
Type raising, continuations, and classical logic

Philippe de Groote
Inria-Lorraine

Abstract. There is a striking analogy between type raising, as intro-
duced by Montague (1973), and the notion of continuation that has
been developped in programming language theory in order to give com-
positional semantics to control operators (Stratchey and Wadsworth,
1974). In fact, this analogy is such that it is possible to see Montague’s
semantics as a continuation based semantics.

On the other hand, the notion of continuation allows classical logic to be
given a Curry-Howard interpretation (Griffin 1990). In particular, the
double negation law ((A → ⊥) → ⊥) → A is provided with a computa-
tional content, which may be used to give a type logical interpretation
of type lowering.

Putting the pieces of the picture together, it is possible to use “classical
extensions” of the λ-calculus in order to express the semantic compo-
nents of the lexical entries of Morrill’s (1994) type logical grammars.
This solution offers the advantage of not burdening the syntax by en-
forcing type raising to the worst case.

1 Type raising and continuations

Montague (1973) introduced type raising as a way of providing a compositional
semantics to constructs that may give rise to scope ambiguities. Such constructs
(typically, quantifiers) have semantic scopes that may be wider than their apparent
syntactic scopes. Around the same time, computer scientists were trying to provide
a compositional semantics to full jumps (i.e., ‘goto’ statements), which led to the
discovery of continuations (Stratchey and Wadsworth, 1974).

Both problems are similar, and both solutions present striking similitudes. Mon-
tague’s type raising is based on Leibniz’s principle, which consists of identifying an
entity with the set of its properties. Consequently, the type of entities e is replaced
by (e → t) → t, where t is the type of propositions. In programming language
theory, a continuation semantics (as opposed to a direct semantics) consists in pro-
viding the semantic function with the continuation of the program as an explicit
parameter. Let P be a program, let [[−]] be the semantic function, and let s be
some initial state. If we consider programs as state transformers, a direct semantics
is such that [[P ]] s ∈ State. On the other hand, a continuation semantics gives
[[P ]] s ∈ (State → State) → State. In fact, in both cases (type raising and con-
tinuation semantics), a type A is replaced by a type (A → O) → O, where O is the
type of observable entities or facts.

2 Negative translations and classical logic

In the realm of the λ-calculus, the notion of continuation gave rise to the so-called
CPS-transformations (Plotkin 1975). These are continuation-based syntactic trans-
formations of the λ-terms that allow given evaluation strategies (typically, call-by-
name or call-by-value) to be simulated.



For instance, Plotkin’s call-by-value CPS-transformation is as follows:

c = λk. k c;

x = λk. k x;

λx.M = λk. k (λx.M);

M N = λk. M (λm. N (λn.m n k))

Now, compare the following naive type logical grammar, where the lexical items
are assigned a direct interpretation:

John – j : NP
Mary – m : NP
loves – λx. λy. love y x : (NP \ S) /NP

together with the grammar, where the lexical items are assigned a Montague-like
interpretation:

John – λk. k j : NP
Mary – λk. k m : NP
loves – λf. λg. f (λx. g (λy. love y x)) : (NP \ S) /NP

Again, the analogy between continuation and type raising is striking. The Montague-
like interpretation may almost be seen as the call-by-value CPS-transform of the
direct interpretation. This opens a new line of research that has been advocated in
Barker’s recent work (2000, 2001).

When applying a CPS-transformation to a typed λ-term, it induced another
transformation at the type level (Meyer and Wand, 1985). For instance, the above
CPS-transformation induces the following type transformation:

α = (α∗ → ⊥) → ⊥, where:

a∗ = a, for a atomic;
(α → β)∗ = α∗ → β.

Griffin (1990) observed that these type transformations amount to double neg-
ative translations of classical logic into minimalist logic, and that it allows classical
logic to be provided with a formulae-as-type interpretation. In this setting, the
double negation law ((A → ⊥) → ⊥) → A, which corresponds to type lowering, is
given a computational content by considering the absurd type ⊥ to be the type of
observable entities (this is radically different from the usual interpretation of ⊥ as
the empty type).

