Computational Complexity of the GPAC

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

April 10, 2014

Outline

- Introduction
 - GPAC
 - Computable Analysis
 - Analog Church Thesis
 - Complexity
- Toward a Complexity Theory for the GPAC
 - What is the problem
 - Computational Complexity (Real Number)
- 3 Conclusion

GPAC

General Purpose Analog Computer

by Claude Shanon (1941)

GPAC

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

GPAC

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit built from:

A constant unit
$$v = v + v$$

A constant unit $v = v + v$

An adder unit $v = v + v$

An adder unit $v = v + v$
 $v = v + v$

An integrator unit $v = v$

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution y = y (y_1, \ldots, y_d) of the Polynomial Initial Value Problem (PIVP):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y = (y_1, \ldots, y_d)$ of the Polynomial Initial Value Problem (PIVP):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

Remark

continuous dynamical system

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y = (y_1, \ldots, y_d)$ of the Polynomial Initial Value Problem (PIVP):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

Remark

- continuous dynamical system
- the GPAC is just one reason to look at them^a

^aAsk question

Example (One variable, linear system)

$$t - \int e^t \quad \begin{cases} y' = y \\ y(0) = 0 \end{cases}$$

Example (One variable, linear system)

Example (One variable, nonlinear system)

Example (One variable, linear system)

Example (Two variable, nonlinear system)

Example (Two variables, linear system)

$$\begin{cases} y' = z \\ z' = -y \\ y(0) = 0 \\ z(0) = 1 \end{cases}$$

Example (Two variables, linear system)

Example (Not so nice example)

Example (Two variables, linear system)

Example (Not so nice example)

Example (Two variables, linear system)

Example (Not so nice example)

Study the computational power of such systems:

- Study the computational power of such systems:
 - (asymptotical) (properties of) solutions

- Study the computational power of such systems:
 - (asymptotical) (properties of) solutions
 - reachability properties

- Study the computational power of such systems:
 - (asymptotical) (properties of) solutions
 - reachability properties
 - attractors

- Study the computational power of such systems:
 - (asymptotical) (properties of) solutions
 - reachability properties
 - attractors
- Use these systems as a model of computation

- Study the computational power of such systems:
 - (asymptotical) (properties of) solutions
 - reachability properties
 - attractors
- Use these systems as a model of computation
 - on words

- Study the computational power of such systems:
 - (asymptotical) (properties of) solutions
 - reachability properties
 - attractors
- Use these systems as a model of computation
 - on words
 - on real numbers

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given
$$p \in \mathbb{N}$$
, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Example (Counter-Example)

$$r = \sum_{n=0}^{\infty} d_n 2^{-n}$$

where

 $d_n = 1 \Leftrightarrow \text{the } n^{th} \text{ Turing Machine halts on input } n$

Definition (Computable Function)

A function $f: \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Computable Function)

A function $f: \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Equivalent)

A function $f: \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Definition (Computable Function)

A function $f: \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Equivalent)

A function $f: \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Definition (Computable Function)

A function $f: \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Equivalent)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Example (Counter-Example)

$$f(x) = \lceil x \rceil$$

Seems not:

Seems not:

Solutions of a GPAC are analytic

Seems not:

- Solutions of a GPAC are analytic
- $x \rightarrow |x|$ is computable but not analytic

Theorem (8)

Computable Analysis ≠ General Purpose Analog Computer

Seems not:

- Solutions of a GPAC are analytic
- $x \rightarrow |x|$ is computable but not analytic

Theorem (8)

Computable Analysis ≠ General Purpose Analog Computer

Can we fix this?

GPAC: back to the basics

Definition

y is **generated** by a GPAC iff it is a component of the solution $y=(y_1,\ldots,y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials

GPAC: back to the basics

Definition

y is **generated** by a GPAC iff it is a component of the solution $y = (y_1, \ldots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials

Definition

f is **computable** by a GPAC iff for all $x \in \mathbb{R}$ the solution $y = (y_1, \dots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$

where p,q is a vector of polynomials

satisfies for all $f(x) = \lim_{t \to \infty} y_1(t)$.

GPAC: back to the basics

Definition

f is **computable** by a GPAC iff for all $x \in \mathbb{R}$ the solution $y = (y_1, \dots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$

where p,q is a vector of polynomials

satisfies for all $f(x) = \lim_{t \to \infty} y_1(t)$.

