Causal Dynamics of Discrete Manifolds

Pablo Arrighi, Simon Martiel
U. of Grenoble, U. Nice Sophia Antipolis

April 8, 2014

Outline

Causal Graph Dynamics

Graphs and Oriented Complexes

Pachner moves and homeomorphisms

Outline

Causal Graph Dynamics

Graphs and Oriented Complexes

Pachner moves and homeomorphisms

Motivation

Discretized time evolutions in physics (lattice-gas models, cellular automata...). Generalized:

- To a general discrete space: Graphs
- Keeping the symmetries of physics: Causality and Translation-invariance

Two definitions for the same object:

- Axiomatic definition (physical/mathematical)
- Constructive definition (computational)

Axiomatic view

Evolutions of graphs

Axiomatic view

Evolutions of graphs

+ causality

Axiomatic view

Evolutions of graphs

+ causality

Axiomatic view

Evolutions of graphs

+ causality
+ translation invariance

Constructive view

$9 / 30$

Constructive view

0

Constructive view

OK, but how to glue all the subgraphs together?

Constructive view

OK, but how to glue all the subgraphs together?
Have each vertex order its edges.

Constructive view

OK, but how to glue all the subgraphs together?
Have each vertex order its edges. Make the subgraphs overlap.

Constructive view

OK, but how to glue all the subgraphs together?
Have each vertex order its edges. Make the subgraphs overlap.

Some results on this generalization of CA

Axiomatic definition: (Causal dynamics)

- Pointed graphs endowed with a Cantor metric.
- Causality as continuous functions w.r.t. the metric.
- Translation invariance as a commutation with isomorphism.

Constructive definition: (Localizable dynamics)

- $F(G)$ induced by a local rule f.

Theorem [AD12a, AD12b][AM12]
The axiomatic definition equivalent to the constructive definition.

Theorem [AM12]

- Local rules f are enumerable
- The induced $G \mapsto F(G)$ is computable

Outline

Causal Graph Dynamics

Graphs and Oriented Complexes

Pachner moves and homeomorphisms

Characterize. . .

... pseudo-manifolds:

- Simplicial/ Δ complexes.
- Obtained by glueing simplices on facets.

NO:

NO:

Correspondance between graphs and pseudo manifolds?

Consider n-dimensional pseudo-manifolds.

Correspondance between graphs and pseudo manifolds?

Consider n-dimensional pseudo-manifolds.
Is there an encoding taking:

- A simplex \hookrightarrow A vertex.
- The glueing of two facets \hookrightarrow A (labelled) edge.
- A pseudo manifold \cong A (labelled) graph.

Correspondance between graphs and pseudo manifolds?

Consider n-dimensional pseudo-manifolds.
Is there an encoding taking:

- A simplex \hookrightarrow A vertex.
- The glueing of two facets \hookrightarrow A (labelled) edge.
- A pseudo manifold \cong A (labelled) graph.

How much more is there to a simplicial complex than there is to a graph?

Colored Complexes

Number the $n+1$ faces of a n-simplex with $\{0, \ldots, n\}$.

Colored Complexes

Number the $n+1$ vertices of a n-simplex with $\{0, \ldots, n\}$.

Colored Complexes

Number the $n+1$ vertices of a n-simplex with $\{0, \ldots, n\}$.

Close to our graphs, but still not an oriented complex

Vertex rotation and symmetry

A vertex rotation:

Formally:

- Vertex rotation: Even permutation of the ports
- Vertex symmetry: Odd permutation of the ports

Rotations define 2 orientations:

- On 2-simplices (triangles):

Clockwise vs. Counter Clockwise

- On 3-simplices (tetrahedra):

Three fingers rule: left hand vs. right hand.
Vertex modulo rotations \leftrightarrow oriented n-simplex.

Oriented glueing of n-simplices

In 2 dimensions:

Oriented glueing of n-simplices

In 3 dimensions:

Oriented glueing of n-simplices

In 3 dimensions:

Oriented glueing of n-simplices

In 3 dimensions:

Oriented glueing of n-simplices

In n dimensions:

- n ! ways of glueing two n-simplices.
- $\frac{n!}{2}$ oriented ways.
- We can use an odd permutation to explicit the glueing.

