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Figure 15: A Shreier graph of the Grigorhuk group
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Figure 16: The orbit Shreier graphs of the Grigorhuk group on the spae X

!

IMG(x

2

� 1). The iterated monodromy group of the polynomial x

2

� 1 is generated by two

generators a = (b; 1)� and b = (a; 1), where � is the transposition.

Some of the (simpliial) Shreier graphs of the group IMG

�

z

2

� 1

�

ating on the �nite levels

are shown on Figure 17. Compare with the Julia set in Figure 20, page 49.

The Shreier graphs of the groups IMG

�

z

2

� 1

�

are unions of 2

n

-gons.

The Fabrykowski-Gupta group. The Shreier graph of this group, introdued in Subse-

tion 9.3, is planar and is a union of triangles. The �nite Shreier graph �

6

(G;S) is given in

Figure 18. As an be seen, the limit spae and the Shreier graph have a similar aspet.

Penrose tilings. If we take the group F generated by the transformations L, M and S de�ned

by the formul� from Theorem 3.1, then it will at on the spae P , with Shreier graphs isomorphi

to the dual graphs of the Penrose tilings (i.e., to the graphs whose verties are tiles of the tiling,

with two verties onneted by an edge if and only if the respetive tiles have a ommon side),

exept for the Penrose tilings having non-trivial symmetry. In that ase the orresponding Shreier

graph will be isomorphi to the adjaeny graph of the fundamental domain of the symmetry group

of the tiling, with loops at the verties bounding the domain.

8 Growth and languages

In its most general form, the problem we deal with here is the assoiation to a geometri or

ombinatorial objet of a numeri invariant, the degree or rate of growth, or of a string of numeri

invariants, the growth power series. We sketh in this setion the main notions of growth, and

present them in a uni�ed way.

The geometri objets desribed in this paper are of two natures: some are ompat (X

!

, or

the losure of G in AutT (X)), while some are disrete (G, its Cayley graph, Shreier graphs, et.)

Some other, more algebrai notions of growth or dimension may also be integrated to this

piture. To name the main ones, growth of monoids and automata (that are intimately onneted

to growth of groups); ogrowth of groups (related to spetral properties of groups| see Setion 12);
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Figure 17: The Shreier graphs �

n

(IMG

�

z

2

� 1

�

; fa

�1

; b

�1

g) of the nth level ation, for 3 � n � 6

subgroup growth [Lub95℄; growth of number of irreduible representations [PT96℄; growth of planar

algebras [Jon01℄; growth of the lower entral series [Gri89, BG00a, Pet99℄, et.

8.1 Compat spaes

Let K be a ompat metri spae. Its Hausdor� dimension (see [Fal97, Mot01℄) is de�ned as

follows: for � > 0, the �-volume of K is

H

�

(K) = lim

�&0

inf

overs fU

i

g of K with

diameter at most �

X

diam(U

i

)

�

:

Clearly H

�

(K) is a dereasing funtion of �. The Hausdor� dimension dim

H

(K) of K is de�ned

as the unique value in [0;1℄ suh that H

�

(K) = 1 if 0 < � < dim

H

(K) and H

�

(K) = 0 if

� > dim

H

(K).

A onneted, but easier-to-grasp notion, is that of box dimension. It is de�ned, when it exists,

as

dim

�

(K) = � lim

�&0

ln(number of �-balls needed to over K)

ln �

:

If dim

�

(K) exists, then dim

H

(K) exists too and takes the same value.

For arbitrary topologial spaes F , the following notion, whih does not refer to any metri, has

been introdued: the topologial dimension, also alled (Lebesgue) overing dimension dim

T

(F ) of

F is the minimal n 2 N suh that any open over of F admits an open re�nement of order n+ 1,

i.e. suh that no point of F is overed by more than n+ 1 open sets.

8.2 Disrete spaes

Let � be a onneted, loally �nite graph, viewed as a disrete metri spae by assigning length

1 to eah edge. Choose a base vertex v 2 V . Then the growth of � at v is the integer-valued

funtion 

�;v

: n 7! jB(v; n)j measuring the volume growth of balls at v.

We introdue a preorder on positive-real-valued funtions: say  - Æ if there is an N 2 N suh

that (n) � Æ(n+N) for all n 2 N; and say  � Æ if  - Æ and Æ - .

Clearly 

�;v

(n) � 

�;w

(n + d(v; w)), so the �-equivalene lass of 

�;v

does not depend on v;

we all it the growth of �, written 

�

.

Note that if � has degree bounded by a onstantD, then 

�

- D

n

. The graph � has polynomial

growth if 

�

- Kn

d

for some K; d 2 R; the in�mal suh d is alled the degree of �. The graph has
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Figure 18: The Shreier graph �

6

(G;S) of the Fabrykowski-Gupta group

exponential growth if 

�

% b

n

for some b > 1; the supremum of suh b's is alled the growth rate

of �. In all other ases, � has intermediate growth.

