Deterministic tilings, periodicity and undecidability

Bastien Le Gloannec

LIFO, Université d'Orléans

Frac de printemps 2014, Nancy 8 avril 2014

We meet:

- tilings by Wang tiles
- deterministic tilesets
- Turing machine simulations
- undecidable tiling problems

We prove the **undecidability of the Periodic Domino Problem** when the input is restricted to **4-way deterministic** tilesets.

1. Tilings

Tilings by Wang tiles

A **Wang tile** is an oriented (no rotations allowed) unit square tile carrying a **color on each side**.

A **tileset** τ is a finite set of Wang tiles.

A tiling $c : \mathbb{Z}^2 \to \tau$ associates a tile to each cell of the discrete plane \mathbb{Z}^2 in such a way that the colors of the common sides of neighboring tiles match.

Tilings by Wang tiles

A **Wang tile** is an oriented (no rotations allowed) unit square tile carrying a **color on each side**.

A **tileset** τ is a finite set of Wang tiles.

A tiling $c : \mathbb{Z}^2 \to \tau$ associates a tile to each cell of the discrete plane \mathbb{Z}^2 in such a way that the colors of the common sides of neighboring tiles match.

Domino Problem (1/2)

Domino Problem [Wang 61]. Given a Wang tileset, decide whether it tiles the discrete plane.

Simple facts.

- 1. If a tileset admits a periodic tiling, then it admits a bi-periodic tiling.
- 2. The Domino Problem is co-recursively enumerable.
- 3. Deciding whether a tileset admits a periodic tiling is recursively enumerable.

Wang's conjecture. If a tileset tiles the plane, then it admits a periodic tiling. Hence **DP** is decidable.

Actually... There exists an aperiodic tileset [Berger 64] (103 tuiles).

Domino Problem with a seed tile

DP with a seed tile. Given a tileset with an identified *seed tile*, decide whether it admits a tiling containing the seed tile.

Undecidable. Use the seed tile to properly initialize a Turing computation.

There exists a tiling containing the seed tile \Leftrightarrow the machine does not halt from the empty tape.

Theorem [Berger 64]. DP is undecidable.

Proof simplified later by [Robinson 71].

The existence of **aperiodic** tilesets and this result justify the definition of a natural variant of the Domino Problem...

Periodic Domino Problem

Periodic Domino Problem. Given a tileset, decide whether it admits a **periodic** tiling.

[Gurevich-Koryakov 72] modifies Berger's construction to deal with this problem.

Theorem [Gurevich-Koryakov 72]. PDP is undecidable.

Or, equivalently:

Theorem. Periodic and aperiodic tilesets are recursively inseparable.

This can also easily be proved by a simple modification of Robinson's construction.

But also

Periodic Domino Problem

Periodic Domino Problem. Given a tileset, decide whether it admits a **periodic** tiling.

[Gurevich-Koryakov 72] modifies Berger's construction to deal with this problem.

Theorem [Gurevich-Koryakov 72]. PDP is undecidable.

Or, equivalently:

Theorem. Periodic and aperiodic tilesets are recursively inseparable.

This can also easily be proved by a simple modification of Robinson's construction.

But also... more on that later.

2. Determinism

Deterministic tilesets

Introduced by J. Kari in 1991 to prove the undecidability of the nilpotency problem for 1D cellular automata.

Notations: NW for North-West, SE pour South-East...

Deterministic tileset. A tileset τ is **NE-deterministic** if for any pair of tiles $(t_W, t_S) \in \tau^2$, there exists **at most one** tile *t* compatible to the west with t_W and to the south with t_S .

Partial local map. $f: au^2 o au$

We symmetrically define {NW,SE,SW}-determinism.

Deterministic tilesets

Introduced by J. Kari in 1991 to prove the undecidability of the nilpotency problem for 1D cellular automata.

Notations: NW for North-West, SE pour South-East...

Deterministic tileset. A tileset τ is **NE-deterministic** if for any pair of tiles $(t_W, t_S) \in \tau^2$, there exists **at most one** tile *t* compatible to the west with t_W and to the south with t_S .

Partial local map. $f: au^2 o au$

We symmetrically define {NW,SE,SW}-determinism.

Deterministic tilesets: a short history

[Kari 91] introduced a (bi-)determinization of **[Robinson 71]** to treat the nilpotency problem for cellular automata in dimension 1 (**Nil1D**).

Theorem [Kari 91]. Nil1D is undecidable.

Theorem [Kari 91]. There exist some (bi-)deterministic aperiodic tilesets.

N.B. The 16 Wang tiles derived from Ammann's geometric tiles are bi-deterministic.

Theorem [Kari 91]. DP remains undecidable for (one-way) **deterministic** tilesets.

Deterministic tilesets: a revised history

[Aanderaa-Lewis 74] embedded the coding of two-dimensional Wang tilings into one-dimensional double shifts, allowing this to be coded back into deterministic Wang tilesets or one-dimensional cellular automata.

Theorem [Aanderaa-Lewis 74]. Nil1D is undecidable.

Theorem [Aanderaa-Lewis 74]. There exist some **deterministic** aperiodic tilesets.

