Computational Complexity of the GPAC

Amaury Pouly
Joint work with Olivier Bournez and Daniel Graça

April 10, 2014

Outline

(1) Introduction

- GPAC
- Computable Analysis
- Analog Church Thesis
- Complexity
(2) Toward a Complexity Theory for the GPAC
- What is the problem
- Computational Complexity (Real Number)
(3) Conclusion

GPAC

General Purpose Analog Computer
 - by Claude Shanon (1941)

GPAC

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

GPAC

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit built from:

A constant unit

$$
u=\sqrt{x}-u v
$$

An multiplier unit

An adder unit
$u=\int-\int u d v$
An integrator unit

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the Polynomial Initial Value Problem (PIVP):

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where p is a vector of polynomials.

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the Polynomial Initial Value Problem (PIVP):

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where p is a vector of polynomials.

Remark

- continuous dynamical system

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the Polynomial Initial Value Problem (PIVP):

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where p is a vector of polynomials.

Remark

- continuous dynamical system
- the GPAC is just one reason to look at them ${ }^{a}$
${ }^{a}$ Ask question

GPAC: examples

Example (One variable, linear system)

GPAC: examples

Example (One variable, linear system)

Example (One variable, nonlinear system)

GPAC: examples

Example (One variable, linear system)

Example (variable, nonlinear system)

GPAC: examples

Example (Two variables, linear system)

GPAC: examples

Example (Two variables, linear system)

Example (Not so nice example)

GPAC: examples

Example (Two variables, linear system)

Example (Not so nice example)

$$
t \underset{n \text { integrators }}{\boxed{\square} \cdot \square \cdot \square \cdot \square \cdot} \cdot y_{n}(t)\left\{\begin{array}{l}
y_{1}^{\prime}=y_{1} \\
y_{2}^{\prime}=y_{2} y_{1} \\
\vdots \\
y_{n}^{\prime}=y_{n} y_{n-1} \cdots y_{2} y_{1}
\end{array}\right.
$$

GPAC: examples

Example (Two variables, linear system)

Example (Not so nice example)

Motivation

- Study the computational power of such systems:

Motivation

(1) Study the computational power of such systems:

- (asymptotical) (properties of) solutions

Motivation

(1) Study the computational power of such systems:

- (asymptotical) (properties of) solutions
- reachability properties

Motivation

- Study the computational power of such systems:
- (asymptotical) (properties of) solutions
- reachability properties
- attractors

Motivation

(1) Study the computational power of such systems:

- (asymptotical) (properties of) solutions
- reachability properties
- attractors
(2) Use these systems as a model of computation

Motivation

(1) Study the computational power of such systems:

- (asymptotical) (properties of) solutions
- reachability properties
- attractors
(2) Use these systems as a model of computation
- on words

Motivation

(1) Study the computational power of such systems:

- (asymptotical) (properties of) solutions
- reachability properties
- attractors
(2) Use these systems as a model of computation
- on words
- on real numbers

Computable real

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_{p} s.t. $\left|r-r_{p}\right| \leqslant 2^{-p}$

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

$$
\text { Given } p \in \mathbb{N} \text {, compute } r_{p} \text { s.t. }\left|r-r_{p}\right| \leqslant 2^{-p}
$$

Example

Rational numbers, π, e, \ldots

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

$$
\text { Given } p \in \mathbb{N} \text {, compute } r_{p} \text { s.t. }\left|r-r_{p}\right| \leqslant 2^{-p}
$$

Example

Rational numbers, π, e, \ldots

Example (Counter-Example)

$$
r=\sum_{n=0}^{\infty} d_{n} 2^{-n}
$$

where

$$
d_{n}=1 \Leftrightarrow \text { the } n^{\text {th }} \text { Turing Machine halts on input } n
$$

Computable function

Definition (Computable Function)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing $x, M^{\mathcal{O}}$ computes $f(x)$.

Computable function

Definition (Computable Function)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing $x, M^{\mathcal{O}}$ computes $f(x)$.

Definition (Equivalent)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute $f(r)$.

Computable function

Definition (Computable Function)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing $x, M^{\mathcal{O}}$ computes $f(x)$.

Definition (Equivalent)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute $f(r)$.

Example

Polynomials, trigonometric functions, é, $\sqrt{\cdot}, \ldots$

Computable function

Definition (Computable Function)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing $x, M^{\mathcal{O}}$ computes $f(x)$.

Definition (Equivalent)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute $f(r)$.

Example

Polynomials, trigonometric functions, $e, \sqrt{\cdot}, \ldots$
Example (Counter-Example)

$$
f(x)=\lceil x\rceil
$$

Computable Analysis = GPAC ?

Computable Analysis = GPAC ?

Seems not:

Computable Analysis = GPAC ?

