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Abstract. The analysis of security protocols requires precise foatioihs of
the knowledge of protocol participants and attackers. imfd approaches, this
knowledge is often treated in terms of message deducitahity indistinguisha-
bility relations. In this paper we study the decidabilitytbése two relations. The
messages in question may employ functions (encryptiomyggon, etc.) axiom-
atized in an equational theory. Our main positive resulysteat, for a large and
useful class of equational theories, deducibility andstidguishability are both
decidable in polynomial time.

1 Introduction

Understanding security protocols often requires reagpabout the knowledge of le-
gitimate protocol participants and attackers. As a simplengple, let us consider a
protocol in which A sends to B a message that consists of a&tse@ncrypted un-
der a pre-arranged shared kieyOne may argue that, after processing this message, B
knowss. More interestingly, one may also argue than an attackér kdunded com-
puting power that does not knokvbut eavesdrops on the communications between A
and B and sees the message does not learn

Accordingly, formal methods for the analysis of securitptocols rely on defini-
tions of the knowledge of protocol participants and attaskén those methods, the
knowledge of an attacker is used to determine what messhgegtacker can send at
each point in time—it can send only messages it knows. Maesgecurity guarantees
can be phrased in terms of the knowledge of the attacker. fample, a guarantee
might be that, at the end of a protocol run, the attacker doekmow a particular key,
or that the attacker does not know whether a certain cipktectintains the plaintext
“true” or “false”. For such applications, although the aktar is typically an active en-
tity that can learn by conducting experiments, the definibbknowledge focuses on a
particular point in a protocol execution.

Many formal definitions explain the knowledge of an attadkelerms of message
deduction (e.g.,[17, 19, 21, 20]). Given a set of messages Sr@other messadé, one
asks whethel/ can be computed from S. The messages are represented bysapee
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and correspondingly the computations allowed are symbublaipulations of those
expressions. Intuitively these computations can rely onsaep that an eavesdropper
who has obtained the messages in S can perform on its own én trdleriveM . For
example, the eavesdropper can encrypt and decrypt usivgkkeys, and it can extract
parts of messages.

Despite its usefulness in proofs about protocol behavtbesconcept of message
deduction does not always provide a sufficient account ofwedge, and it is worth-
while to consider alternatives. For instance, supposenkaire interested in a protocol
that transmits an encrypted boolean value, possibly ardifteone in each run. We
might like to express that this boolean value remains sdxyretying that no attacker
can learn it by eavesdropping on the protocol. On the othedhikis unreasonable to
say that an attacker cannot deduce the well-known boolelaesétrue” and “false”.
Instead, we may say that the attacker cannot distinguisimstarice of the protocol
with the value “true” from one with the value “false”. More gerally, we may say
that two systems are equivalent when an attacker cannatglissh them, and we may
then express security guarantees as equivalences. Théamgvalences is common in
computational approaches to cryptography (e.g., [16],iaalso figures prominently
in several formal methods (e.g., [4, 18, 2]).

Two systems that output messages that an attacker can aeflaap obviously dis-
tinguishable. Conversely, in order to establish equivedsrbetween systems, an impor-
tant subtask is to establish equivalences between the gessteat the systems generate
(for example, between the encrypted boolean values). Tdopsgalences may be called
static equivalences, because they consider only the mesgagf the dynamic processes
that generate them. Bisimulation proof techniques canaeguocess equivalences to
static equivalences plus fairly standard bisimulationditions [2] (see also [3, 9]).

In this paper we study the decidability of message dedueitnmhstatic equivalence.
We define a relatio + M that means thad/ can be deduced from, and a rela-
tion ¢ ~, 1 that means thap and are statically equivalent; heg ¢, andi are
all essentially lists of messages, each with a name, remiexs®y formal expressions.
For generating these messages, we allow the applicatiowafeaarray of functions—
pairing, projections, various flavors of encryption and rgption, digital signatures,
one-way hash functions, etc.. Indeed, our results do noeraaly assumption on any
particular cryptographic system beyond fairly general dtiygeses on the form of the
equational theory that is used for defining the propertiethefcryptographic opera-
tions. Our main positive results assume only that the egnatitheory is defined by a
convergent rewriting system with a finite number of rulestef formAM — N where
N is a proper subterm a#/ or a constant symbol. Such theories, which we call con-
vergent subterm theories, appear frequently in applioatié-or them, we obtain that
both¢ + M andy =, 1 are decidable, in fact in polynomial time. For other equadio
theories, even decidable ones, we show that M andy =~ 1 can be undecidable.
Moreover, we establish thatcan be reduced ter, (not too surprisingly), but that the
converse does not hold.