3 The λµ-calculus

Griffin’s discovery gave rise to several extensions of the λ-calculus, which aim at
adapting the Curry-Howard isomorphism to the case of classical logic. The λµ-
calculus (Parigot 1992) is such a system.

The λµ-calculus is a strict extension of the λ-calculus. Its syntax is provided
with a second alphabet of variables (α, β, γ, . . . — called the µ-variables), and two
additional constructs: µ-abatraction (µα. t), and naming (α t).
These constructs obey the following typing rules:

α : ¬A t : A

α t : ⊥

[α : ¬A]
t : ⊥

µα. t : A

Besides β-reduction:



(β) (λx. t) t −→ t[x := u]

a notion of µ-reduction is defined:

(µ) (µα. u) v −→ µβ. u[α ti := β (ti v)]

where u[α ti := β (ti v)] stands for the term u where each subterm of the form
α ti has been replaced by β (ti v). It corresponds to the following proof-theoretic
reduction:

1
α : ¬(A → B)

···
ti : A → B

α ti : ⊥
···

u : ⊥
1

µα. u : A → B

···
v : A

(µα. u) v : B
−→

1
β : ¬B

···
ti : A → B

···
v : A

ti v : B

β (ti v) : ⊥
···

u[α ti := β (ti v)] : ⊥
1

µβ. u[α ti := β (ti v)] : B

As well-known, classical logic is not naturally confluent. Consequently, there
exist variants of the λµ-calculus that do not satisfy the Church-Rosser property
(Parigot 2000). This is the case if we also consider the symmetric of the µ-reduction
rule:

(µ′) v (µα. u) −→ µβ. u[α ti := β (v ti)]

Finally, for the purpose of the example given in the next section, we also add the
following simplification rules:

(σ) µα. u −→ u[α ti := ti]

which may be applied only to terms of type ⊥.

4 Semantic recipes as λµ-terms

Dealing with a calculus that do not satisfy the Church-Rosser property is not a
defect in the case of natural language semantics. Indeed, the fact that a same
term may have several different normal forms allows one to deal with semantic
ambiguities.

If we consider the sentential category S (or, semantically, Montague’s type t) to
be our domain of observable facts, the following typing judgement is derivable:

Person : e → t
0

x : e

(Personx) : t

1
α : e → t

0
x : e

(α x) : t

(Personx) ⊃ (α x) : t
0

∀x.(Personx) ⊃ (α x) : t
1

µα.∀x.(Personx) ⊃ (α x) : e



This allows the following type logical lexical entries to be defined:

everybody – µα.∀x.(personx) ⊃ (α x) : NP
somebody – µα.∃x.(personx) ∧ (α x) : NP
loves – λx. λy. love y x : (NP \ S) /NP

Then, the sentence

everybody loves somebody

has only one parsing, to which is associated the following semantic reading:

(λx. λy. love y x) (µα.∃x.(personx) ∧ (α x)) (µα.∀x.(personx) ⊃ (α x)).

This λµ-term may be considered as an underspecified representation. Indeed, its
possible reductions yield two different normal forms:

(λx. λy. love y x) (µα.∃x.(personx) ∧ (α x)) (µα.∀x.(personx) ⊃ (α x))

−→ (λy. love y (µα.∃x.(personx) ∧ (α x))) (µα.∀x.(personx) ⊃ (α x)) (β)

−→ love (µα.∀x.(personx) ⊃ (α x)) (µα.∃x.(personx) ∧ (α x)) (β)

−→ (µβ.∀x.(personx) ⊃ (β (lovex))) (µα.∃x.(personx) ∧ (α x)) (µ′)

−→ µβ.∀x.(personx) ⊃ (β (lovex (µα.∃y.(person y) ∧ (α y)))) (µ)

−→ ∀x.(personx) ⊃ (lovex (µα.∃y.(person y) ∧ (α y))) (σ)