Seems not:

- Solutions of a GPAC are analytic

Computable Analysis = GPAC ?

Seems not:

- Solutions of a GPAC are analytic
- $x \rightarrow|x|$ is computable but not analytic

Theorem (\odot)

Computable Analysis \neq General Purpose Analog Computer

Computable Analysis = GPAC ?

Seems not:

- Solutions of a GPAC are analytic
- $x \rightarrow|x|$ is computable but not analytic

Theorem (\odot)
Computable Analysis \neq General Purpose Analog Computer
Can we fix this ?

GPAC: back to the basics

Definition

y is generated by a GPAC iff it is a component of the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the ordinary differential equation (ODE):

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

where p is a vector of polynomials

GPAC: back to the basics

Definition

y is generated by a GPAC iff it is a component of the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the ordinary differential equation (ODE):

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned} \quad \text { where } p\right. \text { is a vector of polynomials }
$$

Definition

f is computable by a GPAC iff for all $x \in \mathbb{R}$ the solution $y=\left(y_{1}, \ldots, y_{d}\right)$ of the ordinary differential equation (ODE):

$$
\left\{\begin{array}{c}
y^{\prime}=p(y) \quad \text { where } p, q \text { is a vector of polynomials } \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

satisfies for all $f(x)=\lim _{t \rightarrow \infty} y_{1}(t)$.

GPAC: back to the basics

Definition

f is computable by a GPAC iff for all $x \in \mathbb{R}$ the solution $y=\left(y_{1}, \ldots, y_{d}\right)$ of the ordinary differential equation (ODE):

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q is a vector of polynomials
satisfies for all $f(x)=\lim _{t \rightarrow \infty} y_{1}(t)$.

Example

Computable Analysis = GPAC ? (again)

Theorem (©)
 The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Computable Analysis = GPAC ? (again)

Theorem (©)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Proof.

- Any solution to a PIVP is computable + convergence

Computable Analysis = GPAC ? (again)

Theorem (॰)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Proof.

- Any solution to a PIVP is computable + convergence
- Simulate a Turing machine with a GPACa

[^0]
What about complexity ?

What about complexity ?

- Computable Analysis: nice complexity theory (from Turing Machines)

What about complexity ?

- Computable Analysis: nice complexity theory (from Turing Machines)
- General Purpose Analog Computer: nothing

What about complexity ?

- Computable Analysis: nice complexity theory (from Turing Machines)
- General Purpose Analog Computer: nothing

What about complexity?

- Computable Analysis: nice complexity theory (from Turing Machines)
- General Purpose Analog Computer: nothing

Conjecture (\odot)

Computable Analysis = General Purpose Analog Computer, at the complexity level

Time Scaling

System	\#1	\#2
ODE	$\left\{\begin{array}{l}y^{\prime}(t)=p(y(t)) \\ y(1)=y_{0}\end{array}\right.$	$\left\{\begin{array}{l}z^{\prime}(t)=u(t) p(z(t)) \\ u^{\prime}(t)=u(t) \\ z\left(t_{0}\right)=y_{0} \\ u(1)=1\end{array}\right.$

Time Scaling

System	\#1	\#2
ODE	$\left\{\begin{array}{l}y^{\prime}(t)=p(y(t)) \\ y(1)=y_{0}\end{array}\right.$	$\left\{\begin{array}{l}z^{\prime}(t)=u(t) p(z(t)) \\ u^{\prime}(t)=u(t) \\ z\left(t_{0}\right)=y_{0} \\ u(1)=1\end{array}\right.$

Remark

Same curve, different speed: $u(t)=e^{t}$ and $z(t)=y\left(e^{t}\right)$

Example

Time Scaling

System	\#1	\#2
ODE	$\left\{\begin{array}{l}y^{\prime}(t)=p(y(t)) \\ y(1)=y_{0}\end{array}\right.$	$\left\{\begin{array}{l}z^{\prime}(t)=u(t) p(z(t)) \\ u^{\prime}(t)=u(t) \\ z\left(t_{0}\right)=y_{0} \\ u(1)=1\end{array}\right.$
Computed Function	$f(x)=\lim _{t \rightarrow \infty} y_{1}(t)=\lim _{t \rightarrow \infty} z_{1}(t)$	

Remark

Same curve, different speed: $u(t)=e^{t}$ and $z(t)=y\left(e^{t}\right)$

Example

Time Scaling

System	\#1	\#2
ODE	$\left\{\begin{array}{l}y^{\prime}(t)=p(y(t)) \\ y(1)=y_{0}\end{array}\right.$	$\left\{\begin{array}{l}z^{\prime}(t)=u(t) p(z(t)) \\ u^{\prime}(t)=u(t) \\ z\left(t_{0}\right)=y_{0} \\ u(1)=1\end{array}\right.$
Computed Function	$f(x)=\lim _{t \rightarrow \infty} y_{1}(t)=\lim _{t \rightarrow \infty} z_{1}(t)$	
Convergence	Eventually	Exponentially faster