The problem of deciding knowledge is particularly impottanthe context of al-
gorithms and tools for automated protocol analysis. Ofgecial techniques are intro-
duced for particular sets of cryptographic operations tériest, on a case-by-case basis.



For example, the classic Dolev-Yao result deals with a fikedted suite of public-key
operations [15]; more recent decidability results deahwitclusive-or and modular ex-
ponentiation (e.g., [10-12]); many variants and combareithat arise in practice have
not yet been explored. On the other hand, other algorithrd¢a@uls (e.g., [6-8]) allow
much freedom in the choice of cryptographic operationsteit analysis of the knowl-
edge of the attacker is not always guaranteed to terminageidBbility results under
general equational theories have been rare. The most relprx@vious work is that of
Comon-Lundh and Treinen [13], who have studied the deciithaloif the deduction
problem for a class of equational theories incomparablk witrs. (For example, they
allow the homomorphism propergnc({u, v), k) = (enc(u, k), enc(v, k)) but not the
inverse property (I(x)) = z.) Simultaneously with our work (but independently), De-
laune and Jacquemard [14] have shown that the deductiotepndb decidable for an
active attacker and under a class of equational theorieshiiincluded in ours. Nei-
ther Comon-Lundh and Treinen nor Delaune and Jacquemasidayad static equiva-
lence.

The next section, section 2, introduces notations and diefiisi Section 3 com-
pares- and=:,. Section 4 focuses on convergent subterm theories and give®sain
decidability results. Section 5 concludes and discussegdhsible use of our results for
automated analysis of security protocols. Because of spatgtraints, we omit many
technical details; the main ones appear in a research rggort

2 Basic definitions

Next we review definitions from previous work. We mostly atitye definitions of the
applied pi calculus [2]. In section 2.1 we give the syntax)gdressions. In section 2.2
we explain a representation for the information availablan observer who has seen
messages exchanged in the course of a protocol executisection 2.3 and 2.4 we
present the relationis and~,, which (as explained in the introduction) provide two
formalizations of the knowledge that the observer has om#sés of that information.

2.1 Syntax

A signatureX’ consists of a finite set of function symbols, sucheas andpair, each
with an arity. Letar(X) be the maximal arity of a function symbol ii. A function
symbol with arity 0 is a constant symbol.

Given a signature’, an infinite set of named/, and an infinite set of variables, the
set oftermsis defined by the grammar:

LM, N,T, UV .= terms
ky...,n,...,s name
T,Y, 2 variable
f(My, ... M) function application

where f ranges over the function symbols bfandi matches the arity of. Although
names, variables, and constant symbols have similanitie§ind it clearer to keep them
separate. A term is closed when it does not have free vaggbig it may contain names



and constant symbols). We wrife (/) for the set of names that occur in the tefsh
We use meta-variables v, w to range over names and variables. Bize|T'| of a term
T is defined bylu| = 1 and|f(T1,...,T1)| =1+ Zﬁzl |T;|. TheDAG-size|T'|pag is
the number of distinct subterms &t

We equip the signatur® with an equational theor¥, that is, an equivalence rela-
tion on terms that is closed under substitutions of termw#oiables and closed under
application of contexts. We writd/ = N whenM andN are closed terms and the
equationM = N isin E. We use the symbet= to denote syntactic equality of closed
terms. As in these definitions, we often focus on closed téomsimplicity.

2.2 Assembling terms into frames

After a protocol execution, an attacker may know a sequehaoessaged/, ..., M;.
This means that it knows each message but it also knows inhwdrider it received
the messages. So it is not enough for us to say that the attiackers the set of terms
{May, ..., M;}. Furthermore, we should distinguish those names that taekar had
before the execution from those that were freshly generatetiwhich may remain
secret from the attacker; both kinds of names may appeaeitetims.