Example

Computable Analysis = GPAC ? (again)

Theorem (•)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Computable Analysis = GPAC ? (again)

Theorem (●)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Proof.

Any solution to a PIVP is computable + convergence

Computable Analysis = GPAC ? (again)

Theorem (●)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Proof.

- Any solution to a PIVP is computable + convergence
- Simulate a Turing machine with a GPAC^a

^aDetails on blackboard

 Computable Analysis: nice complexity theory (from Turing) Machines)

- Computable Analysis: nice complexity theory (from Turing) Machines)
- General Purpose Analog Computer: nothing

- Computable Analysis: nice complexity theory (from Turing) Machines)
- General Purpose Analog Computer: nothing

- Computable Analysis: nice complexity theory (from Turing) Machines)
- General Purpose Analog Computer: nothing

Conjecture ()

Computable Analysis = General Purpose Analog Computer, at the complexity level

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

Example

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$
Computed Function $f(x) = \lim_{t \to \infty} f(x) = \lim_{t \to \infty} f(x$		$\overline{I_1(t)} = \lim_{t \to \infty} z_1(t)$

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

Example

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$
Computed Function		$v_1(t) = \lim_{t \to \infty} z_1(t)$
Convergence	Eventually	Exponentially faster

ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$
Computed Function	$f(x) = \lim_{t \to \infty} y$	$v_1(t) = \lim_{t \to \infty} z_1(t)$
Convergence	Eventually	Exponentially faster
Time for precision μ	+ m(11)	$\pm m'(\mu) = \log(\pm m(\mu))$

Example

ODE	y'=p(y)	$\left\{ egin{aligned} z' &= u p(z) \ u' &= u \end{aligned} ight.$
Computed Function	$f(x) = \lim_{t \to \infty} y_1(t) = \lim_{t \to \infty} z_1(t)$	
Time for precision μ	$tm(\mu)$	$tm'(\mu) = log(tm(\mu))$
Bounding box for ODE at time <i>t</i>	sp(t)	$sp'(t) = max(sp(e^t), e^t)$

Example

ODE	y'=p(y)	$\begin{cases} z' = up(z) \\ u' = u \end{cases}$
Computed Function	$f(x) = \lim_{t \to \infty} y_1(t) = \lim_{t \to \infty} z_1(t)$	
Time for precision μ	$tm(\mu)$	$tm'(\mu) = log(tm(\mu))$
Bounding box for ODE at time <i>t</i>	sp(t)	$sp'(t) = max(sp(e^t), e^t)$
Bounding box for ODE at precision μ	$sp(tm(\mu))$	$max(sp(tm(\mu)),tm(\mu))$

Remark

- $tm(\mu)$ and sp(t) depend on the convergence rate
- $sp(tm(\mu))$ seems not

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

• Bounding Box at precision $\mu \Rightarrow Ok$ but geometric interpretation?

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow \mathsf{Ok}$ but geometric interpretation ?
- Length of the curve until precision $\mu \Rightarrow$ Much more intuitive

f is **polytime** computable by a GPAC iff for all $x \in \mathbb{R}$ the solution $y = (y_1, \dots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$
 where p,q are vectors of polynomials

satisfies $||f(x) - y_1(\ell^{-1}(\operatorname{len}(x,\mu))|| \le e^{-\mu}$ where

- len is a polynomial [polytime]
- $\ell(t)$ is the length of the curve y from t_0 to t.
- $\ell^{-1}(I)$ is the time to reach a length I on the curve y

Definition (Polytime GPAC-Computable Function)

f is **polytime** computable by a GPAC iff for all $x \in \mathbb{R}$ the solution $y = (y_1, \dots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$
 where p,q are vectors of polynomials

satisfies $||f(x) - y_1(\ell^{-1}(\operatorname{len}(x,\mu)))|| \leqslant e^{-\mu}$ where

- len is a polynomial [polytime]
- $\ell(t)$ is the length of the curve y from t_0 to t.
- $\ell^{-1}(I)$ is the time to reach a length I on the curve y

Remark

- implies $f(x) = \lim_{t \to \infty} y_1(t)$
- length of a curve: $\ell(t) = \int_{t_0}^{t} \|p(y(u))\| du$
- $y_1(\ell^{-1}(I))$ = position after travelling a length I on the curve y

Computable Analysis = GPAC ?