Example

Time Scaling

ODE	$\left\{\begin{array}{l}y^{\prime}(t)=p(y(t)) \\ y(1)=y_{0}\end{array}\right.$	$\left\{\begin{array}{l}z^{\prime}(t)=u(t) p(z(t)) \\ u^{\prime}(t)=u(t) \\ z\left(t_{0}\right)=y_{0} \\ u(1)=1\end{array}\right.$
Computed Function	$f(x)=\lim _{t \rightarrow \infty} y_{1}(t)=\lim _{t \rightarrow \infty} z_{1}(t)$	
Convergence	Eventually	Exponentially faster c
Time for precision μ	$\operatorname{tm}(\mu)$	$\operatorname{tm}^{\prime}(\mu)=\log (\operatorname{tm}(\mu))$

Example

Time Scaling

ODE	$y^{\prime}=p(y)$	$\left\{\begin{array}{l}z^{\prime}=u p(z) \\ u^{\prime}=u\end{array}\right.$
Computed Function	$f(x)=\lim _{t \rightarrow \infty} y_{1}(t)=\lim _{t \rightarrow \infty} z_{1}(t)$	
Time for precision μ	$\mathrm{tm}(\mu)$	$\mathrm{tm}^{\prime}(\mu)=\log (\mathrm{tm}(\mu))$
Bounding box for ODE at time t	$\mathrm{sp}(t)$	$\mathrm{sp}^{\prime}(t)=\max \left(\operatorname{sp}\left(e^{t}\right), e^{t}\right)$

Example

Time Scaling

ODE	$y^{\prime}=p(y)$	$\left\{\begin{array}{l}z^{\prime}=u p(z) \\ u^{\prime}=u\end{array}\right.$
Computed Function	$f(x)=\lim _{t \rightarrow \infty} y_{1}(t)=\lim _{t \rightarrow \infty} z_{1}(t)$	
Time for precision μ	$\operatorname{tm}(\mu)$	$\mathrm{tm}^{\prime}(\mu)=\log (\operatorname{tm}(\mu))$
Bounding box for ODE at time t	$\operatorname{sp}(t)$	$\operatorname{sp}^{\prime}(t)=\max \left(\operatorname{sp}\left(e^{t}\right), e^{t}\right)$
Bounding box for ODE at precision μ	$\operatorname{sp}(\operatorname{tm}(\mu))$	$\max (\operatorname{sp}(\operatorname{tm}(\mu)), \operatorname{tm}(\mu))$

Remark

- $\operatorname{tm}(\mu)$ and $\operatorname{sp}(t)$ depend on the convergence rate
- $\operatorname{sp}(\operatorname{tm}(\mu))$ seems not

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow$ Ok but geometric interpretation?

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow$ Ok but geometric interpretation?
- Length of the curve until precision $\mu \Rightarrow$ Much more intuitive

Definition (Polytime GPAC-Computable Function)

f is polytime computable by a GPAC iff for all $x \in \mathbb{R}$ the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the ordinary differential equation (ODE):

$$
\left\{\begin{aligned}
y^{\prime} & =p(y) \\
y\left(t_{0}\right) & =q(x)
\end{aligned}\right.
$$

where p, q are vectors of polynomials
satisfies $\| f(x)-y_{1}\left(\ell^{-1}(\operatorname{len}(x, \mu)) \| \leqslant e^{-\mu}\right.$ where

- len is a polynomial [polytime]
- $\ell(t)$ is the length of the curve y from t_{0} to t.
- $\ell^{-1}(I)$ is the time to reach a length I on the curve y

Definition (Polytime GPAC-Computable Function)

f is polytime computable by a GPAC iff for all $x \in \mathbb{R}$ the solution $y=$ $\left(y_{1}, \ldots, y_{d}\right)$ of the ordinary differential equation (ODE):

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials
satisfies $\| f(x)-y_{1}\left(\ell^{-1}(\operatorname{len}(x, \mu)) \| \leqslant e^{-\mu}\right.$ where

- len is a polynomial [polytime]
- $\ell(t)$ is the length of the curve y from t_{0} to t.
- $\ell^{-1}(I)$ is the time to reach a length I on the curve y

Remark

- implies $f(x)=\lim _{t \rightarrow \infty} y_{1}(t)$
- length of a curve: $\ell(t)=\int_{t_{0}}^{t}\|p(y(u))\| d u$
- $y_{1}\left(\ell^{-1}(I)\right)=$ position after travelling a length $/$ on the curve y

Computable Analysis = GPAC ?

Theorem (Almost @)

The polytime GPAC-computable functions are exactly the polytime computable functions of the Computable Analysis.