In the applied pi calculus [2], such a sequence of messageg#ized into a
framevno, wheren is a finite set of names (intuitively, the fresh names), and a
substitution of the form:

(Mo Moy with dom(o) £z, ... @)

The variables enable us to refer to eddh, for example for keeping track of their order
of transmission. We always assume that the tekfysare closed. The size of a frame

~ . ef l
¢ = Vn{Ml/wla e aMl /ﬂcz} is o] = 21‘21 | M.

2.3 Deduction

Given a framep that represents the information available to an attackermay ask
whether a given term closed may be deduced from. This relation is writtenp - M
(following Schneider [21]). It is axiomatized by the rules:

— if 3z € dom(o) S.t.ac =M — sé€n
vno - M vno ks
¢pF M - QH_]\/[kaE dFM M=gM
oF f(My,..., M) oM

Since the deducible messages depend on the underlyingi@tplaheory, we write
Fz whenE is not clear from the context. Intuitively, the deduciblessages are the
messages ap and the names which are not protectedjrtlosed by equality i and
closed by application of functions. We have the followinguatterization of deduction:

Proposition 1. Let M be a closed term andno be a frame. Thenno - M if and
only if there exists a terrj such thatn(¢) Nn = § and(o =g M.



As an example, we consider the equational theory of paitirthgsymmetric encryp-
tion. The signature i), = {pair, enc, fst, snd, dec}. As usual, we writex, y) instead
of pair(z, y). The theoryFE; is defined by the axioms:

fst((z,y)) = snd((z,y)) =y dec(enc(z,y),y) = .

def

Let ¢ = vk,s{enc(s,k)/x,k/y}. Theng + k and¢ + s. Furthermore, we have
k =g, yp ands =g, dec(z,y)o.

2.4 Static equivalence

Deduction does not always suffice for expressing the knaydeaf an attacker, as dis-
cussed in the introduction. For example, consider= vk{enc(0,k)/z, k/y} and

def

¢2 = vk{enc(1,k)/x,k/y}, where0,1 € X are constant symbols. The attacker can
deduce the same set of terms from these two frames sincevitdhand1. But it could

tell the difference between these two frames by checkingédreghe decryption of
with y produces O or 1.

We say that two terms\/ and N are equal in the frame for the equational
theory E, and write(M =g N)y, if and only if ¢ = vn.o, Mo =g No, and
{n}N(fn(M)Ufn(N)) = 0 for some names and substitutior. Then we say that two
framesy andy arestatically equivalentand writey ~, v, whendom(p) = dom ()
and when, for all termd/ and N, we have(M =g N)y ifand only if (M =g N)i.
We writex ; whenFE is not clear from the context.

In our example, we haviglec(x, y) =g, 0)¢1 but not(dec(z,y) =g, 0)¢2. There-
fore, 1 %, ¢ althoughvk{enc(0,k)/x} =, vk{enc(1,k)/z}.

3 Comparison of deduction and static equivalence

We compare equality, deduction, and static equivalenae fite point of view of de-
cidability. There is little hope that deduction or staticue@lence would be decidable
when equality itself is not. (We note however that, for sontdicial, especially de-
signed equational theories, deduction may be decidablewhuality is undecidable.)
Therefore, we focus on equational theories for which etuiat least decidable.

3.1 F may be undecidable

Unfortunately, the decidability of equality is not suffinidor the decidability of deduc-
tion and static equivalence. As evidence, let us considedétidable equational theory
E5 defined by:

- (y-z)=(x-y) 2z
[xl,yl] : [3?2, y2] [3?1 c T2, Y1 yQ]
[z 2-y]) = f([z,2])

According to these equations, the symbi associative and distributes over the sym-
bol [ ], and any term of the fornf (M, M) can be collapsed into any terfitA’, M)



whereM' is a prefix of M. This equational theory enables us to encode the Post Cor-
respondence Problem (PCP) into the deduction problem.

Proposition 2. The deduction problem fdts (+g,) is undecidable.

