Publishing, Cham.

Portet, F., Reiter, E., Gatt, A., Hunter, J., Sripada, S., Freer, Y., and Sykes, C. (2009). Auto-
matic generation of textual summaries from neonatal intensive care data. Artificial Intelligence,
173(7):789 – 816.

Puduppully, R., Dong, L., and Lapata, M. (2019). Data-to-text generation with entity model-
ing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 2023–2035, Florence, Italy. Association for Computational Linguistics.

Puduppully, R., Zhang, Y., and Shrivastava, M. (2016). Transition-based syntactic linearization
with lookahead features. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 488–
493, San Diego, California. Association for Computational Linguistics.

132

Puduppully, R., Zhang, Y., and Shrivastava, M. (2017). Transition-based deep input lineariza-
tion. In Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, pages 643–654, Valencia, Spain. Associa-
tion for Computational Linguistics.

Puzikov, Y., Gardent, C., Dagan, I., and Gurevych, I. (2019). Revisiting the binary linearization
technique for surface realization. In Proceedings of the 12th International Conference on Natural
Language Generation, pages 268–278, Tokyo, Japan. Association for Computational Linguistics.

Puzikov, Y. and Gurevych, I. (2018a). Binlin: A simple method of dependency tree lineariza-
tion. In Proceedings of the First Workshop on Multilingual Surface Realisation, pages 13–28.
Association for Computational Linguistics.

Puzikov, Y. and Gurevych, I. (2018b). E2e nlg challenge: Neural models vs. templates. Tech-
nical report, E2E Challenge System Descriptions.

Qader, R., Jneid, K., Portet, F., and Labbé, C. (2018). Generation of company descriptions
using concept-to-text and text-to-text deep models: dataset collection and systems evaluation.
In Proceedings of the 11th International Conference on Natural Language Generation, pages
254–263, Tilburg University, The Netherlands. Association for Computational Linguistics.

Qader, R., Portet, F., and Labbé, C. (2019). Semi-supervised neural text generation by joint
learning of natural language generation and natural language understanding models. In Pro-
ceedings of the 12th International Conference on Natural Language Generation, pages 552–562,
Tokyo, Japan. Association for Computational Linguistics.

Qi, P., Dozat, T., Zhang, Y., and Manning, C. D. (2018). Universal dependency parsing from
scratch. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160–170, Brussels, Belgium. Association for Computational
Linguistics.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67.

Rajkumar, R., Espinosa, D., and White, M. (2011). The OSU system for surface realization at
generation challenges 2011. In Proceedings of the 13th European Workshop on Natural Language
Generation, pages 236–238, Nancy, France. Association for Computational Linguistics.

Rakhilina, E., Vyrenkova, A., Mustakimova, E., Ladygina, A., and Smirnov, I. (2016). Building
a learner corpus for Russian. In Proceedings of the joint workshop on NLP for Computer
Assisted Language Learning and NLP for Language Acquisition, pages 66–75, Umeå, Sweden.
LiU Electronic Press.

Reiter, E. (2018). A structured review of the validity of BLEU. Computational Linguistics,
44(3):393–401.

Reiter, E. and Belz, A. (2009). An investigation into the validity of some metrics for automat-
ically evaluating natural language generation systems. Computational Linguistics, 35(4).

133

Bibliography

Reiter, E. and Dale, R. (2000). Building natural language generation systems. Cambridge
university press.

Ribeiro, L. F. R., Gardent, C., and Gurevych, I. (2019). Enhancing AMR-to-text generation
with dual graph representations. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3183–3194, Hong Kong, China. Association for
Computational Linguistics.

Robin, J. and McKeown, K. (1996). Empirically designing and evaluating a new revision-based
model for summary generation. Artificial Intelligence, 85(1-2):135–179.

Schmaltz, A., Rush, A. M., and Shieber, S. (2016). Word ordering without syntax. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
2319–2324, Austin, Texas. Association for Computational Linguistics.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1073–1083. Association for Computational
Linguistics.

Sellam, T., Das, D., and Parikh, A. (2020). BLEURT: Learning robust metrics for text gen-
eration. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pages 7881–7892, Online. Association for Computational Linguistics.

Sennrich, R., Birch, A., Currey, A., Germann, U., Haddow, B., Heafield, K., Miceli Barone,
A. V., and Williams, P. (2017). The University of Edinburgh’s Neural MT Systems for WMT17.
In Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task
Papers, Copenhagen, Denmark.

Sennrich, R. and Haddow, B. (2016). Linguistic input features improve neural machine trans-
lation. In Proceedings of the First Conference on Machine Translation: Volume 1, Research
Papers, pages 83–91, Berlin, Germany. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Shimorina, A. (2018). Human vs automatic metrics: on the importance of correlation design.
Peer-reviewed, non-archival, presented at the Widening NLP Workshop 2018 at NAACL, arXiv:
1805.11474.