−→ ∀x.(personx) ⊃ (µα.∃y.(person y) ∧ (α (lovex y))) (µ′)

−→ ∀x.(personx) ⊃ (∃y.(person y) ∧ (lovex y)) (σ)

(λx. λy. love y x) (µα.∃x.(personx) ∧ (α x)) (µα.∀x.(personx) ⊃ (α x))

−→ (λy. love y (µα.∃x.(personx) ∧ (α x))) (µα.∀x.(personx) ⊃ (α x)) (β)

−→ love (µα.∀x.(personx) ⊃ (α x)) (µα.∃x.(personx) ∧ (α x)) (β)

−→ (µβ.∀x.(personx) ⊃ (β (lovex))) (µα.∃x.(personx) ∧ (α x)) (µ′)

−→ µα.∃y.(person y) ∧ (α ((µβ.∀x.(personx) ⊃ (β (lovex))) y)) (µ′)

−→ ∃y.(person y) ∧ ((µβ.∀x.(personx) ⊃ (β (lovex))) y) (σ)

−→ ∃y.(person y) ∧ (µβ.∀x.(personx) ⊃ (β (lovex y))) (µ)

−→ ∃y.(person y) ∧ (∀x.(personx) ⊃ (lovex y)) (σ)

These correspond to subject and object wide scope readings, respectively.

5 conclusions

We have argued that Montague’s type raising is a particular case of continuation.
Consequently, continuation based formalisms, which have been developped in the
context of programming language theory, may be used to deal with the sort of se-
mantic ambiguities for which Montague invented type raising. Parigot’s λµ-calculus
is such a formalism, and we have shown how it may be used to cope with quan-
tifier scope ambiguities. We claim that the λµ-calculus is particularly suitable for
expressing compositional semantics of natural languages. For instance, it allows
Cooper’s (1983) storage to be given a type logical foundation. In fact, it allows a
lot of dynamic constructs to be defined, which is of particular interest for discourse
representation.



references

Barker, C. (2000) Continuations and the nature of quantification working paper,
submitted for publication.

Barker, C. (2001) Introducing Continuations. In R. Hastings, B. Jackson, and
Z. Zvolenszky, editors, Proceedings of SALT 11, CLC Publications, Ithaca,
New York.

Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: Reidel.

Griffin, T. G. (1990). A formulae-as-types notion of control. In Conference record
of the seventeenth annual ACM symposium on Principles of Programming
Languages, pages 47–58.

Meyer, A. and Wand, M. (1985). Continuation semantics in typed lambda-calculi
(summary). In R. Parikh, editor, Logics of Programs, volume 193 of Lecture
Notes in Computer Science, pages 219–224. Spinger Verlag.

Montague, R. (1973). The proper treatment of quantification in ordinary english.
In J. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches to natural
language: proceedings of the 1970 Stanford workshop on Grammar and Se-
mantics, Dordrecht, Reidel. Reprinted: Montague, (1974, pages 247–270).

Montague, R. (1974). Formal Philosophy: selected papers of Richard Montague,
edited and with an introduction by Richmond Thomason. Yale University
Press.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer
Academic Publishers, Dordrecht.

Parigot, M. (1992). λµ-Calculus: an algorithmic interpretation of classical nat-
ural deduction. In A. Voronkov, editor, Proceedings of the International
Conference on Logic Programming and Automated Reasoning, volume 624 of
Lecture Notes in Artificial Intelligence, pages 190–201. Springer Verlag.

Parigot, M. (2000). On the computational interpretation of negation. In P.G.
Clote and H. Schwichtenberg, editors, Computer Science Logic, volume 1862
of Lecture Notes in Computer Science, Springer Verlag.

Plotkin, G. D. (1975). Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159.

Stratchey, C. and Wadsworth, C. (1974). Continuations a mathematical seman-
tics for handling full jumps. Technical Report PRG-11, Oxford University,
Computing Laboratory.