The PCP is: given a finite number of pairs of wor@ds, v;)1<i<» On the alphabet
A C N, does there exists a sequenge -- s, € {1..n}* such thatwus, ---us, =
Vs, + -+ Vs, ? We map the PCP inpiits;, v;)1<i<n, t0 the substitutiom = {[u;, v;]/z;}.
Then we can verify that there exists a solution to the PCPdfamly if there exists a
lettera € A suchtha(vX)o Fpg, T([a,a)).

3.2 +reduces tor,

Next we show that deduction may be reduced to static equigald-or this purpose,
we add the familiar equatiadec(enc(z, y),y) = =. (We have not studied what happens
without this equation, since it is so common in applicatipns

Proposition 3. Let £ be an equational theory over some signatiireLet0, 1 be two
constantsdec andenc be two binary function symbols that are notin

We define’ £ X w {0,1,enc,dec} and B/ = E & {dec(enc(z,y),y) = x}. Let
¢ = vn{Mi/..,... .M/} be a frame and/ be a closed term. Thep -5 M if and
only if

Vﬁ{Ml/wlﬂ s 7Ml /wz 7enc(0’M)/ﬂcz+1} 7‘L’SE’ Vﬁ{Ml/wlﬂ s 7Ml /wzﬂenc(l’M)/ﬂﬁz+1}'

We derive that if~; is decidable folE! & {dec(enc(x,y),y) = =}, thent is decidable
for £/ (with at most the same complexity).

3.3 =, does not reduce td- in general

The converse is not trué: may be decidable while-, is not. Indeed, we can encode
an undecidable problem into the static equivalence prolitesnch a way that the de-
duction problem remains decidable.

Proposition 4. There exists an equational theory such thatis undecidable whilé-
is decidable.

We consider the following construction: Given two deterisiiic Turing machined/; =
(@Q,A,q90,Qys,01) and My = (Q, A, qo, @y, 2) with the same control states, where
01,02 : @ x A — Q x A x {L, R}, we construct the machind1 (M, M) =
(Q, A, q0,Qf,0)whered : {1,2} x Q@ x A — Q x A x {L, R} suchthat(1,q,a) =
01(q,a) andd(2, q, a) = d2(q, a). At each step, the machinet (M7, M-) plays a tran-
sition of eitherM; or M>. Since the machinesl; and M, are deterministic, a run of
the machineM (M, M,) on a wordw may be described by a woebf {1, 2}*, which
gives the list of choices made byt (M, M) at each stepM (M;, Ms), w =, denotes
the machine (with its current tape) after the sequence oiceke on the wordw. We
assume that the local control state is written on the tape.



Proposition 5. The following problem is undecidable.

Input: Two machines\ (M., M,) and M (M7, M) and a wordw of A*.
Output:Does the following property hold fak1(M;, Ms) and M (M7, M4): for any
sequences,, so € {1,2}*, M(M;, My),w 2 and M (M1, Ms), w 23 have the same
tape if and only itM (M7, M), w 5 and M (M, M3),w >3 have the same tape?

We reduce this undecidable problem to thg problem under an equational thedky
such that- remains decidable. The intuitive idea of our encoding ig thframe¢
represents a machine of the forwi (M, Ms), a term M represents a sequence of
choices such that/ ¢ represents the tape of the machine (and the number of choices
after this sequence of choices. Then, for two “machingsind ¢', it is undecidable
whether there exists two sequences of choiegs M, such that( M, =g, M2)¢ and
(M, #g, M)¢',i.e, whetherp %, ¢'.

On the other hand, it is possible to decide whether theresxisequence of choices
M such thatM ¢ =g, N (i.e, whethery - N) for a given term/N. Indeed, the term
N contains the number of choices, so it is sufficient to testsaguence of choices of
length equal to this number of choices.