Shimorina, A. and Gardent, C. (2018). Handling rare items in data-to-text generation. In
Proceedings of the 11th International Conference on Natural Language Generation, pages 360–
370, Tilburg University, The Netherlands. Association for Computational Linguistics.

Shimorina, A. and Gardent, C. (2019a). LORIA / Lorraine University at multilingual surface
realisation 2019. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR
2019), pages 88–93, Hong Kong, China. Association for Computational Linguistics.

134

Shimorina, A. and Gardent, C. (2019b). Surface realisation using full delexicalisation. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3086–3096, Hong Kong, China. Association for Computational Linguistics.

Shimorina, A., Gardent, C., Narayan, S., and Perez-Beltrachini, L. (2018). WebNLG Challenge:
Human Evaluation Results. Technical report, Loria & Inria Grand Est.

Shimorina, A., Khasanova, E., and Gardent, C. (2019). Creating a corpus for Russian data-
to-text generation using neural machine translation and post-editing. In Proceedings of the 7th
Workshop on Balto-Slavic Natural Language Processing, pages 44–49, Florence, Italy. Associa-
tion for Computational Linguistics.

Shimorina, A., Parmentier, Y., and Gardent, C. (2021). An Error Analysis Framework for
Shallow Surface Realization. Transactions of the Association for Computational Linguistics,
9:429–446.

Siddharthan, A., Nenkova, A., and McKeown, K. (2011). Information status distinctions and
referring expressions: An empirical study of references to people in news summaries. Compu-
tational Linguistics, 37(4):811–842.

Singh, S., Sharma, A., Chawla, A., and Singh, A. (2018). Iit (bhu) varanasi at msr-srst 2018:
A language model based approach for natural language generation. In Proceedings of the First
Workshop on Multilingual Surface Realisation, pages 29–34. Association for Computational
Linguistics.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation
edit rate with targeted human annotation. In Proceedings of association for machine translation
in the Americas, volume 200.

Sobrevilla Cabezudo, M. A. and Pardo, T. (2018). Nilc-swornemo at the surface realization
shared task: Exploring syntax-based word ordering using neural models. In Proceedings of the
First Workshop on Multilingual Surface Realisation, pages 58–64. Association for Computa-
tional Linguistics.

Sobrevilla Cabezudo, M. A. and Pardo, T. (2019). Towards a general Abstract Meaning Rep-
resentation corpus for Brazilian Portuguese. In Proceedings of the 13th Linguistic Annotation
Workshop, pages 236–244, Florence, Italy. Association for Computational Linguistics.

Song, L., Zhang, Y., and Gildea, D. (2018a). Neural transition-based syntactic linearization.
In Proceedings of the 11th International Conference on Natural Language Generation, pages
431–440, Tilburg University, The Netherlands. Association for Computational Linguistics.

Song, L., Zhang, Y., Song, K., and Liu, Q. (2014). Joint morphological generation and syntactic
linearization. In Twenty-Eighth AAAI Conference on Artificial Intelligence.

Song, L., Zhang, Y., Wang, Z., and Gildea, D. (2018b). A graph-to-sequence model for AMR-to-
text generation. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616–1626, Melbourne, Australia. Association for
Computational Linguistics.

Sripada, S., Reiter, E., Hunter, J., and Yu, J. (2002). Sumtime-meteo: Parallel corpus of
naturally occurring forecast texts and weather data. Technical report.

135

Bibliography

Stent, A. (2011). ATT-0: Submission to generation challenges 2011 surface realization shared
task. In Proceedings of the 13th European Workshop on Natural Language Generation, pages
230–231, Nancy, France. Association for Computational Linguistics.

Stent, A., Marge, M., and Singhai, M. (2005). Evaluating evaluation methods for generation
in the presence of variation. In Computational Linguistics and Intelligent Text Processing,
6th International Conference, CICLing 2005, Mexico City, Mexico, February 13-19, 2005,
Proceedings, pages 341–351.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems, volume 27, pages 3104–3112.
Curran Associates, Inc.

Takase, S., Suzuki, J., Okazaki, N., Hirao, T., and Nagata, M. (2016). Neural headline gener-
ation on abstract meaning representation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1054–1059, Austin, Texas. Association for
Computational Linguistics.

Theune, M., Klabbers, E., de Pijper, J. R., Krahmer, E., and Odijk, J. (2001). From data to
speech: a general approach. Natural Language Engineering, 7(1):47–86.