Computable Analysis = GPAC ?

Theorem (Almost ®)

The polytime GPAC-computable functions are exactly the polytime computable functions of the Computable Analysis.

Remark (Polytime computable in CA)
f polytime computable:

- polynomial modulus of continuity mc:

$$
\|x-y\| \leqslant 2^{-\operatorname{mc}(\mu)} \Rightarrow\|f(x)-f(y)\| \leqslant 2^{-\mu}
$$

- polynomial time computable over \mathbb{Q}

Conclusion

- Complexity theory for the GPAC

Conclusion

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time

Conclusion

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time Not mentioned in this talk:
- The GPAC as a language recogniser

Conclusion

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time Not mentioned in this talk:
- The GPAC as a language recogniser
- Equivalence with P and $N P$

Future Work

- Notion of reduction?

Future Work

- Notion of reduction?
- Space complexity?

Questions ?

- Do you have any questions ?

GPAC as Language Recogniser

- GPAC as computable real function \rightarrow Computable Analysis

GPAC as Language Recogniser

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

GPAC as Language Recogniser

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words \approx integers \subseteq real numbers

GPAC as Language Recogniser

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words \approx integers \subseteq real numbers
- decide $\approx\{$ Yes, No $\} \approx\{0,1\} \subseteq$ real numbers

GPAC as Language Recogniser

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words \approx integers \subseteq real numbers
- decide $\approx\{$ Yes, No $\} \approx\{0,1\} \subseteq$ real numbers
- language recogniser: special case of real function ?

$$
f: \mathbb{N} \subseteq \mathbb{R} \rightarrow\{0,1\} \subseteq \mathbb{R}
$$

GPAC as Language Recogniser

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words \approx integers \subseteq real numbers
- decide $\approx\{$ Yes, No $\} \approx\{0,1\} \subseteq$ real numbers
- language recogniser: special case of real function ?
$f: \mathbb{N} \subseteq \mathbb{R} \rightarrow\{0,1\} \subseteq \mathbb{R}$
- Yes but there is more!

Definition (GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials

satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)

Definition (GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials

satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)

Theorem

The GPAC-recognisable languages are exactly the recursive languages.

Definition (GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials

satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)

Theorem

The GPAC-recognisable languages are exactly the recursive languages.

Remark

What about complexity ?

Definition (Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)

Definition (Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)
where $t_{1}(x)=\ell^{-1}\left(\operatorname{len}(\log (x))\right.$ where $\ell(t)$ is the length of y from t_{0} to t and len a polynomial.

Definition (Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)
where $t_{1}(x)=\ell^{-1}\left(\operatorname{len}(\log (x))\right.$ where $\ell(t)$ is the length of y from t_{0} to t and len a polynomial.

Theorem

The class of polytime GPAC-recognisable languages is exactly P.

Definition (Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{array}{r}
y^{\prime}=p(y) \\
y\left(t_{0}\right)=q(x)
\end{array}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1 \quad$ (accept)
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1 \quad$ (reject)
where $t_{1}(x)=\ell^{-1}\left(\operatorname{len}(\log (x))\right.$ where $\ell(t)$ is the length of y from t_{0} to t and len a polynomial.

Theorem

The class of polytime GPAC-recognisable languages is exactly P.
Remark (Why $\log (x)$?)
Classical complexity measure: length of word \approx log of value

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{aligned}
y^{\prime} & =p(y, u) \\
y\left(t_{0}\right) & =q(x)
\end{aligned}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1$ for all digital controller u
where $t_{1}(x)=\ell^{-1}(\operatorname{len}(\log (x))$ and len a polynomial.

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{aligned}
y^{\prime} & =p(y, u) \\
y\left(t_{0}\right) & =q(x)
\end{aligned}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1$ for all digital controller u
where $t_{1}(x)=\ell^{-1}(\operatorname{len}(\log (x))$ and len a polynomial.
Remark (Digital Controller)
Digital Controller $\approx u: \mathbb{R} \rightarrow\{0,1\}$

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

$\mathcal{L} \subseteq \mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$
\left\{\begin{aligned}
y^{\prime} & =p(y, u) \\
y\left(t_{0}\right) & =q(x)
\end{aligned}\right.
$$

where p, q are vectors of polynomials
satisfies for $t \geqslant t_{1}(x)$:

- if $x \in \mathcal{L}$ then $y_{1}(t) \geqslant 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_{1}(t) \leqslant-1$ for all digital controller u where $t_{1}(x)=\ell^{-1}(\operatorname{len}(\log (x))$ and len a polynomial.
Remark (Digital Controller)
Digital Controller $\approx u: \mathbb{R} \rightarrow\{0,1\}$

Theorem

The class of non-deterministic polytime GPAC-recognisable languages is exactly $N P$.

[^0]: ${ }^{a}$ Details on blackboard