4 Deciding knowledge under convergent subterm theories

In order to obtain decidability results for bothand~,, we restrict attention tgsub-
term theoriesdefined by a finite set of equations of the forvth = N whereN is a
proper subterm of\f or a constant symbol. In section 4.1, we motivate and inttedu
a convergence condition on subterm theories. Convergdatessu theories are quite
common in applications, as we illustrate with examples ttisa 4.2. We present our
main decidability results for these theories in section 4.3

4.1 Convergence

The definition of subterm theories is almost vacuous on ita.d&wen equality may
be undecidable for subterm theories. Any equational thelefined by a finite set of
equationsM = M’ with variables can be encoded as a subterm theory, with the tw
equations:

Whichever(M, M') = M Whichever(M, M') = M’

for each original equatiod/ = M’. In light of this encoding, we should add the as-
sumption that, by orienting the equations that define a sorhiteeory from left to right,
we obtain a convergent rewriting system:

Definition 1. A equational theony, defined by a finite set of equatiopk._, {M; =
N;} wherefn(M;) = fn(N;) = 0, is aconvergent subterm theoifthe set of rewriting
rulesr(E) = U™, {M; — N} is convergent and if eacN; is a proper subterm af/;
or a constant. We writ¢/ — V' if U andV are closed terms and may be rewritten to

V (in one step) using a rule of £).

As usual, ifr(E) is convergent then for all ternig, V, we havell =g V' if and only if
U |=V],whereU | andV | are the normal forms d’ andV'.
We write— g instead of— when the equational theory is not clear from the context.



4.2 Examples

Important destructor-constructor rules like those foripaj, encryption, and signature
may be expressed in subterm theories (typically convergess):

fst(< z,y >) =2z dec(enc(z,y),y) ==
snd(< z,y >) =y  check(z,sign(z,sk(y)), pk(y)) = ok

Additional examples can be found in previous work (e.g.8]2,Convergent subterm
theories also enable us to capture sophisticated but $emstdperties, as in:

Ey: {II(x)=z,I(z) xx=1,zx I(z) =1},
Es : {h(h(z)) =z},
Es : {enc(enc(x,y),y) = z}.

The theoryE; models an inverse function. The thedty models a hash function that
is idempotent on small inputs (since the hash of a hash gieesame hash). The theory
Eg represents an encryption function that also decrypts: tiveyption of a plaintext,
twice with the same key, returns the plaintext.

4.3 Decidability results

For convergent subterm theories, bétland~; become decidable. Léi be a conver-
gent subterm theory given RY"_, {M; = N;}, andcg = maxi<;<,(|M;],ar(X)+1).

Theorem 1. For any framesp and¢’, for any closed termi/, we can decide +~ M
and¢ =~ ¢’ in polynomial time ing|, |¢'|, and|M|.

The end of this section is devoted to outlining the proof efttmeorem.

Step 1 of the proof: saturating a frame We first associate with each franaethe
set of subterms of messagesdirihat may be deduced frog by applying only small
contexts. We prove that this set can be computed in polyridima. In addition, we
show that each term in this set has a “representation” whdésg-Bize is polynomial.

Definition 2. Let ¢ = vn{M;/x1,..., M;/x} be a frame. Lett(¢) be the set of
subterms of thd/;’s. The saturatiorsat(¢) of ¢ is the minimal set such that:

1. foreveryl <i < k, M; € sat(¢),

2. if My,..., My € sat(¢) andC[My, ..., M) — M, whereC is a context|C| <
ce, m(C)Nn=0,andM € st(¢) thenM € sat(¢),

3. if My,..., My € sat(¢) and f(My,..., My) € st(¢), thenf(M;,..., M) €
sat(¢).

Proposition 6. Let¢ be a framegp = vno.

1. The sesat(¢) can be computed in tim@(|¢|max(r(X).cx)+2),

2. ForeveryM € sat(¢), there exists a termy, such than(¢ar )N = 0, |Carlpac <
(ce +1)|¢|, and(y0 =g M. The term(,, is called arecipeof M and is chosen
arbitrarily between the possible terms verifying thesepemies.



The sekat(¢) is obtained by saturating the sgtfy, ..., M} by applying the rules 2
and 3 of definition 2. Sinceat(¢) C st(¢), this set is saturated in at mds{ steps. At
each step, we have to compute:

— Every closed term of the fori@'[My, . . ., My] (up to renamingsi€), where|C| <
cg and theM;’s are already in the set, and check if it is an instance of slerfte
hand side of a rule. Thus we need at mO$¢p|°= 1) computations.