Graph \leftrightarrow Complex

Graph \leftrightarrow Complex

Graph \leftrightarrow Complex

Graph \leftrightarrow Complex

Hinging and alternating paths

Hinging and alternating paths

Problems:

- distance between two triangles?
- bounded density of information?
- and later: twists? manifold? pseudo-manifold?

Hinging and alternating paths

Characterizing 0-simplices:

Hinging and alternating paths

Characterizing 0 -simplices:

Geometric distance and alternating paths

0-alternating path $\quad \leftrightarrow \quad$ distance 1

Geometric distance and alternating paths

0-alternating path
1-alternating path $\quad \leftrightarrow \quad$ distance 2

Geometric distance and alternating paths

0-alternating path	\leftrightarrow	distance 1
1-alternating path	\leftrightarrow	distance 2
2-alternating path	\leftrightarrow	distance 3

Geometric distance and alternating paths

Bounded neighbourhood \leftrightarrow Bounded 0-alternating paths

Twists

How to detect edge bendings?

Just look at all hinging cycles!

Twists

How to detect edge bendings?

$u: 1 \equiv v: 0$ and $v: 0 \equiv u: 0 \Rightarrow u: 1 \equiv u: 0$
Just look at all hinging cycles!

What do we have:

- Notion of oriented complex
- Notion of bounded Neighbourhood (bounded star)

What do we need:

- Can we compare two graphs? Can we define homeomorphism?
- Is our graph a manifold?

Outline

Causal Graph Dynamics
 Graphs and Oriented Complexes

Pachner moves and homeomorphisms

Bistellar move - Sphere

Idea in 2D: Remove one or two triangles and replace them with their complementary in a tetrahedron.
n-sphere:

- $n+2 n$-simplices forming a clique
- No twists

Bistellar move

Bistellar move

Elementary Shellings

Idea: Extend (or reduce) the border of the complex by adding a new n-simplex.

What is allowed?
Everything but filling holes and adding twists.

Pachner moves - homemorphism (Current work)

Pachner moves $=$ Bistellar moves + Elementary Shellings + Rotations
Conjecture
Pachner moves corresponds exactly to homeomorphisms.
This allows us to:

- Look at the neighbourhood of each 0-simplex (its star).
- Decide if its a ball of dimension n.

If the previous conjecture holds, we have:
Conjecture
Given a finite graph X it is decidable to know if its interpretation as a complex is a manifold.

In particular we can define:
Definition (Manifold preserving)
A function $F: \mathcal{X}_{\{0, \ldots, n\}} \rightarrow \mathcal{X}_{\{0, \ldots, n\}}$ said to be manifold preserving, if

$$
X \text { manifold } \Rightarrow F(X) \text { manifold }
$$

Causal Dynamics of Discrete Manifolds

$F: \mathcal{X}_{\{0, \ldots, n\}} \rightarrow \mathcal{X}_{\{0, \ldots, n\}}$ causal dynamics :

- Continuous
- Translation invariant

Causal Dynamics of Discrete Manifolds

$F: \mathcal{X}_{\{0, \ldots, n\}} \rightarrow \mathcal{X}_{\{0, \ldots, n\}}$ causal dynamics of Discrete Manifolds:

- Continuous
- Translation invariant
- Vertex rotation commuting
- Bounded star
- Manifold preserving (Current work)

References I

目 P. Arrighi and G. Dowek, Causal graph dynamics, Proceedings of ICALP 2012, Warwick, July 2012, LNCS, vol. 7392, 2012, pp. 54-66.
R \qquad Causal graph dynamics (long version), Information \& Computation journal, to appear. Pre-print arXiv:1202.1098 (2012).
(R. Arrighi and S. Martiel, Causal dynamics of simplicial complexes: the 2-dimensional case, to appear in Proceedings of DMC 2013.
R. Arrighi and S. Martiel, Generalized Cayley graphs and cellular automata over them, Proceedings of GCM 2012, Bremen, September 2012. Pre-print arXiv:1212.0027, 2012, pp. 129-143.