N.B. The 16 Wang tiles derived from Ammann's geometric tiles are bi-deterministic.

Theorem [Aanderaa-Lewis 74]. DP remains undecidable for (one-way) **deterministic** tilesets.

[Kari-Papasoglu 99] builds a strong determinization of [Robinson 71].

Theorem [Kari-Papasoglu 99]. There exist some **4-way** deterministic aperiodic tilesets.

[Lukkarila 09] introduces a 4-way determinization of [Robinson, 1971] + Turing computation.

Theorem [Lukkarila 09]. DP remains undecidable for **4-way** deterministic tilesets.

3. The 4-way deterministic PDP

What about the deterministic setting? Mazoyer and Rapaport considered this problem in the deterministic case to prove the undecidability of the nilpotency problem **over periodic** configurations of one-dimensional cellular automata.

Theorem [Mazoyer-Rapaport 99]. Nil1D over **periodic** configurations is undecidable.

Theorem [Mazoyer-Rapaport 99]. PDP remains undecidable for (oneway) **deterministic** tilesets.

The proof is a slightly technical modification of [Kari 91].

Let us prove the following.

Theorem. PDP remains undecidable for 4-way deterministic tilesets.

Natural method. Modify a construction for DP.

Let us prove the following.

Theorem. PDP remains undecidable for 4-way deterministic tilesets.

Natural method. Modify a construction for DP. Rather technical!...

Let us prove the following.

Theorem. PDP remains undecidable for 4-way deterministic tilesets.

Natural method. Modify a construction for DP. Rather technical!...

[Jeandel 10] introduced a new proof method for the undecidability of **PDP**, which will inspire us.

Instead of modifying a construction for **DP**, the proof only takes as input an **arbitrary** aperiodic tileset.

Let us prove the following.

Theorem. PDP remains undecidable for 4-way deterministic tilesets.

Natural method. Modify a construction for DP. Rather technical!...

[Jeandel 10] introduced a new proof method for the undecidability of **PDP**, which will inspire us.

Instead of modifying a construction for **DP**, the proof only takes as input an **arbitrary** aperiodic tileset.

We will also build upon the 4-way deterministic **Turing machine simulation** from **[Lukkarila 09]**.

Preliminaries: Transformations (1/3)

Product. Given two tilesets $\tau_1 \subseteq C_1^4$ and $\tau_2 \subseteq C_2^4$, the **product** tileset $\tau = \tau_1 \times \tau_2$ is

$$\tau = \left\{ \underbrace{w_1 w_2}_{s_1 s_2}, \underbrace{w_i}_{s_i} e_i e_i \\ e_i \in \tau_i, \ 1 \le i \le 2 \right\}$$

over the set of colors $\mathcal{C}_1 \times \mathcal{C}_2$.

We interpret it as a **two-layered** tileset whose tiles hold a tile of τ_1 on the first layer and a tile of τ_2 on the second layer (with a local matching condition requiring that the matching conditions of both layers are verified).

If τ_1 and τ_2 are **4-way deterministic**, then $\tau_1\times\tau_2$ is also 4-way deterministic.

Preliminaries: Transformations (2/3)

If a tileset is **4-way deterministic**, any of its disjoint mirrors is also 4-way deterministic (some determinism directions are interchanged).

Any of the (disjoint) unions of a tileset with some of its disjoint mirrors (e.g. $\tau \sqcup \overline{\tau}^h \sqcup \overline{\tau}^v \sqcup \overline{\tau}^c$) is also 4-way deterministic.

Grouping. Given a tileset τ , its 2 \times 2 grouping $\tau^{2\times 2}$ is

$$\tau^{2\times 2} = \left\{ \underbrace{ac}_{cd}^{ab}_{bd} \in (\tau^2)^4, \underbrace{\frac{a}{c}}_{cd}^{a} \text{ is a valid } 2 \times 2 \text{ pattern by } \tau \right\}$$

over the set of colors τ^2 .

The tileset $\tau^{2\times 2}$ is a coding of 2 \times 2 patterns by τ with the local matching condition that two horizontally (resp. vertically) adjacent patterns overlap on one column (resp. row).

If τ is 4-way deterministic, then $\tau^{2\times 2}$ is also 4-way deterministic.

Layer 1: Grid

	[[]	[
	l	l	l
	l:		:

Layers 2 and 3: Mirrors (1/2)

We consider τ_a an arbitrary **4-way deterministic** aperiodic tileset over the set of colors C.

Let $\overline{\tau_a}^h$ be its **horizontal mirror tileset** over the set of colors $C_h = \{x_h, x \in C\}$ (disjoint copy of C).

For all $x \in C$, we add the following tiles to $\tau_a \sqcup \overline{\tau_a}^h$.

Lemma. The built tileset is 4-way deterministic.

Lemma. Every horizontally periodic tiling contains a vertical mirror line. Hence, by periodicity, it contains infinitely many such lines (with bounded distance between two consecutive lines).

We add a **third layer**, similarly to what we have done for the second layer but with **horizontal mirror lines**.

We **synchronize** the lines of the grid of the first layer with the mirror lines of the second and third layers.