— Everytermf (M, ..., My) thatis also irst(¢). Thus we have to construct at most
| 2|62 ) terms.

Since each step requires at m@§io|™>x(@r(>).cs+1)) computations and since there are
at most|¢| stepssat(¢) may be computed in tim@(|¢|max(r(¥).cx)+2) For the sec-
ond part of proposition 6, we already know by propositiondtthach term\/ of sat(¢)
has a representatiaf, such thatfn(¢yr) N7 = () and¢y;o0 =g M. By construction
of sat(¢), the recipes may be chosen so that:

1. gM = T; if U(.%l) = M,
2. (= ClCuys - - - Car,, ) With M, € sat(¢) if M is obtained by the rule 2,
3. ¢ = f(Casys - - - Cary ) With M; € sat(¢) if M is obtained by the rule 3.

Since there are at moghat(¢)| < |¢| recipes, the maximal DAG-size of a recipe of a
terminsat(¢) is (cg + 1)|¢|.

Step 2 of the proof: Introducing a finite set of equalitiestiamcterize a frameWith
each frameb, we associate a set of equalities(¢) (finite modulo renaming) such that
two frames are equivalent if and only if they satisfy the difjiea from each other’s set:
¢’ satisfies the equalitidsq(¢) and¢ satisfies the equalitiesq(¢’). We assume fixed
the set of recipes corresponding to the termsaofo).

Definition 3. Let¢ = vno be a frame. The séiq(¢) is the set of equalities

CrlCays - -+ Can) = ColCurys -5 Cary

such that(C1[Cusy s - - - Car ] =8 C2[Curys -+, Q)@ [Chl,|Co| < cp, and thel;
and M/ are insat(¢). If ¢ is a frame such thatM =g N)¢' for every(M = N) €
Eq(¢), we write¢’ |= Eq(¢).

Two crucial lemmas show that it is sufficient to consider hegualities:

Lemma 1. Let¢ = viio and¢’ = vn/c’ be two frames such that = Eq(¢). For all

contextsC, Cs such that(fn(C1) U fn(Cs)) N = 0, for all termsM;, M/ € sat(¢),

if Cl[Ml, - ,Mk] == CQ[M]/_, - ,Ml/], then(Ol[CMl, - 7<N[k] =F CQ[C]\/[{, ey

Cuy))e'

Lemma 2. Let¢ = vno be a frame. For every contegt; such thatfn(C1) Nn = (,

for every M; € sat(¢), for every termT" such thatCy[M;,..., M) —g T, there
exist a contexCsy such thatfn(C2) N7 = 0, and termsM, € sat(¢), such that
T == Co[M{,...,M]] and for every framey’ = Eq(¢), (Ci[Cry,---,Cm] =E

Co[Carys -2 Cagg]) @'

How these lemmas are used to prove the decidability of demuahd static equivalence
is explained in steps 3 and 4 of the proof, respectively.



Step 3 of the proof: decidability 6f. Here we show that any message deducible from
a frameg is actually a context over terms sat(¢).

Proposition 7. Let ¢ = vno be a frame,M be a closed term and/ | its normal
form. Then¢ + M if and only if there existC and M, ..., M}, € sat(¢) such that
MmC)Nnn=0andM |== C[M,..., My].

If M lzz O[Ml, Ce ,Mk] with fn(C) nNn = @, thenM =g C[CJVIU e ,CMk]U, by
construction of the&,,,’s. Thus, by proposition 1p - M. Conversely, if¢ - M, then
by proposition 1, there existssuch thaifn(¢) N7 = 0 andM =g (o. ThusM |==
(Co) |. Applying recursively lemma 2, we obtain th@jo) |== C[M, ..., My] for
someMy, ..., My € sat(¢) andC such thatfn(C) N7 = 0.

We derive thatp + M can be decided by checking wheth¥f | is of the form
C[Mj, ..., My] with M; € sat(¢). Given a termM, M | can be computed in poly-
nomial time. Onceat(¢) is computed (in polynomial time by proposition 6), check-
ing whether there exist’ and My, ..., M), € sat(¢) such thatfn(C) N7 = 0 and
M |== C[My,..., M;] may be done in imé&(| M ||¢|?). We conclude thap - M is
decidable in polynomial time.