Tratz, S. and Hovy, E. H. (2009). Bewt-e for tac 2009’s aesop task. In Proceedings of the Second
Text Analysis Conference, Gaithersburg, Maryland, USA.

Trisedya, B. D., Qi, J., Zhang, R., and Wang, W. (2018). Gtr-lstm: A triple encoder for
sentence generation from rdf data. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1627–1637. Association for
Computational Linguistics.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016). Modeling coverage for neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85. Association for Computational Linguistics.

van Dalen, A. (2012). The algorithms behind the headlines. Journalism Practice, 6(5-6):648–
658.

van Deemter, K. (2016). Designing algorithms for referring with proper names. In Proceedings
of the 9th International Natural Language Generation conference, pages 31–35, Edinburgh, UK.
Association for Computational Linguistics.

van der Lee, C., Castro Ferreira, T., Krahmer, E., and Wubben, S. (2017). Tilburg university
models for the webnlg challenge. Technical report, WebNLG Challenge System Descriptions.

van der Lee, C., Gatt, A., van Miltenburg, E., Wubben, S., and Krahmer, E. (2019). Best
practices for the human evaluation of automatically generated text. In Proceedings of the
12th International Conference on Natural Language Generation, pages 355–368, Tokyo, Japan.
Association for Computational Linguistics.

van der Lee, C., Krahmer, E., and Wubben, S. (2018). Automated learning of templates for
data-to-text generation: comparing rule-based, statistical and neural methods. In Proceedings
of the 11th International Conference on Natural Language Generation, pages 35–45, Tilburg
University, The Netherlands. Association for Computational Linguistics.

136

Vanderwende, L., Menezes, A., and Quirk, C. (2015). An AMR parser for English, French,
German, Spanish and Japanese and a new AMR-annotated corpus. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics:
Demonstrations, pages 26–30, Denver, Colorado. Association for Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30, pages 5998–6008. Curran Associates, Inc.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Cortes, C., Lawrence,
N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information
Processing Systems 28, pages 2692–2700. Curran Associates, Inc.

Vougiouklis, P., ElSahar, H., Kaffee, L., Gravier, C., Laforest, F., Hare, J. S., and Simperl, E.
(2018). Neural wikipedian: Generating textual summaries from knowledge base triples. J. Web
Semant., 52-53:1–15.

Wang, Q., Pan, X., Huang, L., Zhang, B., Jiang, Z., Ji, H., and Knight, K. (2018). Describing
a knowledge base. In Proceedings of the 11th International Conference on Natural Language
Generation, pages 10–21, Tilburg University, The Netherlands. Association for Computational
Linguistics.

Wen, T.-H., Gašić, M., Mrkšić, N., Su, P.-H., Vandyke, D., and Young, S. (2015). Semantically
conditioned LSTM-based natural language generation for spoken dialogue systems. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Computational Linguistics.

White, M. and Rajkumar, R. (2012). Minimal dependency length in realization ranking. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 244–255, Jeju Island, Korea. Association
for Computational Linguistics.

White, M., Rajkumar, R., and Martin, S. (2007). Towards broad coverage surface realization
with ccg. In Proceedings of the Workshop on Using Corpora for NLG: Language Generation
and Machine Translation (UCNLG+ MT), pages 267–276.

Wiseman, S., Shieber, S., and Rush, A. (2017). Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 2253–2263, Copenhagen, Denmark. Association for Computational Linguistics.

Wiseman, S., Shieber, S., and Rush, A. (2018). Learning neural templates for text generation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3174–3187, Brussels, Belgium. Association for Computational Linguistics.

Xue, N., Bojar, O., Hajič, J., Palmer, M., Urešová, Z., and Zhang, X. (2014). Not an interlingua,
but close: Comparison of English AMRs to Chinese and Czech. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14), pages 1765–1772,
Reykjavik, Iceland. European Language Resources Association (ELRA).

Yu, H., Wu, X., Xie, J., Jiang, W., Liu, Q., and Lin, S. (2014). RED: A reference depen-
dency based MT evaluation metric. In Proceedings of COLING 2014, the 25th International

137

Bibliography

Conference on Computational Linguistics: Technical Papers, pages 2042–2051, Dublin, Ireland.
Dublin City University and Association for Computational Linguistics.

Yu, X., Falenska, A., Haid, M., Vu, N. T., and Kuhn, J. (2019a). IMSurReal: IMS at the
surface realization shared task 2019. In Proceedings of the 2nd Workshop on Multilingual Sur-
face Realisation (MSR 2019), pages 50–58, Hong Kong, China. Association for Computational
Linguistics.