Lemma. The built tileset is 4-way deterministic.

Lemma. Every bi-periodic tiling contains a grid with bounded rectangle size on its first layer.

Layer 4: Turing computation (1/4)

Given a Turing machine M, [Lukkarila 09] introduces a 4-way deterministic tileset τ_M to prove the undecidability of the Domino Problem with a seed tile in the 4-way deterministic setting.

One of the layers of τ_M exactly is the following.

Layer 4: Turing computation (2/4)

We assemble this set τ_M and its three mirror tilesets $\overline{\tau_M}^h$, $\overline{\tau_M}^v$, $\overline{\tau_M}^c$ on a grid adding the following tiles to $\tau_M \sqcup \overline{\tau_M}^h \sqcup \overline{\tau_M}^v \sqcup \overline{\tau_M}^c$.

	[[]	[
	l	l	l
	l:		:

Layer 4: Turing computation (3/4)

We **synchronize** this grid with the one of the first layer.

Lemma. The built tileset is 4-way deterministic.

Lemma. Every bi-periodic tiling contains a grid on its fourth layer with finite patterns by one of each of the four mirror tilesets of τ_M in each of its four types of rectangles.

It is far from sufficient to properly simulate the Turing machine.

Additional restriction 1 (by subset). Horizontal colors containing a machine state cannot appear along vertical grid lines on the fourth layer.

This restriction forbids a Turing machine head from **leaving** its rectangle and any other Turing machine head from **appearing** unexpectedly in a rectangle.

Layer 4: Turing computation (4/4)

We denote as:

- $\diamond t_0$ the **seed tile** of τ_M
- ♦ $F \subset \tau_M$ the set of tiles of τ_M carrying a **final state** of *M* in their north color (*head move* tile)

 t_0^h, t_0^v, t_0^c and F^h, F^v, F^c the corresponding objects for the mirror tilesets.

Additional restriction 2 (by grouping). We add the following initialization and halting constraints on the fourth layer.

	1	6 1	D V	В	8	а •	99	L		1	6 1	P 7	В		8		99
+	1	1	P B	B	B B	89 89	τ	τ. τ		1 A1		P B	B B	+	B B	89 7	Tw T
	wī				я р		Ţ	ī		NT.	NT.				я Ш		Tw
	1	1	1	a B	80] @ ^T	ī	T		1	1	1	a B		80	10	t
	¥1	1	1 g	1 A1	τ	τ <u>α</u>	ΤΨ	τ. τ		A1	1 A1	1 1	wī ī	+	T.	T Q	TW
																100	
	¥!	¥1	¥.			1.4	14	lΨ		¥1	- ¥	¥.				Ý	14
					1: 1									100			
	A 1	A 1	A1		1	14	AL.	1A		A 1	A 1	A1			1		A1
	1	1	61		1	1d	1	1		1	1	Бľ				10	1
			61 60	5								101	5		ŀ	101 6 10	Î
	1	1	1		a B a B		1	1 A1		1	1	1	a B	÷	a B m B		1
																38	
	1 A1	1 •1	b B	B	B	8 Ø	1 A 1	1 A1		1	1	6 B	B B	÷	8 • B	0 B 6 B	1
	1	6 a 1	Б	B	в		d d I D	r		1	6 a 1	6 B	в		в		66
	A1	1	A _B	AB	AB .	AB .	a 1	IV.		A1	a 1	A B	▲B		A B	B	a 1
	6 6 8	1	В	В	В	В	1	11 [5] B		а Б В		В	В		В	В	1
	4 68		AB	AB	AB	AB		6 B		b B		AB	▲B		AB	AB .	1
		Б @ В	В	В	В	В	6 6 B	B			6 @ B	В	В		B	В	a_B
		A a B	AB	AB	A B	A B	<i>a b</i>	AB		AB		A B	A B		AB	AB .	a B
	1 B		В	В	В	B	B	E E		i B	B	В	B	11	В	В	B
	<	`,	T,				_			< 1°	T,		Ĩ,		~		٦ ا
	↓									•				1		<u> </u>	
					J∶				L. L					Ц С.,	+		
: 1					ייייין ייין ר	1			····:: E					⊐ : · · ·	1		

We furthermore require, without loss of generality, *M* to verify the following properties:

- during the computation, the head never moves to a position situated to the left of its starting position;
- when the computation halts (if it halts), the position of the head is exactly the **rightmost position** that has been reached during the computation.

Lemma. The built tileset is 4-way deterministic.

Proposition. The built tileset admits periodic tilings \Leftrightarrow the Turing machine *M* halts from the empty tape.

Conclusion (2/2)

Sketch of the proof of the proposition.

- Even by the described bi-periodic tiling.
- \Rightarrow There must exist a bi-periodic tiling.

Such a tiling contains a grid on its fourth layer with properly initialized (due to the seed tile) Turing computation from the empty tape on the *first* line of each rectangle.

The head cannot leave and no head can appear on the borders, hence the computation is properly simulated.

A final state is required in a corner, thus the machine halts.

This concludes the construction, the reduction and the proof of the theorem.

4.↓

That's all folks!

Thanks for your attention \downarrow