Step 4 of the proof: decidability &f;.

Proposition 8. For all frames¢ and ¢, we havep ~; ¢’ if and only if¢ = Eq(¢')
and¢’ |= Eq(¢).

By definition of static equivalence, if ~; ¢’ then¢ = Eq(¢') and¢’ &= Eq(¢).
Conversely, assume now thalt|= Eq(¢) and consided/, N such that there exist, o
such thatp = vno, (fn(M)U fan(N))Nn =0and(M =g N)¢. ThenMo =g No,
so(Mo)|== (No)|.LetT = (Mo)|. Applying recursively lemma 2, we obtain that
there existMy, . .., My, € sat(¢) andC), such thayn(Cys) N7 = () and

T == CM[Ml,---;Mk] andM o' =E CM[CJVflv'-'aCMk]UI'

SinceT == (No) |, we obtain similarly that there exigt/{, ..., M, € sat(¢) and
Cy such thatfn(Cy) N7 = (0 and

T == CN[M{, .,Ml/] andNU, =FE ON[CJV[{?" 'aCM[]U/'

Moreover, sinceCys[Mj, ..., M| == Cn[Mj,...,M]], we derive from lemma 1
thatCas[Cary s - - -5 CurJo” =k ON[Cuys - -+, Cuylo’, thus(M =g N)¢'. Conversely, if
(M =g N)¢' and¢ = Eq(¢’), we can prove thatM =g N)¢. We concluded ~; ¢'.
Therefore, giveny and ¢/, to decide whethep ~, ¢ we construckat(¢) and
sat(¢’). This can be done in polynomial time by proposition 6. Forheserm M
of sat(¢) or sat(¢’), the term(y; has a polynomial DAG-size. Then, for all con-
texts Cy, Cs such thatCy|, |Ca| < cg, for all M;, M| € sat(¢), we check whether
(C1lCays -+ ] = C2[Cupys - - -5 Cary]) ¢ @nd(Ci[Cuay s - - -5 Car ) =8 C2lCarys - -
Cay])¢’. There are at mosP((|¢|¢7)?) equalities inEq(¢) (up to renamings of the
names inC; and C,). Each term of the fornCy (s, - - -, (a,|¢ has a polynomial



DAG-size. The equality of two terms represented by DAGs cachecked in polyno-
mial time: we do not need to expand the DAGS to test for equale conclude that
¢ =~ ¢' can be decided in polynomial time ja| and|¢’|.

Although this proof is effective, the complexity boundsttiva obtain from it appear
rather high. For example, for the equational thefiyof section 2.3, we can obtain that
¢ + M is decidable in time& (| M |?|¢|7). It should be possible to do much better.

5 Conclusion

This paper investigates decidability questions for messkaglucibility and static equiv-
alence, two formal representations for knowledge in thdyamof security protocols.
This investigation yields a few somewhat negative resfdtsexample that static equiv-
alence cannot always be reduced to message deducibilitthé®other hand, the main
results are strong, positive ones: both message dedtgiaild static equivalence are
decidable in polynomial time under a large and useful cldggjoational theories.

These positive results suggest some directions for furésarch in protocol anal-
ysis. In the general case of infinite-state protocols, ogo@@hms could be integrated
into analysis tools; substantial work on optimizations nhayvever be required. For
finite-state protocols, various security properties a@dible under specific equational
theories (e.g., [5]). Perhaps our results can serve asahastpoint for a generalization
to a broad class of equational theories. This generalizatiay be easy if one restricts
attention to passive attackers (eavesdroppers): sinceathabilities of eavesdroppers
are limited to deducing and comparing messages, our dalitgabsults may apply
fairly directly. The case with active attackers is clearlgnadifficult and interesting; as
mentioned in the introduction, Delaune and Jacquemard emantly proved that the
deduction problem is still decidable for a subclass of cogwet subterm theories. It
remains to study whether this work could be extended to bskefrocess equivalences
(such as testing equivalences [4]).
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