Theorem (Almost ●)

The polytime GPAC-computable functions are exactly the polytime computable functions of the Computable Analysis.

Computable Analysis = GPAC ?

Theorem (Almost ●)

The polytime GPAC-computable functions are exactly the polytime computable functions of the Computable Analysis.

Remark (Polytime computable in CA)

f polytime computable:

• polynomial modulus of continuity mc:

$$||x - y|| \le 2^{-mc(\mu)} \Rightarrow ||f(x) - f(y)|| \le 2^{-\mu}$$

polynomial time computable over

Complexity theory for the GPAC

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:

• The GPAC as a language recogniser

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time

Not mentioned in this talk:

- The GPAC as a language recogniser
- Equivalence with P and NP

Future Work

Notion of reduction ?

Future Work

- Notion of reduction ?
- Space complexity ?

Questions?

Do you have any questions ?

ullet GPAC as computable real function o Computable Analysis

- GPAC as computable real function → Computable Analysis
- GPAC as language recogniser → classical computability ?

- ullet GPAC as computable real function o Computable Analysis
- GPAC as language recogniser → classical computability ?

Remark

• words \approx integers \subseteq real numbers

- GPAC as computable real function → Computable Analysis
- GPAC as language recogniser → classical computability ?

Remark

- words ≈ integers ⊆ real numbers
- decide \approx { *Yes*, *No*} \approx {0, 1} \subseteq real numbers

GPAC as Language Recogniser

- ullet GPAC as computable real function o Computable Analysis
- GPAC as language recogniser → classical computability ?

Remark

- words \approx integers \subseteq real numbers
- decide $\approx \{\textit{Yes},\textit{No}\} \approx \{0,1\} \subseteq \text{real numbers}$
- language recogniser: special case of real function ? $f: \mathbb{N} \subset \mathbb{R} \to \{0,1\} \subset \mathbb{R}$

GPAC as Language Recogniser

- ullet GPAC as computable real function o Computable Analysis
- GPAC as language recogniser → classical computability ?

Remark

- words \approx integers \subseteq real numbers
- decide $\approx \{ \textit{Yes}, \textit{No} \} \approx \{0, 1\} \subseteq \text{real numbers}$
- language recogniser: special case of real function ? $f: \mathbb{N} \subseteq \mathbb{R} \to \{0,1\} \subseteq \mathbb{R}$
- Yes but there is more!

Definition (GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

Definition (GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

Theorem

The GPAC-recognisable languages are exactly the recursive languages.

Definition (GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$\left\{ egin{array}{ll} y' &= p(y) \ y(t_0) &= q(x) \end{array}
ight.$$
 where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

Theorem

The GPAC-recognisable languages are exactly the recursive languages.

Remark

What about complexity?

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ where $\ell(t)$ is the length of y from t_0 to t and len a polynomial.

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$
 where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ where $\ell(t)$ is the length of y from t_0 to t and len a polynomial.

Theorem

The class of polytime GPAC-recognisable languages is exactly P.

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ where $\ell(t)$ is the length of y from t_0 to t and len a polynomial.

Theorem

The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x)?)

Classical complexity measure: length of word \approx log of value

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

 $\mathcal{L}\subseteq\mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x\in\mathbb{N}$, the solution y to

$$\begin{cases} y' = p(y, u) \\ y(t_0) = q(x) \end{cases}$$
 where p, q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \geqslant 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ for all digital controller u

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ and len a polynomial.

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

 $\mathcal{L}\subseteq\mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x\in\mathbb{N}$, the solution y to

$$\begin{cases} y' = p(y, u) \\ y(t_0) = q(x) \end{cases}$$
 where p, q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ for all digital controller u

where $t_1(x) = \ell^{-1}(\operatorname{len}(\log(x)))$ and len a polynomial.

Remark (Digital Controller)

Digital Controller $\approx \textbf{\textit{u}}: \mathbb{R} \to \{0,1\}$

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

 $\mathcal{L}\subseteq\mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x\in\mathbb{N}$, the solution y to

$$\begin{cases} y' = p(y, u) \\ y(t_0) = q(x) \end{cases}$$
 where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ for all digital controller u

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ and len a polynomial.

Remark (Digital Controller)

Digital Controller $\approx \underline{\textit{u}}: \mathbb{R} \to \{0, 1\}$

Theorem

The class of non-deterministic polytime GPAC-recognisable languages is exactly *NP*.