The (polynomial) degree of growth is an exat analogue of the box dimension de�ned above.

Indeed, given a graph � and a vertex v, onsider the metri spaes K

n

=

1

n

B(v; n), namely the

balls of radius n with the metri saled down by a fator of n. Then eah K

n

is ompat (of

diameter 1). Assume � has growth degree d. Take the limit K of a onvergent subsequene (in

the Gromov-Hausdor� metri [Gro81℄) of (K

n

)

n�1

. Then dim

�

(K) = d.

Conversely, let K be a ompat spae of box dimension d, with a �xed point �. For � = 1=n

overK by a minimal number of �-balls, and onsider the graph �

n

, with vertex set the set of balls,

and edges onneting adjaent balls. Take the limit � of a onvergent subsequene of (�

n

)

n�0

(in

the loal topology), with eah �

n

based at the ball ontaining �. Then � is a graph of growth

degree d.

We shall see in Subsetion 8.9 examples of Shreier graphs of polynomial growth, with assoi-

ated ompat spaes of �nite box dimension.

8.3 Amenability

De�nition 8.1. Let G at on a set X . The ation is amenable (in the sense of von Neu-

mann [vN29℄) if there exists a �nitely additive measure � on X , invariant under the ation of

G, with �(X) = 1.

We then say a group is amenable if its left- (or right-) multipliation ation on itself is amenable.

Amenability an be tested using the following riterion, due to F�lner for the regular a-

tion [F�l57℄ (see also [CSGH99℄ and the literature ited there):

Theorem 8.1. Assume the group G ats on a disrete set X. Then the ation is amenable if and
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Figure 20: The Julia set of the polynomial z

2

� 1.

Figure 21: The Julia set of the polynomial z

2

+ i.

5. The Julia sets of the polynomials z

2

+ , where 

3

+2

2

+ +1 = 0, are shown in Figure 22.

The left one, alled the \airplane", orresponds to the real root , while the right one, alled

\Douady's rabbit", orresponds to the omplex root with positive imaginary part. Their

orresponding groups have almost the same reursion | see Subsetion 5.2.

9.4 The solenoid S

G

Let us �x a self-similar ontrating ation of a group G over the alphabet X . Denote by X

Z

the spae of all two-sided in�nite sequenes over the alphabet X with the produt topology. The

elements of this spae have the form

� = : : : x

�3

x

�2

x

�1

: x

0

x

1

x

2

: : : ;

with x

i

2 X , and where the dot marks the plae between the (�1)-st and 0th oordinates. The

sequene x

0

x

1

x

2

: : : is alled the integer part of the sequene � and is written [�℄.

The map

s : : : : x

�3

x

�2

x

�1

: x

0

x

1

x

2

: : : 7! : : : x

�4

x

�3

x

�2

: x

�1

x

0

x

1

: : :

is alled the shift. It is a homeomorphism of the spae X

Z

.

We say that two sequenes : : : x

�2

x

�1

: x

0

x

1

: : : and : : : y

�2

y

�1

: y

0

y

1

: : : 2 X

Z

are asymptoti-

ally equivalent if there exists a sequene fg

k

g

1

k=1

taking a �nite number of di�erent values in G,

suh that

(x

�k

x

�k+1

x

�k+2

: : :)

g

k

= y

�k

y

�k+1

y

�k+2

: : : :
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Figure 23: The set of frations bounded by the dragon urve.

Theorem 9.11. Two sequenes (: : : x

2

x

1

) and (: : : y

2

y

1

) 2 X

�!

are asymptotially equivalent if

and only if

1

X

k=1

�

k

(r

x

k

)�

1

X

k=1

�

k

(r

y

k

) 2 Z

n

:

Two sequenes � = (: : : x

�2

x

�1

: x

0

x

1

: : :) and � = (: : : y

�2

y

�1

: y

0

y

1

: : :) 2 X

Z

are asymptoti-

ally equivalent if and only if

1

X

k=1

�

k

(r

x

�k

)�

1

X

k=1

�

k

(r

y

�k

) =

1

X

k=0

�

�k

(r

y

k

)�

1

X

k=0

�

�k

(r

x

k

);

where the left-hand side part is alulated in R

n

, while the right one is alulated in the losure

^

Z

n

of Z

n

; both di�erenes must belong to Z

n

.

Let L be a leaf of the solenoid S

G

. Then it deomposes into the union of its tiles, and thus

an be equipped with the diret limit topology oming from this deomposition. More expliitly,

a set A � L is open in the diret limit topology if and only if for any �nite union of tiles B the

set A \ B is open in the relative topology of B.

Corollary 9.12. Let (Z

n

; X

!