Yu, X., Falenska, A., Vu, N. T., and Kuhn, J. (2019b). Head-first linearization with tree-
structured representation. In Proceedings of the 12th International Conference on Natural
Language Generation, pages 279–289, Tokyo, Japan. Association for Computational Linguistics.

Yu, X., Tannert, S., Vu, N. T., and Kuhn, J. (2020). Fast and accurate non-projective de-
pendency tree linearization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1451–1462, Online. Association for Computational Linguis-
tics.

Zeman, D. (2016). Universal annotation of Slavic verb forms. The Prague Bulletin of Mathe-
matical Linguistics, 105:143–193.

Zhang, B., Yang, J., Lin, Q., and Su, J. (2018). Attention regularized sequence-to-sequence
learning for e2e nlg challenge. Technical report, E2E Challenge System Descriptions.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2020). Bertscore: Evaluating
text generation with bert. In International Conference on Learning Representations.

Zhang, X. and Lapata, M. (2017). Sentence simplification with deep reinforcement learning.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 584–594, Copenhagen, Denmark. Association for Computational Linguistics.

Zhang, Y. (2013). Partial-tree linearization: Generalized word ordering for text synthesis. In
Proceedings of theTwenty-Third international joint conference on Artifi-cial Intelligence, pages
2232–2238. AAAI Press.

Zhang, Y., Blackwood, G., and Clark, S. (2012). Syntax-based word ordering incorporating
a large-scale language model. In Proceedings of the 13th Conference of the European Chapter
of the Association for Computational Linguistics, pages 736–746, Avignon, France. Association
for Computational Linguistics.

Zhang, Y. and Clark, S. (2015). Discriminative syntax-based word ordering for text generation.
Computational Linguistics, 41(3):503–538.

Zhao, C., Walker, M., and Chaturvedi, S. (2020). Bridging the structural gap between en-
coding and decoding for data-to-text generation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 2481–2491, Online. Association for
Computational Linguistics.

Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C. M., and Eger, S. (2019). MoverScore:
Text generation evaluating with contextualized embeddings and earth mover distance. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 563–578, Hong Kong, China. Association for Computational Linguistics.

138

Zhou, Y., Liu, C., and Pan, Y. (2016). Modelling sentence pairs with tree-structured attentive
encoder. In Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2912–2922, Osaka, Japan. The COLING 2016 Organizing
Committee.

139

	Couverture
	Dédicace
	Abstract
	Résumé
	Contents
	Génération en langue naturelle : de la création des données à l'évaluation, en passant par la modélisation
	Introduction
	Background
	Natural Language Generation
	Introduction to NLG
	Input Data in NLG

	Methods in Natural Language Generation
	Encoder-Decoder Framework
	Attention
	Copy and Coverage Mechanisms
	Factored Models
	Transformers, Pre-trained Language Models
	Encoder-Decoder Models for NLG

	Future Directions

	Creating Training Corpora for Natural Language Generation
	Introduction
	Related Work
	Corpus Construction for Natural Language Generation
	Automatic Post-Editing

	WebNLG Data-to-Text Dataset
	Creating Russian Version of WebNLG Dataset
	Neural Machine Translation
	Manual Post-Editing and Error Analysis

	Automatic Post-Editing
	Rule-Based Post-Editing
	Automatic Post-Editing Model

	Evaluation of Rule-Based Post-Editing
	Conclusion

	Handling Rare Items in Natural Language Generation
	Introduction
	Related Work
	Experiments
	Datasets
	Model Parameters
	Evaluation

	Results and Discussion
	Conclusion

	Training Models for Surface Realisation
	Introduction
	Motivation and Related Work
	Motivation
	Related Work

	Data
	SR'18
	SR'19

	Model
	Word Ordering
	Morphological Realisation
	Contraction Generation

	Evaluation on SR'18
	Word Ordering
	Morphological Realisation
	Contraction Generation
	Global Evaluation

	Participation in SR'19
	Model Adaptation
	Results and Discussion

	Conclusion

	Evaluating Surface Realisers
	Introduction
	Related Work
	Framework for Error Analysis
	Syntactic Complexity Metrics
	Performance Metrics
	Correlation Tests
	Error Mining

	Data and Experimental Setting
	Error Analysis
	Tree-Based Syntactic Complexity
	Projectivity
	Entropy
	Which Syntactic Constructions Are Harder to Handle?

	Using Error Analysis for Improving Models or Datasets
	Conclusion

	Evaluating Natural Language Generation Systems
	Introduction
	Context and Motivation
	Experimental Setup
	Data
	Design
	Ensuring Quality
	Correlations

	Correlation Analysis Results
	Conclusion

	Conclusion
	Appendices
	Appendix A
	Appendix B
	Bibliography