) be a self-similar reurrent �nite-state ation. Then

1. the limit spae J

Z

n

is homeomorphi to the torus T

n

= R

n

=Z

n

;

2. for every leaf L (with its diret limit topology) of the solenoid S

Z

n

there exists a homeomor-

phism � : L ! R

n

suh that for every tile T

w

of L we have �(T

w

) = T(�;R) + r(w) for

some r(w) 2 Z

n

.

Essentially, r(w) is the base-� evaluation of w.

It follows from the desription we obtained of the limit spae J

Z

n

that the shift s on it oinides

with the map on the torus (R=Z)

n

given by the linear transformation �

�1

. This map is obviously

a d-to-1 overing. The tiles, just as in the general ase, de�ne a Markov partition for this toral

dynamial system.

Corollary 9.12 shows that the tiled leaves of ontrating reurrent self-similar ations of abelian

groups are the lassial digit tilings of Eulidean spae. For example, a part of the tiling by

\dragons" is shown on Figure 25. The union of the two marked entral tiles is similar to the

original tile.

52

Figure 25: Plane tiling by dragon urves

Proposition 9.9 remains true for ontrating ations of inverse semigroups. Therefore, for self-

similar ontrating inverse semigroups the tiling iterated funtion systems are also well de�ned.

The Fibonai transformations. The semigroup generated by the Fibonai transformations

is ontrating with ontrating oeÆient �

�1

, where � =

1+

p

5

2

.

The orresponding iterated funtion system on the tiles is the Fibonai iterated funtion system

desribed among the Examples of Subsetion 3.2.

Penrose tilings. The semigroup related to the Penrose tilings is also ontrating, with on-

tration oeÆient �

�1

. The tiling iterated funtion system on the tiles orresponding to this

semigroup is exatly the Penrose iterated funtions system.

10 Hyperboli spaes and groups

10.1 De�nitions

De�nition 10.1. A metri spae (X; d) is Æ-hyperboli (in the sense of M. Gromov) if for every

x

0

; x; y; z 2 X the inequality

hx � yi

x

0

� min fhx � zi

x

0

; hy � zi

x

0

g � Æ

holds, where

hx � yi

x

0

=

1

2

(d(x

0

; x) + d(x

0

; y)� d(x; y))

denotes the Gromov produt of the points x and y with respet to the base point x

0

.

Examples of hyperboli metri spaes are all bounded spaes (with Æ equal to the diameter of

the spae), trees (whih are 0-hyperboli) and the usual hyperboli spae H

n

, whih is hyperboli

with Æ = log 3.

De�nition 10.2. A �nitely generated group is hyperboli if it is hyperboli as a word metri

spae.

The de�nition is independent of the hoie of the generating set with respet to whih the word

metri is de�ned. For the proof of this fat, and for the proof of other properties of hyperboli

groups, see [Gro87, CDP90, CP93, GH90℄.

Here is a short summary of examples and properties of hyperboli groups:

1. Every �nite group is hyperboli.
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18 LAURENT BARTHOLDI AND VOLODYMYR NEKRASHEVYCH

Thurston’s Theorem 1.1 implies that Tm · fR is combinatorially equivalent to
exactly one polynomial in the set {fR, fA, fC}. There are no obstructions, since
the only obstructions for polynomials are Levy cycles, which cannot exist in the
case of a periodic critical point. Corollary 3.3 then tells us that ΛT m·fR

(π1 (C))
coincides with the iterated monodromy group of the associated polynomial. One
can prove that these groups are different (as sets), and therefore, if we prove that
ΛT m·fR

(π1 (C)) coincides with a given group IMG(f∗) for ∗ ∈ {R,A,C}, then we
can conclude that Tm · fR is equivalent to the respective f∗.

We therefore prove that the IMG(f∗) are all distinct. This is done by computing
their nuclei, and checking that they are distinct as finite automata; this is done in
Figure 4.

Figure 4. Nuclei of the “rabbit” (top), the “corabbit” (right) and
the “airplane” (bottom)

Proposition 4.4. The group IMG (T · fR) = ΛT ·fR
(π1 (C)) coincides with IMG (fA).

Indeed the homeomorphism h = TS−1a conjugates T · fR with fA, if the planes of
fR, fA are identified as above.

Proof. Let α, β, γ be the generators of IMG (fA). They are defined now as the
automorphisms of X∗ satisfying the recursion (compare with (8))

α =
〈〈
α−1, γα

〉〉
σ, β = 〈〈α, 1〉〉, γ =

〈〈
1, βγ−1

〉〉
.

Let α1, β1 and γ1 be the generators of IMG(T · fR). They are given by the
recursion (10):

α1 =
〈〈
α−1

1 β−1
1 , γ1β1α1

〉〉
σ, β1 =

〈〈
α

β−1

1

1 , 1
〉〉
, γ1 =

〈〈
β

α−1

1
β−1

1

1 , 1
〉〉
.

We claim that

α1 = αh = αβγ−1

αγβα, β1 = βh = βγ−1αγβα, γ1 = γh = γα.

L’avion, le lapin, le colapin


